JPS63195971A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPS63195971A
JPS63195971A JP62028610A JP2861087A JPS63195971A JP S63195971 A JPS63195971 A JP S63195971A JP 62028610 A JP62028610 A JP 62028610A JP 2861087 A JP2861087 A JP 2861087A JP S63195971 A JPS63195971 A JP S63195971A
Authority
JP
Japan
Prior art keywords
air
condensed water
fuel cell
water
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028610A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62028610A priority Critical patent/JPS63195971A/en
Publication of JPS63195971A publication Critical patent/JPS63195971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent a drop in the outlet and a decrease in the life by installing a cooling unit which cools water vapor in a reaction gas into condensed water and an exhaust means which exhausts the condensed water while a reaction gas enters the latter half from the first half of a cell main body. CONSTITUTION:In an air return manifold 3, the water vapor in the air is cooled with a cooling pipe 11 in which water is circulated as shown in an arrow C and plate fins 14 installed around it. The cooled water vapor is condensed into water, and the condensed water drops and is gathered in a condensed water reservoir 16, then exhausted from a condensed water outlet 15 as shown in an arrow D. The flood of electrolyte caused by moisture absorption and expansion of electrolyte on the outlet side of the latter half 9 of a cell main body and the corrosion of an air electrode in a unit cell caused by the dilution of electrolyte can be prevented. Therefore, a drop in the outlet of a cell and a decrease in the life can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池に関し、特に電気的に直列に接続
された複数個の単電池から成る積層型燃料電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and particularly to a stacked fuel cell consisting of a plurality of unit cells electrically connected in series.

〔従来の技術〕[Conventional technology]

積層型燃料電池においては複数個のi電池に不均一を生
じることなく反応ガスを供給し、反応ガスの利用率を向
上させる必要がある。
In a stacked fuel cell, it is necessary to supply reactive gas to a plurality of i-cells without causing non-uniformity, and to improve the utilization rate of the reactive gas.

この為、従来より“リターンフロー”と呼ばれる反応ガ
スの供給方式が用いられる。これは特公昭58−228
66号公報に記載されているごとき技術であり、第4図
にその代表的な従来例を示した。第4図は積層型燃料電
池を示す横断面図であり、第5図は斜視図である。図に
おいて、複数の単電池を積層して構成した積層型燃料電
池(以下、電池と記す)本体、(2)は空気側の反応ガ
スである空気の入口側及び出口側マニホールド、(3)
は空気リターンマニホールド、(4)は燃料側の反応ガ
スである燃料ガスの入口側マニホールド、(5)は燃料
出口側マニホード、(6)は空気が正流側と逆流側とで
混合しないように電池本体(1)内に設けられた障壁、
(7)は空気の入口側配管、(8)は空気の出口側配管
、(9)は空気の逆流側である電池本体後半部、0ωは
空気の正流側である電池本体前半部である。なお、第5
図においては燃料側マニホールド(41151は簡単の
ために図示していない。図中、・矢印は反応ガスの流れ
を示し、矢印(A)は空気の流れ方向、矢印(B)は燃
料ガスの流れ方向を示す。
For this reason, a reaction gas supply method called "return flow" has been conventionally used. This is the special public service 58-228
This is a technique as described in Japanese Patent No. 66, and a typical conventional example thereof is shown in FIG. FIG. 4 is a cross-sectional view showing the stacked fuel cell, and FIG. 5 is a perspective view. In the figure, the main body of a stacked fuel cell (hereinafter referred to as a battery) is constructed by stacking a plurality of single cells, (2) is the inlet side and outlet side manifold for air, which is the reactive gas on the air side, and (3)
is an air return manifold, (4) is a manifold on the inlet side of the fuel gas which is the reaction gas on the fuel side, (5) is a manifold on the fuel outlet side, and (6) is a manifold on the fuel outlet side to prevent air from mixing on the forward flow side and reverse flow side. a barrier provided within the battery body (1);
(7) is the air inlet side piping, (8) is the air outlet side piping, (9) is the rear half of the battery body where air flows backward, and 0ω is the front half of the battery body where air flows forward. . In addition, the fifth
In the figure, the fuel side manifold (41151 is not shown for simplicity. In the figure, arrows indicate the flow of reaction gas, arrows (A) indicate the flow direction of air, and arrows (B) indicate the flow of fuel gas. Show direction.

次に動作について説明する。燃料ガスを燃料入口側マニ
ホールド(4)より供給し、空気を空気入口側マニホー
ルド(2)より供給する。電池本体(1)は空気極と燃
料極を有する単電池が積層されており、電池本体(1)
内を空気側と燃料側の反応ガスが十字流形式で流れる間
に化学及び電気化学反応を行なう。“リタン−フロー”
方式では電池本体(1)が空気の流れにおいて正流側の
電池本体前半部a0と逆流側の電池本体後半部(9)と
に分けられている。矢Ell (A)のように供給され
る空気について述べると、電池本体前半部αΦの各単電
池で反応した後、空気リターンマニホールド(3)に流
入する。この空気リターンマニホールド(3)内で上下
間の空気が混合されて均一となり、電池本体後半部(9
)の各単電池に供給される。このように、“リターンフ
ロー“方式による積層型燃料電池では、空気リターンマ
ニホールド(3)内において上下間の反応ガスが一度混
合される為に、電池本体後半部(9)において反応ガス
の不均一を生じに(り、また積層された電池本体(1)
の各単電池の面内の温度分布も改善される効果がある。
Next, the operation will be explained. Fuel gas is supplied from the fuel inlet side manifold (4), and air is supplied from the air inlet side manifold (2). The battery body (1) is made up of stacked single cells each having an air electrode and a fuel electrode.
Chemical and electrochemical reactions take place while the reactant gases on the air side and the fuel side flow in a cross-flow manner. “Return Flow”
In this system, the battery body (1) is divided into a front half a0 of the battery body on the forward flow side and a rear half of the battery body (9) on the reverse flow side in terms of air flow. Regarding the air supplied as shown by the arrow Ell (A), after reacting in each unit cell of the front half αΦ of the battery body, it flows into the air return manifold (3). In this air return manifold (3), the air between the upper and lower parts is mixed and becomes uniform, and the rear half of the battery body (9)
) is supplied to each cell. In this way, in the stacked fuel cell using the "return flow" method, the reactant gases between the upper and lower sides are mixed once in the air return manifold (3), so the reactant gas is uneven in the rear half of the cell body (9). In addition, the stacked battery body (1)
This also has the effect of improving the in-plane temperature distribution of each unit cell.

なお、第4図、第5図では空気側にリターンフローを適
用した従来例を示したが、もちろん燃料側にリターンフ
ローを適用した従来例もある。
Although FIGS. 4 and 5 show conventional examples in which return flow is applied to the air side, there are, of course, also conventional examples in which return flow is applied to the fuel side.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

積層燃料電池においては、反応ガスが消費されると共に
生成物である水蒸気が発生し、主として流量の多い空気
側へ排出される。従って、空気リターンマニホールド(
3)内には、電池本体前半部(正流側)0〔で発生した
水蒸気が多量に含まれ、電池本体後半部(逆流側)(9
)へ供給される。このため、電池本体後半部(9)の出
口側では電池本体後半部(9)での発生水蒸気がさらに
加わり、電池本体前半部00)に比べてはるかに多い量
の水蒸気が供給されることになる。この為、電池本体後
半部(9)の出口側で電解液が吸湿して膨張し、フラン
ディングを起こしたり、また、電解液が希釈されること
によって、単電池を構成する空気極の腐食が加速される
などの問題が生じ、この為、電池の出力が低下したり、
寿命が短かくなるなどの問題点があった。
In a stacked fuel cell, a reaction gas is consumed and a product, water vapor, is generated and is mainly discharged to the air side where the flow rate is high. Therefore, the air return manifold (
3) contains a large amount of water vapor generated in the first half of the battery body (forward flow side) 0 [, and the second half of the battery body (reverse flow side) (9
). Therefore, on the outlet side of the battery main body rear half (9), the water vapor generated in the battery main body rear half (9) is further added, and a much larger amount of water vapor is supplied compared to the battery main body front half 00). Become. For this reason, the electrolyte absorbs moisture and expands on the outlet side of the rear half of the battery body (9), causing flooding, and the electrolyte is diluted, causing corrosion of the air electrode that makes up the cell. Problems such as acceleration may occur, resulting in a decrease in battery output,
There were problems such as shortened lifespan.

この発明は上記のような問題点を解消するためになされ
たもので、電池本体後半部の出口側におけるフラッディ
ングや電解液の希釈を防止し、電池の出力の低下や短寿
命化を防止できる積層型燃料電池を得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and it is a laminated layer that prevents flooding and dilution of the electrolyte on the outlet side of the rear half of the battery body, and prevents a decrease in battery output and shortened battery life. The purpose is to obtain a type fuel cell.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る積層型燃料電池は、+11反応ガスを入
口側マニホールドから供給し、電池本体前半部リターン
マニホールド、電池本体後半部をこの順に循環させて出
口側マニホールドから排出する積層型燃料電池において
、反応ガスが電池本体前半部を出て電池本体後半部に入
る間に、反応ガス中の水腑気を冷却して凝結水とする冷
却機、及びこの凝結水を排出する排出手段を備えたもの
である。
The stacked fuel cell according to the present invention is a stacked fuel cell in which +11 reaction gas is supplied from the inlet side manifold, circulated through the return manifold in the front half of the cell body, the rear half of the cell body in this order, and discharged from the outlet side manifold. Equipped with a cooler that cools the water in the reaction gas into condensed water while the reaction gas exits the front half of the battery body and enters the rear half of the battery body, and a discharge means to discharge the condensed water. It is.

〔作用〕[Effect]

この発明における冷却機は、反応ガスが電池本体前半部
を出て電池本体後半部に入る間に、反応ガス中の水蒸気
を冷却して凝結水を排出手段によって電池本体外へ除去
するため、電池本体後半部の出口側でのフラッディング
や電解液の希釈を軽減する。
The cooler in this invention cools water vapor in the reaction gas and removes condensed water from the battery body by the discharge means while the reaction gas exits the front half of the battery body and enters the rear half of the battery body. Reduces flooding and electrolyte dilution on the outlet side of the rear half of the main body.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による積層型燃料電池を示す横
断面図であり、第2図は同じく斜視図である。図におい
て、aυは冷却機で、例えば空気リターンマニホールド
(3)内に配設された冷却管、(2)は冷却管入口、0
りは冷却管出口、[+41は冷却管の周囲に設けられた
プレートフィン、α蕩は凝結水出口、05+は凝結水溜
めである。凝結水出口αつと凝結水溜めαQとで凝結水
の排出手段を構成している。図中、矢印(A)は空気の
流れ方向、矢印(B)は燃料ガスの流れ方向、矢印(C
)は冷却管αυ内を流れる冷媒、たとえば水の流れ方向
、矢印(D)は凝結水の流れ方向を示している。冷却管
θυ内を流す冷媒は液体でも気体でもよい、気体の場合
、反応ガスを入口側マニホールドf21.+41に供給
する前に冷却管aυに流し、予備加熱として用いてもよ
い。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing a stacked fuel cell according to an embodiment of the present invention, and FIG. 2 is a perspective view as well. In the figure, aυ is a cooler, for example, a cooling pipe installed in the air return manifold (3), (2) is a cooling pipe inlet, 0
1 is the cooling pipe outlet, +41 is the plate fin provided around the cooling pipe, α is the condensed water outlet, and 05+ is the condensed water reservoir. The condensed water outlet α and the condensed water reservoir αQ constitute a condensed water discharge means. In the figure, arrow (A) is the flow direction of air, arrow (B) is the flow direction of fuel gas, and arrow (C
) indicates the flow direction of the refrigerant, such as water, flowing in the cooling pipe αυ, and arrow (D) indicates the flow direction of condensed water. The refrigerant flowing through the cooling pipe θυ may be a liquid or a gas. If it is a gas, the reaction gas is passed through the inlet side manifold f21. It may also be used as preheating by flowing it through the cooling pipe aυ before supplying it to +41.

プレートフィン圓は冷却効果を高めるため表面積を大き
くする為の手段で、一般的なものである。
Plate fin circles are a common means of increasing the surface area to enhance the cooling effect.

なお、冷却管Oυ及びプレートフィン(ロ)は電解液に
対し耐食性のあるものでなければならない。
Note that the cooling pipe Oυ and the plate fin (b) must be corrosion resistant to the electrolyte.

動作については従来と同様に電池本体前半部α〔で空気
と燃料ガスが反応する。ここで生成物である水蒸気が発
生し、主として流量の多い空気側へ排出されて、空気と
共に空気リターンマニホールド(3)に流入する。空気
リターンマニホールド(3)では、内部に矢印(C)に
示すように水を循環する冷却管αυとその周囲に設けら
れたプレートフィンα荀によって、空気中の水蒸気が冷
却される。冷却された水蒸気は凝結して水となり、下へ
落ちて凝結水溜めQ[9に溜められ、必要に応じて凝結
水出口+151から矢印(D)に示すように排出させる
ことができる。このように空気リターンマニホールド(
3)内で空気中の水蒸気の一部が除去された後、電池本
体後半部(9)に供給されて化学及び電気化学反応を行
なう。電池本体後半部(9)において含まれる水蒸気の
量は、電池本体前半部OIにおいて含まれる水蒸気の量
とあまり変わらず、効率よく電池反応を行なうことがで
きる。従って、電池本体後半部(9)の出口側において
、電解液が吸湿して膨張し、フランディングを起こした
り、また、電解液が希釈されることによって単電池を構
成する空気極の腐食を防止することができ、このため、
電池の出力の低下や短寿命化を防止することができる。
As for operation, air and fuel gas react in the front half α of the battery body, as in the conventional case. Water vapor, which is a product, is generated here and is discharged mainly to the air side with a large flow rate, and flows into the air return manifold (3) together with the air. In the air return manifold (3), water vapor in the air is cooled by a cooling pipe αυ through which water circulates as shown by an arrow (C), and a plate fin αυ provided around the cooling pipe αυ. The cooled water vapor condenses into water, falls downward and is stored in the condensed water reservoir Q[9, and can be discharged from the condensed water outlet +151 as shown by arrow (D) if necessary. Like this air return manifold (
After some of the water vapor in the air is removed in the chamber 3), it is supplied to the rear half (9) of the battery body where chemical and electrochemical reactions occur. The amount of water vapor contained in the second half (9) of the battery main body is not much different from the amount of water vapor contained in the first half OI of the battery main body, and the battery reaction can be carried out efficiently. Therefore, on the outlet side of the rear half (9) of the battery body, the electrolyte absorbs moisture and expands, causing flounding, and also prevents corrosion of the air electrode that constitutes the cell due to dilution of the electrolyte. For this reason, you can
It is possible to prevent a decrease in battery output and shorten the lifespan of the battery.

第3図はこの発明の他の実施例を示す横断面図であり、
(2@は隔壁である。第3図に示す実施例では空気リタ
ーンマニホールド(3)内に隔壁(2場によって別室(
21)が形成され、別室(21)の内部で反応ガス中に
含まれる水蒸気の冷却、凝結が行なわれている。凝結に
より生じた凝結水は上記実施例と同様に凝結水出口a9
から排出される。またさらに他の実施例として、空気リ
ターンマニホールド+31の外壁に冷却管αυを配設し
て外から冷却してもよい。
FIG. 3 is a cross-sectional view showing another embodiment of the invention,
(2@ is a partition wall. In the embodiment shown in Fig. 3, there is a partition wall in the air return manifold (3).
21) is formed, and water vapor contained in the reaction gas is cooled and condensed inside the separate chamber (21). The condensed water generated by condensation is sent to the condensed water outlet a9 as in the above embodiment.
is discharged from. In yet another embodiment, a cooling pipe αυ may be disposed on the outer wall of the air return manifold +31 to cool it from the outside.

さらに、上記実施例のように空気リターンマニホールド
(3)内で冷却するばかりでな(、水蒸気を含む反応ガ
スを電池本体前半部αeを出てから一度取り出して冷却
するなど、反応ガスが電池本体前半部αeを出て電池本
体後半部(9)に入る間に、反応ガス中に含まれる水蒸
気を冷却して凝結水として取り除くように構成すればよ
い。
Furthermore, in addition to being cooled in the air return manifold (3) as in the above embodiment, the reaction gas containing water vapor is taken out once after exiting the front half αe of the battery body and cooled. The structure may be such that water vapor contained in the reaction gas is cooled and removed as condensed water while leaving the front half αe and entering the rear half (9) of the battery main body.

また、上記実施例では空気側のリターンフローについて
示したが、水蒸気は燃料側にも排出されるので、燃料側
のリターンフローに同様の機能を設けてもよく、上記実
施例と同様の効果を奏する。
In addition, although the above embodiment shows the return flow on the air side, since water vapor is also discharged on the fuel side, a similar function may be provided to the return flow on the fuel side, and the same effect as in the above embodiment can be obtained. play.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、反応ガスを入口側マ
ニホールドから供給し、電池本体前半部、リターンマニ
ホールド、電池本体後半部をこの順に循環させて出口側
マニホールドから排出する積層型燃料電池において、反
応ガスが電池本体前半部を出て電池本体後半部に入る間
に、反応ガス中の水蒸気冷却して凝結水とする冷却機、
及びこの凝結水を排出する排出手段を備えたことにより
、電池本体後半部の出口側におけるフラッディングや電
解液の希釈を防止し、電池の出力の低下や短寿命化を防
止できる積層型燃料電池が得られる効果がある。
As described above, according to the present invention, in a stacked fuel cell, a reactant gas is supplied from the inlet side manifold, circulated in this order through the first half of the cell body, the return manifold, and the second half of the cell body, and then discharged from the outlet side manifold. , a cooler that cools water vapor in the reaction gas to condensate water while the reaction gas exits the front half of the battery body and enters the rear half of the battery body;
By being equipped with a discharge means for discharging this condensed water, a stacked fuel cell can prevent flooding and dilution of the electrolyte on the outlet side of the rear half of the battery body, thereby preventing a decrease in battery output and shortening of battery life. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による積層型燃料電池を示
す横断面図、第2図は同じく斜視図、第3図はこの発明
の他の実施例を示す横断面図、第4図は従来の積層型燃
料電池を示す横断面図、第5図は同じく斜視図である。 ill・・・積層型燃料電池本体、(2)・・・入口側
及び出口側マニホールド、(3)・・−リターンマニホ
ールド、(9)・・・電池本体後半部、aω・・・電池
本体前半部、QO・・・冷却機、αS、OFA・・・排
出手段。 なお、図中、同一符号は同一、又相当部分を示ず。 代理人    大  岩  増  雄 第1図 15:’f4W戯チ艮 第3図
FIG. 1 is a cross-sectional view showing a stacked fuel cell according to one embodiment of the present invention, FIG. 2 is a perspective view thereof, FIG. 3 is a cross-sectional view showing another embodiment of the present invention, and FIG. A cross-sectional view showing a conventional stacked fuel cell, and FIG. 5 is a perspective view as well. ill...stacked fuel cell main body, (2)...inlet side and outlet side manifolds, (3)...-return manifold, (9)...second half of the battery main body, aω...first half of the battery main body part, QO...Cooler, αS, OFA...Discharge means. In addition, in the figures, the same reference numerals do not indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 15:'f4W play Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)反応ガスを入口側マニホールドから供給し、電池
本体前半部リターンマニホールド、電池本体後半部をこ
の順に循環させて出口側マニホールドから排出する積層
型燃料電池において、上記反応ガスが上記電池本体前半
部を出て上記電池本体後半部に入る間に、上記反応ガス
中の水蒸気を冷却して凝結水とする冷却機、及びこの凝
結水を排出する排出手段を備えたことを特徴とする積層
型燃料電池。
(1) In a stacked fuel cell in which a reactive gas is supplied from an inlet manifold, circulated in this order through a return manifold in the front half of the cell body, a rear half of the battery body, and then discharged from an outlet manifold, the reactive gas is supplied from the first half of the cell body. A laminated type characterized by comprising a cooler that cools the water vapor in the reaction gas to form condensed water between the part and the rear part of the battery main body, and a discharge means to discharge the condensed water. Fuel cell.
(2)冷却機は、リターンマニーホルドの内部に冷却管
を配設したものであることを特徴とする特許請求の範囲
第1項記載の積層型燃料電池。
(2) The stacked fuel cell according to claim 1, wherein the cooler has a cooling pipe arranged inside the return manifold.
(3)冷却機は、リターンマニホールドの外壁に冷却管
を配設したものであることを特徴とする特許請求の範囲
第1項記載の積層型燃料電池。
(3) The stacked fuel cell according to claim 1, wherein the cooler has cooling pipes arranged on the outer wall of the return manifold.
JP62028610A 1987-02-10 1987-02-10 Stacked fuel cell Pending JPS63195971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028610A JPS63195971A (en) 1987-02-10 1987-02-10 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028610A JPS63195971A (en) 1987-02-10 1987-02-10 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPS63195971A true JPS63195971A (en) 1988-08-15

Family

ID=12253341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028610A Pending JPS63195971A (en) 1987-02-10 1987-02-10 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS63195971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192664A (en) * 1989-01-20 1990-07-30 Fuji Electric Co Ltd Phosphoric acid type fuel cell
WO2001059863A3 (en) * 2000-02-14 2002-05-02 Siemens Ag Fuel cell block comprising a condensed water separator which is connected to an operating gas delivery line
KR20030081943A (en) * 2002-04-15 2003-10-22 현대자동차주식회사 System for humidifying in fuel cell stack
JP2006253047A (en) * 2005-03-14 2006-09-21 Toshiba Fuel Cell Power Systems Corp Fuel cell
JP2010186624A (en) * 2009-02-12 2010-08-26 Toshiba Corp Fuel cell stack, and fuel cell system having the same
CN111952632A (en) * 2020-08-21 2020-11-17 清华大学 Internal cascade solid oxide fuel cell stack with high fuel utilization rate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192664A (en) * 1989-01-20 1990-07-30 Fuji Electric Co Ltd Phosphoric acid type fuel cell
WO2001059863A3 (en) * 2000-02-14 2002-05-02 Siemens Ag Fuel cell block comprising a condensed water separator which is connected to an operating gas delivery line
US7014936B2 (en) 2000-02-14 2006-03-21 Siemens Aktiengesellschaft Fuel cell block
KR20030081943A (en) * 2002-04-15 2003-10-22 현대자동차주식회사 System for humidifying in fuel cell stack
JP2006253047A (en) * 2005-03-14 2006-09-21 Toshiba Fuel Cell Power Systems Corp Fuel cell
JP2010186624A (en) * 2009-02-12 2010-08-26 Toshiba Corp Fuel cell stack, and fuel cell system having the same
CN111952632A (en) * 2020-08-21 2020-11-17 清华大学 Internal cascade solid oxide fuel cell stack with high fuel utilization rate

Similar Documents

Publication Publication Date Title
EP0529329B1 (en) Plate type shift converter
JP2008515134A (en) Integrated fuel cell power generation module
JP4361788B2 (en) Fuel cell system incorporating integrated cathode exhaust condenser and stack cooler
CN104380512A (en) Fuel-cell system
JPS63195971A (en) Stacked fuel cell
JP3972581B2 (en) Fuel cell
CN218296816U (en) Heat exchange module
JP3873849B2 (en) Polymer electrolyte fuel cell device
US20100285380A1 (en) Fuel cell system
JP2002134138A (en) Fuel cell system
JPH06150950A (en) Heat exchanger for fuel cell
JP2002343400A (en) Piping structure of fuel cell
JP4925078B2 (en) Polymer electrolyte fuel cell
CA2544622C (en) Solid polymer fuel cell
JP3265799B2 (en) Direct contact heat exchanger for fuel cell and fuel cell system
JPH0343962A (en) Fuel cell
CN218447981U (en) Heat radiator for fuel cell
KR102516958B1 (en) An Anode Bipolar Plate for Fuel Cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell
KR101300160B1 (en) Fuel cell
JPH04289674A (en) Gas header for fuel battery and fuel battery using same
JPH07192739A (en) Fuel cell
JP2008098019A (en) Humidifier for fuel cell
JPH0831437A (en) Fuel cell and operation thereof
JP3325293B2 (en) Fuel cell