JPS631956B2 - - Google Patents

Info

Publication number
JPS631956B2
JPS631956B2 JP54118604A JP11860479A JPS631956B2 JP S631956 B2 JPS631956 B2 JP S631956B2 JP 54118604 A JP54118604 A JP 54118604A JP 11860479 A JP11860479 A JP 11860479A JP S631956 B2 JPS631956 B2 JP S631956B2
Authority
JP
Japan
Prior art keywords
water
acid
compound
group
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54118604A
Other languages
Japanese (ja)
Other versions
JPS5643296A (en
Inventor
Koji Nakano
Mikio Morioka
Taku Oosono
Hamao Umezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbial Chemistry Research Foundation
Original Assignee
Microbial Chemistry Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbial Chemistry Research Foundation filed Critical Microbial Chemistry Research Foundation
Priority to JP11860479A priority Critical patent/JPS5643296A/en
Publication of JPS5643296A publication Critical patent/JPS5643296A/en
Publication of JPS631956B2 publication Critical patent/JPS631956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なアミノグリコシド誘導体、さら
に詳しくは式 (式中R1およびR2は同一または異なつて水素原
子または水酸基を、nは1〜3の整数を示す。以
下同様) で示されるアミノグリコシド誘導体またはその酸
付加塩に関する。 本発明化合物()はすぐれた抗菌活性を有し
抗菌剤として有用な化合物である。抗生物質の改
良研究としてはたとえば化学構造の部分変換によ
つて抗菌力の強化、抗菌スペクトルの拡大、生体
内における抗菌力の持続などが行われている。本
発明者等はさきに抗生物質カナマイシンの部分構
造の生物学的変換によつて優れた抗菌力を示す誘
導体を得たが、これらの化合物に新たな置換基を
導入することによつて一層優れた本発明化合物
()を得ることができた。 本発明化合物()は下図の如き反応工程によ
つて製造することができる。 (上記式中において、R3は水素原子、R4および
R5は1価のアミノ基の保護基、あるいはR3とR4
もしくはR3とR5とは一体となつて2価のアミノ
基の保護基を示す。以下同様) 前記における1価のアミノ基の保護基とはアミ
ノ酸、ペプチド化学の分野において通常用いられ
る保護基導入試剤と化合物()との反応によつ
て導入される保護基を意味し、たとえばトリチル
基、メトキシカルボニル基、エトキシカルボニル
基、フエナシルカルボニル基、tert−ブトキシカ
ルボニル基、ベンジルオキシカルボニル基、p−
ニトロベンジルオキシカルボニル基等であり、2
価のアミノ基の保護基とはたとえばフタロイル基
等である。 また化合物()のカルボキシル基における反
応性誘導体としてはp−ニトロフエノール、N−
ヒドロキシスクシンイミド等とのエステル等の活
性化エステル;炭酸モノエステル、低級アルカン
酸等の混合酸無水物;酸クロリド、酸ブロミド等
の酸ハライド;酸無水物:カルボニルジイミダゾ
ールとの反応によつて得られる活性アミド等が挙
げられる。 次に各工程について詳細に説明する。 第一工程: 化合物()の6′位のアミノ基への保護基の導
入は、水、メタノール、エタノール、ジオキサ
ン、テトラヒドロフラン、エチレングリコールジ
メチルエーテル、ジメチルホルムアミド等の溶媒
またはそれらの混合溶媒中で好ましくは室温付近
で常法により行うことができる。 第二工程: 化合物()と化合物()またはそのカルボ
キシル基における反応性誘導体との反応は水、メ
タノール、エタノール、ジオキサン、テトラヒド
ロフラン、エチレングリコール ジメチルエーテ
ル、ジメチルホルムアミド等の溶媒またはそれら
の混合溶媒中で好ましくは室温付近で行うことが
できる。化合物()を遊離の酸のまま使用する
ときは、N・N′−ジシクロヘキシルカルボジイ
ミド等の縮合剤を用いるとよい。 第三工程: 化合物()のアミノ基の保護基の脱離は、保
護基の性質によつて種々の方法が用いられるが、
保護基の導入と同様にアミノ酸、ペプチド化学の
分野において用いられる通常の方法が適用され
る。たとえば保護基がベンジルオキシカルボニル
基の場合には、水、メタノール、エタノール、ジ
オキサン、テトラヒドロフラン、エチレングリコ
ール ジメチルエーテル、ジメチルホルムアミド
等の溶媒またはそれらの混合溶媒中で白金、パラ
ジウム炭素、ラネーニツケル等の触媒を用い、塩
酸、酢酸等の存在下、通常の接触還元操作によつ
て行うことができる。 このようにして製造された化合物()の単離
精製はカラムまたは薄層クロマトグラフイー、減
圧濃縮等の通常の操作によつて行うことができ
る。 化合物()の酸付加塩としては塩酸、硫酸、
臭化水素酸、酒石酸、クエン酸、コハク酸、マレ
イン酸、フマール酸等の酸との塩が挙げられる。 ここに得られた本発明目的化合物()は出発
物質に比して優れた抗菌活性を示し、各種細菌感
染症に対する治療に有用である。
The present invention provides novel aminoglycoside derivatives, more specifically, the formula (In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or a hydroxyl group, and n represents an integer of 1 to 3. The same applies hereinafter.) The present invention relates to an aminoglycoside derivative or an acid addition salt thereof. The compound () of the present invention has excellent antibacterial activity and is a useful compound as an antibacterial agent. Research to improve antibiotics involves, for example, strengthening their antibacterial activity, expanding their antibacterial spectrum, and sustaining their antibacterial activity in vivo through partial changes in their chemical structures. The present inventors previously obtained derivatives exhibiting excellent antibacterial activity through biological conversion of the partial structure of the antibiotic kanamycin. The compound of the present invention () could be obtained. The compound of the present invention () can be produced by the reaction steps shown in the diagram below. (In the above formula, R 3 is a hydrogen atom, R 4 and
R 5 is a monovalent amino group protecting group, or R 3 and R 4
Alternatively, R 3 and R 5 together represent a divalent amino protecting group. (The same applies hereinafter) In the above, the protecting group for a monovalent amino group means a protecting group introduced by a reaction between a compound () and a protecting group introducing reagent commonly used in the fields of amino acid and peptide chemistry. group, methoxycarbonyl group, ethoxycarbonyl group, phenacylcarbonyl group, tert-butoxycarbonyl group, benzyloxycarbonyl group, p-
nitrobenzyloxycarbonyl group, etc., and 2
The protective group for the valent amino group is, for example, a phthaloyl group. In addition, as reactive derivatives at the carboxyl group of compound (), p-nitrophenol, N-
Activated esters such as esters with hydroxysuccinimide etc.; Mixed acid anhydrides such as carbonic acid monoesters and lower alkanoic acids; Acid halides such as acid chlorides and acid bromides; Acid anhydrides: obtained by reaction with carbonyldiimidazole. Examples include active amides. Next, each step will be explained in detail. First step: The introduction of a protecting group into the amino group at the 6' position of the compound () is preferably carried out in a solvent such as water, methanol, ethanol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, dimethylformamide, or a mixed solvent thereof. This can be carried out by a conventional method at around room temperature. Second step: The reaction between compound () and compound () or its reactive derivative in the carboxyl group is preferably carried out in a solvent such as water, methanol, ethanol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, dimethylformamide, or a mixed solvent thereof. can be carried out at around room temperature. When compound () is used as a free acid, a condensing agent such as N.N'-dicyclohexylcarbodiimide may be used. Third step: Various methods can be used to remove the protecting group of the amino group of the compound () depending on the nature of the protecting group.
Conventional methods used in the fields of amino acid and peptide chemistry can be applied as well as the introduction of protecting groups. For example, when the protecting group is a benzyloxycarbonyl group, a catalyst such as platinum, palladium on carbon, or Raney nickel is used in a solvent such as water, methanol, ethanol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, or dimethylformamide, or a mixed solvent thereof. , hydrochloric acid, acetic acid, etc., by a conventional catalytic reduction operation. Isolation and purification of the compound () thus produced can be carried out by conventional operations such as column or thin layer chromatography, vacuum concentration, and the like. Acid addition salts of compound () include hydrochloric acid, sulfuric acid,
Examples include salts with acids such as hydrobromic acid, tartaric acid, citric acid, succinic acid, maleic acid, and fumaric acid. The thus obtained compound () of the present invention exhibits superior antibacterial activity compared to the starting material, and is useful in the treatment of various bacterial infections.

【表】【table】

【表】 本発明で原料物質として用いられる化合物
()はカナマイシンAまたはカナマイシンBを
ミクロモノスポラ属に属するゲンタミシン生産菌
株またはその変異株と接触させることによつて製
造することができる(特開昭53−3188)。 次に本発明を実施例によつてさらに詳細に説明
する。 実施例 1 (イ) 3′・4′−ジデオキシ−4″−C−メチル−3″−
N−メチルカナマイシンAまたはその4″のエピ
マー500mgを含む水10mlおよびテトラヒドロフ
ラン26mlとの混液に酢酸第2銅水和物〔Cu
(OAc)2・5H2O〕221mgを加え、室温で30分間
かきまぜた後ベンジル p−ニトロフエニル
カーボネート336mgを加え、同温度で一夜かき
まぜた。この反応液に濃アンモニア水0.5mlお
よび水20mlを加え、30分間かきまぜた後硫化水
素を吹きこみ、パーライトを加えて過した。
液を1規定塩酸でPH5に調整した後テトラヒ
ドロフランを減圧留去し、残つた水溶液をアン
バーライトCG−50(NH4 +型)70mlを含むカラ
ムでクロマトグラフイーを行い生成物を含むフ
ラクシヨンを集めて減圧濃縮し6′−N−ベンジ
ルオキシカルボニル−3′・4′−ジデオキシ−
4″−C−メチル−3″−N−メチルカナマイシン
Aまたはその4″のエピマー332mgを得た。 NMR(D2O)スペクトル δ:1.29(4″−C−CH3 、s、3H) 2.57(3″−N−CH3 、s、3H) 7.43(
[Table] Compound () used as a raw material in the present invention can be produced by contacting kanamycin A or kanamycin B with a gentamicin-producing strain belonging to the genus Micromonospora or its mutant strain (Japanese Patent Application Laid-Open No. 53−3188). Next, the present invention will be explained in more detail with reference to Examples. Example 1 (a) 3′・4′-dideoxy-4″-C-methyl-3″-
Cupric acetate hydrate [Cu
Add 221 mg of (OAc) 2.5H 2 O, stir at room temperature for 30 minutes, and then add benzyl p-nitrophenyl .
336 mg of carbonate was added and stirred overnight at the same temperature. To this reaction solution were added 0.5 ml of concentrated ammonia water and 20 ml of water, and after stirring for 30 minutes, hydrogen sulfide was blown into the solution, and perlite was added and filtered.
After adjusting the pH of the solution to 5 with 1N hydrochloric acid, the tetrahydrofuran was distilled off under reduced pressure, and the remaining aqueous solution was chromatographed on a column containing 70 ml of Amberlite CG-50 (NH 4 + type), and the fraction containing the product was collected. and concentrated under reduced pressure to give 6'-N-benzyloxycarbonyl-3',4'-dideoxy-
332 mg of 4″-C-methyl-3″-N-methylkanamycin A or its 4″ epimer was obtained. NMR (D 2 O) spectrum δ: 1.29 (4″-C- CH 3 , s, 3H) 2.57 (3″-N- CH 3 , s, 3H) 7.43 (

【式】 s、5H) FD−MS 615(M・H)+ (ロ) 水1.2mlおよびエチレングリコール ジメチ
ルエーテル3.6mlとの混液に(イ)の生成物285mgを
溶かし、ついでL−(−)−γ−ベンジルオキシ
カルボニルアミノ−α−ヒドロキシ酪酸N−ヒ
ドロキシスクシンイミドエステル196mgを加え、
室温で一夜かきまぜた。反応液を減圧濃縮した
後残留物を50%ジオキサン5.0mlに溶かし、酢
酸0.1mlを加え、10%パラジウム炭素を用いて、
接触還元し保護基を脱離した。反応終了後触媒
を去し、濃縮後水5mlに溶かし、アンバーラ
イトIRC−50(NH4 +型)40mlを含むカラムでク
ロマトグラフイーを行い0.8規定アンモニア水
で溶出し、生成物を含むフラクシヨンを集めて
減圧濃縮し粗生成物264.4mgを得た。 この様にして得られた粗生成物の198mgをふ
たたびアンバーライトCG−50(NH4 +型)の1
cm×50cmのカラムに吸着させた。樹脂を充分水
洗した後0.05規定アンモニア水500mlでさらに
洗浄し、0.05規定アンモニア水1と0.8規定
アンモニア水1とを用い濃度勾配分画操作を
行い、各フラクシヨン(各5.5ml)をシリカゲ
ル薄層クロマトグラフイー〔シリカゲルプレー
ト:キーゼルゲル60F254、展開溶媒;クロロホ
ルム:メタノール:28%アンモニア水(20:
15:8)〕で検出して目的化合物を含む区分を
集め減圧濃縮後真空乾燥して19mgの粗成物を得
た。これをシリカゲル(ワコーゲルC−200)
6mm×300mmカラムにチヤージし上記薄層クロ
マトグラフイーに用いた同じ組成の溶媒で展開
し、各フラクシヨン(各0.5ml)を上記シリカ
ゲル薄層クロマトグラフイーで検出し、目的化
合物を含む区分を濃縮乾固して粗粉末16mgを得
た。この粗粉末をダウエツクス1×2(OH−
型)の6mm×200mmのカラムにチヤージし水で
溶出して、同様に目的化合物を含むフラクシヨ
ンを集めて凍結乾燥して11mgの純粋な1−N−
〔L−(−)−γ−アミノ−α−ヒドロキシブチ
リル〕−3′・4′−ジデオキシ−4″−C−メチル−
3″−N−メチルカナマイシンAまたはその4″の
エピマーの粉末を得た。 IRスペクトル νKBr naxcm-1:820、1025 1045、1145 1320、1375 1475、1555 1640、2925 3350、 NMR(D2O)スペクトル δ:1.30(4″−C−CH3 、s、3H) 2.57(3″−N−CH3 、s、3H) 5.14(1″アノメリツクプロトン、d、1H) 5.34(1′アノメリツクプロトン、d、1H) FD−MS 582(M・H)+ 実施例 2 (イ) 4″−C−メチル−3″−N−メチルカナマイシ
ンAまたはその4″のエピマー1.5gを含む水30
mlおよびテトラヒドロフラン60mlとの混液に酢
酸第2銅水和物600mgを加え、室温で30分間か
きまぜた後ベンジル p−ニトロフエニル カ
ーボネート1.0gを加え、一夜かきまぜた。反
応液に水60mlおよび濃アンモニア水1mlを加
え、30分間かきまぜた後硫化水素を吹き込み、
パーライトを加えて過した。液を1規定塩
酸でPH5に調整した後減圧濃縮し、残留物を水
40mlに溶かし、アンバーライトCG−50(NH4 +
型)でカラムクロマトグラフイーを行い、生成
物を含むフラクシヨンを集めて減圧濃縮し、
6′−N−ベンジルオキシカルボニル−4″−C−
メチル−3″−N−メチルカナマイシンAまたは
その4″のエピマー1.185gを得た。 NMR(D2O)スペクトル δ:1.28(4″−C−CH3 、s、3H) 2.52(3″−N−CH3 、s、3H) 7.41(
[Formula] s, 5H) FD-MS 615 (M・H) + (b) Dissolve 285 mg of the product in (a) in a mixture of 1.2 ml of water and 3.6 ml of ethylene glycol dimethyl ether, then L-(-)- Add 196 mg of γ-benzyloxycarbonylamino-α-hydroxybutyric acid N-hydroxysuccinimide ester,
Stir overnight at room temperature. After concentrating the reaction solution under reduced pressure, the residue was dissolved in 5.0 ml of 50% dioxane, 0.1 ml of acetic acid was added, and using 10% palladium on carbon,
The protective group was removed by catalytic reduction. After the reaction was completed, the catalyst was removed, concentrated, dissolved in 5 ml of water, and chromatographed on a column containing 40 ml of Amberlite IRC-50 (NH 4 + type), eluted with 0.8N ammonia water, and the fraction containing the product was collected. The mixture was collected and concentrated under reduced pressure to obtain 264.4 mg of crude product. 198 mg of the crude product obtained in this way was added to 1 ml of Amberlite CG-50 (NH 4 + form).
It was adsorbed onto a cm x 50 cm column. After thoroughly washing the resin with water, it was further washed with 500 ml of 0.05N ammonia water, and concentration gradient fractionation was performed using 1 part of 0.05N ammonia water and 1 part of 0.8N ammonia water, and each fraction (5.5 ml each) was subjected to silica gel thin layer chromatography. Graphie [Silica gel plate: Kieselgel 60F 254 , developing solvent: chloroform: methanol: 28% ammonia water (20:
15:8)], and fractions containing the target compound were collected, concentrated under reduced pressure, and then dried under vacuum to obtain 19 mg of a crude product. Add this to silica gel (Wakogel C-200)
Charge a 6 mm x 300 mm column and develop with a solvent of the same composition as used for the above thin layer chromatography, detect each fraction (0.5 ml each) using the above silica gel thin layer chromatography, and concentrate the fraction containing the target compound. The mixture was dried to obtain 16 mg of crude powder. This coarse powder was mixed with Dowex 1×2 (OH-
Charge it to a 6 mm x 200 mm column (type), elute with water, collect the fractions containing the target compound, and freeze-dry to obtain 11 mg of pure 1-N-
[L-(-)-γ-amino-α-hydroxybutyryl]-3′・4′-dideoxy-4″-C-methyl-
A powder of 3''-N-methylkanamycin A or its 4'' epimer was obtained. IR spectrum ν KBr nax cm -1 : 820, 1025 1045, 1145 1320, 1375 1475, 1555 1640, 2925 3350, NMR (D 2 O) spectrum δ: 1.30 (4″-C- CH 3 , s, 3H) 2.57 (3″-N- CH 3 , s, 3H) 5.14 (1″ anomeric proton, d, 1H) 5.34 (1′ anomeric proton, d, 1H) FD-MS 582 (M・H) + Implementation Example 2 (a) Water containing 1.5 g of 4″-C-methyl-3″-N-methylkanamycin A or its 4″ epimer 30
ml and 60 ml of tetrahydrofuran, 600 mg of cupric acetate hydrate was added thereto, and the mixture was stirred at room temperature for 30 minutes, then 1.0 g of benzyl p-nitrophenyl carbonate was added, and the mixture was stirred overnight. Add 60 ml of water and 1 ml of concentrated ammonia water to the reaction solution, stir for 30 minutes, then blow in hydrogen sulfide.
I added perlite. The solution was adjusted to pH5 with 1N hydrochloric acid, concentrated under reduced pressure, and the residue was dissolved in water.
Dissolve Amberlite CG-50 (NH 4 +
Column chromatography is carried out using a type (type), and fractions containing the product are collected and concentrated under reduced pressure.
6′-N-benzyloxycarbonyl-4″-C-
1.185 g of methyl-3''-N-methylkanamycin A or its 4'' epimer was obtained. NMR (D 2 O) spectrum δ: 1.28 (4″-C- CH 3 , s, 3H) 2.52 (3″-N- CH 3 , s, 3H) 7.41 (

【式】 s、5H) FD−MS 647(M・H)+ (ロ) 水20mlおよびエチレングリコール ジメチル
エーテル20mlとの混液に(イ)の生成物1.376gを
溶かし、L−(−)−γ−ベンジルオキシカルボ
ニルアミノ−α−ヒドロキシ酪酸N−ヒドロキ
シスクシンイミドエステル0.9gを含んだエチ
レングリコール ジメチルエーテル20mlの溶液
を30分で滴下し、室温で一夜かきまぜた。反応
液を減圧濃縮した後残留物を50%ジオキサン30
mlに溶かし、酢酸0.5mlを加え、10%パラジウ
ム炭素を用いて接触還元し保護基を脱離した。
反応終了後触媒を去し、溶液中のジオキサン
を留去し、PH7に調整した後アンバーライト
CG−50(NH4 +型)の20mm×460mmカラムに吸
着させた。樹脂を充分水洗し、さらに0.05規定
アンモニア水500mlで洗浄した後0.05規定のア
ンモニア水1と0.8規定アンモニア水1と
を用い濃度勾配分画操作を行い目的化合物を含
む区分をシリカゲル薄層クロマトグラフイー
〔シリカゲルプレート;キーゼルゲル60F254
展開溶媒;n−ブタノール:エタノール:クロ
ロホルム:28%アンモニア水(4:5:2:
8)〕で検出し、目的化合物を含む区分を集め
て濃縮乾固して粗粉末271mgを得た。この粗粉
末をシリカゲル(ワコーゲルC−200)の10mm
×1000mmのカラムにチヤージし、上記薄層クロ
マトグラフイーで用いた同じ組成の溶媒で展開
し分画した。その溶出液を上記シリカゲル薄層
クロマトグラフイーで検出し、目的化合物を含
むフラクシヨンを集め濃縮乾固して251mgの粗
粉末を得た。この粗粉末には少量の副生成物が
含まれているのでこれをアンバーライトCG−
50(NH4 +型)の10mm×500mmカラムに吸着さ
せ、水1と0.8規定アンモニア水1とを用
い濃度勾配分画操作を行い溶出液(各フラクシ
ヨン10ml)を上記シリカゲル薄層クロマトグラ
フイーで検出して目的化合物を含むフラクシヨ
ンを集め、濃縮乾固して薄層クロマト上で単一
の目的化合物の白色粉末242mgを得た。これを
ダウエツクス1×2(OH-型)の6mm×170mm
カラムにチヤージし、水で溶出した後上記シリ
カゲル薄層クロマトグラフイーで検出し、目的
化合物を含むフラクシヨンを集め減圧濃縮後凍
結乾燥して純粋な1−N−〔L−(−)−γ−ア
ミノ−α−ヒドロキシブチリル〕−4″−C−メ
チル−3″−N−メチルカナマイシンAまたはそ
の4″のエピマーの白色粉末209mgを得た。 IRスペクトル νKBr naxcm-1:820、1025 1050、1145 1330、1375 1475、1545 1565、1645 2925、3360 NMR(D2O)スペクトル δ:1.28(4″−C−CH3 、s、3H) 2.51(3″−N−CH3 、s、3H) 5.14(1″アノメリツクプロトン、d、1H) 5.38(1′アノメリツクプロトン、d、1H) FD−MS 614(M・H)+ 元素分析値(C24H47N5O13・2H2Oとして) C(%) H(%) N(%) 理論値 44.37 7.91 10.78 実験値 44.08 7.90 10.48
[Formula] s, 5H) FD-MS 647 (M・H) + (b) Dissolve 1.376 g of the product in (a) in a mixture of 20 ml of water and 20 ml of ethylene glycol dimethyl ether, L-(-)-γ- A solution of 20 ml of ethylene glycol dimethyl ether containing 0.9 g of benzyloxycarbonylamino-α-hydroxybutyric acid N-hydroxysuccinimide ester was added dropwise over 30 minutes and stirred overnight at room temperature. After concentrating the reaction solution under reduced pressure, the residue was dissolved in 50% dioxane 30
ml, 0.5 ml of acetic acid was added, and the protective group was removed by catalytic reduction using 10% palladium on carbon.
After the reaction was completed, the catalyst was removed, the dioxane in the solution was distilled off, and the pH was adjusted to 7, followed by Amberlite.
It was adsorbed onto a 20 mm x 460 mm column of CG-50 (NH 4 + type). After thoroughly washing the resin with water and further washing with 500 ml of 0.05N ammonia water, concentration gradient fractionation was performed using 1 part of 0.05N ammonia water and 1 part of 0.8N ammonia water, and the fraction containing the target compound was subjected to silica gel thin layer chromatography. [Silica gel plate; Kieselgel 60F 254 ,
Developing solvent; n-butanol: ethanol: chloroform: 28% aqueous ammonia (4:5:2:
8)], and fractions containing the target compound were collected and concentrated to dryness to obtain 271 mg of crude powder. Spread this coarse powder onto 10mm of silica gel (Wakogel C-200).
It was charged to a x1000 mm column, developed and fractionated with a solvent having the same composition as used in the thin layer chromatography described above. The eluate was detected by the silica gel thin layer chromatography described above, and fractions containing the target compound were collected and concentrated to dryness to obtain 251 mg of crude powder. This coarse powder contains a small amount of by-products, so this is used as Amberlite CG-
50 (NH 4 + type) on a 10 mm x 500 mm column, perform concentration gradient fractionation using 1 part of water and 1 part of 0.8N ammonia water, and eluate (10 ml of each fraction) was subjected to the silica gel thin layer chromatography described above. The fractions containing the target compound were collected and concentrated to dryness to obtain 242 mg of a single target compound as a white powder on thin layer chromatography. This is 6mm x 170mm of Dowex 1 x 2 (OH - type).
After charging the column and eluting with water, it was detected using the silica gel thin layer chromatography described above, and the fractions containing the target compound were collected, concentrated under reduced pressure, and lyophilized to obtain pure 1-N-[L-(-)-γ- 209 mg of white powder of amino-α-hydroxybutyryl]-4″-C-methyl-3″-N-methylkanamycin A or its 4″ epimer was obtained. IR spectrum ν KBr nax cm −1 : 820, 1025 1050, 1145 1330, 1375 1475, 1545 1565, 1645 2925, 3360 NMR (D 2 O) spectrum δ: 1.28 (4″-C- CH 3 , s, 3H) 2.51 (3″-N- CH 3 , s, 3H) 5.14 (1″ anomeric proton, d, 1H) 5.38 (1′ anomeric proton, d, 1H) FD-MS 614 (M・H) + Elemental analysis value (C 24 H 47 N 5 O 13・2H 2 O) C(%) H(%) N(%) Theoretical value 44.37 7.91 10.78 Experimental value 44.08 7.90 10.48

【表】【table】

【表】 参考例 4″−C−メチル−3″−N−メチルカナマイシン
Aまたはその4″のエピマーの製造 デキストリン5%、脱脂大豆粉エスサンミート
特級(商品名)3.5%、炭酸カルシウム0.7%を含
む液体培地(PH7.5)100mlを50mlのフラスコに分
注し滅菌した。そのフラスコにベネツト斜面寒天
培地に30℃で2週間培養して良く生育させたミク
ロモノスポラsp.K−6993−Y−41株を一白金耳
接種し29℃で48〜72時間振盪して種母培養液を得
た。 別に500mlフラスコに100mlの本培養培地を調製
し、それに上記種母培養液1mlを植菌した。この
本培養培地の組成は、デキストリン5%、脱脂大
豆粉エスサンミート特級3.5%、炭酸カルシウム
0.7%、塩化コバルト0.000025%(PH7.5)であり、
オートクレーブで120℃で20分間滅菌して使用し
た。植菌後24時間目に別に除菌したカナマイシン
Aを培地1ml当り1000mcg(力価)添加した。添
加後120時間29℃で振盪培養を行つて得られたフ
ラスコ600本分の培養液60を4規定の塩酸でPH
2.0に調整した後に菌体を別した。液を4規
定の水酸化ナトリウムでPH7.0に再調整し、アン
バーライトIRC−50(NH4 +型)4を充填したカ
ラムを通過させ目的化合物を吸着させた。樹脂を
充分に水洗して1規定アンモニア水12で溶出
し、溶出液を減圧濃縮後乾燥して粗溶出物を得
た。この粗溶出物をアンバーライトCG−50
(NH4 +型)1.6を充填したカラムに吸着させ、
樹脂を水洗した後水7と0.7規定のアンモニア
水7とを用いた濃度勾配溶出操作を行い、各フ
ラクシヨン(各15ml)を大腸菌K−12を試験菌と
したペーパーデイスク法及びシリカゲル薄層クロ
マトグラフイー〔メルク社製、キーゼルゲル
60F254(商品名)厚さ0.25mm、展開溶媒:クロロ
ホルム:メタノール:28%アンモニア水(20:
15:8)で2時間展開後ニンヒドリン発色Rf値
0.11〕により検出した。目的化合物区分は添加し
たカナマイシンAと共に溶出されてくる。この溶
出液を濃縮乾固して得た目的化合物の粗区分をシ
リカゲルカラム〔ワコーゲルC−200、(商品名)〕
20mm×1200mmに付し、展開溶媒:クロロホルム:
メタノール:28%アンモニア水(20:15:8)で
溶出分画し、上記と同様にシリカゲル薄層クロマ
トグラフイーで検出し、目的化合物の含まれる区
分を集め、濃縮乾固して粗区分の2gを得た。こ
の区分にはまだカナマイシンAも含まれているの
でこれを除くために再びシリカゲルカラム(ワコ
ーゲルC−200)20mm×1000mmに付し、上記シリ
カゲルカラムクロマトグラフイーと同様の展開溶
媒で溶出分画して、上記シリカゲル薄層クロマト
グラフイーで検出した。溶出してきた目的化合物
の区分を集め減圧濃縮後乾燥して白色粉末462mg
を得た。この粗粉末をアンバーライトCG−50
(NH4 +型)20mm×500mmカラムに吸着させ水1
と0.7規定アンモニア水1とで濃度勾配溶出操
作を行い、各フラクシヨン(各15ml)を上記薄層
クロマトグラフイーにより検出した。この目的化
合物溶出区分を濃縮乾固して388mgの粗粉末を得
た。さらに精製するためこの粗粉末300mgをダウ
エツクス1×2(OH-型)8mm×300mmのカラム
にチヤージし水で溶出した。溶出されてきた目的
化合物区分を上記シリカゲル薄層クロマトグラフ
イーで検出して集め、これを凍結乾燥して249mg
の純粋な目的化合物の白色粉末を得た。 このものの遊離塩基(凍結乾燥品)はつぎの理
化学的性質を示した。 塩基性の白色粉末(80℃18時間真空乾燥) 溶解性:水に極めて良く溶ける。メタノール
とエタノールには溶けにくく、アセトン、クロ
ロホルム、ベンゼン、酢酸エチル、酢酸ブチ
ル、エーテル、n−ヘキサンなどの有機溶剤に
は不溶である。 元素分析値(C20H40N4O11・H2Oとして) C H N 理論値(%) 45.28 7.98 10.56 実験値(%) 45.33 7.93 10.39 融点:168〜170℃ 旋光度:〔α〕25 D+163.6゜(C=0.5、H2O) 紫外線吸収スペクトル:末端吸収 赤外線吸収スペクトル(KBr)吸収極大
(cm-1) 1045、1145、1360、1450、1595、1635、2910、
3375 NMRスペクトル(重水中):特徴的ピーク 1.38ppm……3級4″−C−メチル、2.72ppm…
…3″−N−メチル、5.13ppm……1″−アノメリ
ツクプロトン、5.28ppm……1′−アノメリツク
プロトン マススペクトル:主なイオンピーク(m/
e) 110、125、126、128、130、145、146、162、
163、174、189、190、191、192、205、233、
245、246、264、275、306、334、352、362、
388、446、513(M+1) 薄層クロマトグラフイーによるRf値:
[Table] Reference Example 4 Production of epimer of ``-C-methyl-3''-N-methylkanamycin A or its 4'' 5% dextrin, 3.5% defatted soybean flour Essanmeat special grade (trade name), and 0.7% calcium carbonate. 100 ml of the liquid medium (PH7.5) was dispensed into 50 ml flasks and sterilized. Micromonospora sp. A loopful of the -41 strain was inoculated and shaken at 29°C for 48 to 72 hours to obtain a seed culture medium. Separately, 100 ml of main culture medium was prepared in a 500 ml flask, and 1 ml of the above seed mother culture was inoculated into it. The composition of this main culture medium was 5% dextrin, 3.5% defatted soybean flour Ssanmeat special grade, and calcium carbonate.
0.7%, cobalt chloride 0.000025% (PH7.5),
It was used after being sterilized in an autoclave at 120°C for 20 minutes. 24 hours after inoculation, Kanamycin A, which had been sterilized separately, was added at 1000 mcg (titer) per ml of the medium. The culture solution for 600 flasks obtained by shaking culture at 29°C for 120 hours after addition was PHed with 4N hydrochloric acid.
After adjusting to 2.0, the bacterial cells were separated. The pH of the solution was readjusted to 7.0 with 4N sodium hydroxide, and the solution was passed through a column filled with Amberlite IRC-50 (NH 4 + type) 4 to adsorb the target compound. The resin was thoroughly washed with water and eluted with 12 parts of 1N aqueous ammonia, and the eluate was concentrated under reduced pressure and dried to obtain a crude eluate. This crude eluate was added to Amberlite CG-50.
(NH 4 + form) 1.6 is adsorbed on a column packed with
After washing the resin with water, a concentration gradient elution operation was performed using water 7 and 0.7N ammonia water 7, and each fraction (15 ml each) was subjected to paper disc method and silica gel thin layer chromatography using Escherichia coli K-12 as the test bacteria. E [manufactured by Merck & Co., Ltd., Kieselgel]
60F 254 (Product name) Thickness 0.25mm, Developing solvent: Chloroform: Methanol: 28% ammonia water (20:
After developing for 2 hours at 15:8), ninhydrin color development Rf value
0.11]. The target compound fraction is eluted together with the added kanamycin A. This eluate was concentrated to dryness and the target compound obtained was roughly separated using a silica gel column [Wakogel C-200, (trade name)]
Attached to 20mm x 1200mm, developing solvent: chloroform:
Elution fractionation was performed with methanol:28% ammonia water (20:15:8), and detection was performed using silica gel thin layer chromatography in the same manner as above.The fractions containing the target compound were collected, and concentrated to dryness to obtain the crude fraction. 2g was obtained. This fraction still contains Kanamycin A, so in order to remove it, it was again applied to a silica gel column (Wako Gel C-200) 20 mm x 1000 mm, and eluted and fractionated using the same developing solvent as in the above silica gel column chromatography. It was detected using the silica gel thin layer chromatography described above. The eluted target compound was collected and concentrated under reduced pressure, then dried to yield 462 mg of white powder.
I got it. This coarse powder is used as Amberlite CG-50.
(NH 4 + type) adsorbed on a 20 mm x 500 mm column and water 1
A concentration gradient elution operation was performed using 1 part of 0.7N ammonia water, and each fraction (15 ml each) was detected by the thin layer chromatography described above. This target compound elution fraction was concentrated to dryness to obtain 388 mg of crude powder. For further purification, 300 mg of this crude powder was charged to a Dowex 1 x 2 (OH - type) 8 mm x 300 mm column and eluted with water. The eluted target compound fraction was detected and collected using the above-mentioned silica gel thin layer chromatography, and this was lyophilized to yield 249 mg.
A white powder of pure target compound was obtained. The free base (lyophilized product) of this product showed the following physical and chemical properties. Basic white powder (vacuum dried at 80℃ for 18 hours) Solubility: Extremely soluble in water. It is poorly soluble in methanol and ethanol, and insoluble in organic solvents such as acetone, chloroform, benzene, ethyl acetate, butyl acetate, ether, and n-hexane. Elemental analysis value (as C 20 H 40 N 4 O 11・H 2 O) C H N Theoretical value (%) 45.28 7.98 10.56 Experimental value (%) 45.33 7.93 10.39 Melting point: 168-170℃ Optical rotation: [α] 25 D +163.6゜ (C=0.5, H 2 O) Ultraviolet absorption spectrum: terminal absorption Infrared absorption spectrum (KBr) absorption maximum (cm -1 ) 1045, 1145, 1360, 1450, 1595, 1635, 2910,
3375 NMR spectrum (in heavy water): Characteristic peak 1.38ppm...Tertiary 4''-C-methyl, 2.72ppm...
…3″-N-methyl, 5.13ppm……1″-anomeric proton, 5.28ppm……1′-anomeric proton Mass spectrum: Main ion peaks (m/
e) 110, 125, 126, 128, 130, 145, 146, 162,
163, 174, 189, 190, 191, 192, 205, 233,
245, 246, 264, 275, 306, 334, 352, 362,
388, 446, 513 (M+1) Rf value by thin layer chromatography:

【表】 以上の理化学的性質特にマススペクトルにおけ
る典型的なフラグメントイオンピークおよび
NMRの結果ならびにカナマイシンAから誘導さ
れることに基いて4″−C−メチル−3″−N−メチ
ルカナマイシンAあるいはその4″のエピマーであ
ると認められる。
[Table] The above physical and chemical properties, especially typical fragment ion peaks and
Based on the NMR results and the fact that it is derived from kanamycin A, it is recognized to be 4''-C-methyl-3''-N-methylkanamycin A or its 4'' epimer.

Claims (1)

【特許請求の範囲】 1 式 (式中R1およびR2は同一または異なつて水素原
子または水酸基を、nは1〜3の整数を示す。) で示されるアミノグリコシド誘導体またはその酸
付加塩。 2 1−N−〔L−(−)−γ−アミノ−α−ヒド
ロキシブチリル〕−3′・4′−ジデオキシ−4″−C−
メチル−3″−N−メチルカナマイシンAまたはそ
の4″のエピマーである特許請求の範囲第1項記載
のアミノグリコシド誘導体。 3 1−N−〔L−(−)−γ−アミノ−α−ヒド
ロキシブチリル〕−4″−C−メチル−3″−N−メ
チルカナマイシンAまたはその4″のエピマーであ
る特許請求の範囲第1項記載のアミノグリコシド
誘導体。
[Claims] 1 formula (In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or a hydroxyl group, and n represents an integer of 1 to 3.) An aminoglycoside derivative or an acid addition salt thereof. 2 1-N-[L-(-)-γ-amino-α-hydroxybutyryl]-3′・4′-dideoxy-4″-C-
The aminoglycoside derivative according to claim 1, which is an epimer of methyl-3''-N-methylkanamycin A or its 4''. 3 1-N-[L-(-)-γ-amino-α-hydroxybutyryl]-4″-C-methyl-3″-N-methylkanamycin A or its 4″ epimer Aminoglycoside derivative according to item 1.
JP11860479A 1979-09-14 1979-09-14 Novel aminoglycoside derivative Granted JPS5643296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11860479A JPS5643296A (en) 1979-09-14 1979-09-14 Novel aminoglycoside derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11860479A JPS5643296A (en) 1979-09-14 1979-09-14 Novel aminoglycoside derivative

Publications (2)

Publication Number Publication Date
JPS5643296A JPS5643296A (en) 1981-04-21
JPS631956B2 true JPS631956B2 (en) 1988-01-14

Family

ID=14740670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11860479A Granted JPS5643296A (en) 1979-09-14 1979-09-14 Novel aminoglycoside derivative

Country Status (1)

Country Link
JP (1) JPS5643296A (en)

Also Published As

Publication number Publication date
JPS5643296A (en) 1981-04-21

Similar Documents

Publication Publication Date Title
Konishi et al. TALLYSOMYCIN, A NEW ANTITUMOR ANTIBIOTIC COMPLEX RELATED TO BLEOMYCIN II. STRUCTURE DETERMINATION OF TALLYSOMYCINS A AND B
US4347354A (en) Preparation of 1-N-[ω-amino-α-hydroxyalkanoyl]aminoglycoside polysilylated antibiotics and products obtained therefrom
US4117221A (en) Aminoacyl derivatives of aminoglycoside antibiotics
AU606909B2 (en) Sialic acid derivatives having active carbonyl group
JP3418762B2 (en) Amide derivatives of antibiotic A40926
US4424343A (en) Preparation of 1-N- ω-amino-α-hydroxyalkanoyl!kanamycin polysilylates and products
US4065615A (en) Deoxyaminoglycoside antibiotic derivatives
US3792037A (en) Process for preparing ambutyrosin
JPH0637512B2 (en) Method of synthesizing amikacin
US4169141A (en) 1-Peptidyl derivatives of di-O-aminoglycosyl-1,3-diaminocyclitol antibacterial agents
NL7907671A (en) AMINOGLYCOSIDE ANTIBIOTICS.
EP0071251B1 (en) Novel aminoglycosides and use thereof
JPH01211600A (en) Novel antibiotic
US3896106A (en) Antibiotic derivatives
DK149775B (en) ANALOGY PROCEDURE FOR PREPARING 6'-N-METHYLKANAMYCINE A AND B DERIVATIVES
US4104372A (en) 1-N-(α-hydroxy-ω-aminoalkanoyl) derivatives of 3'-deoxykanamycin A and the production thereof
GB1564164A (en) Production of kanamycin c and its deoxy derivatives
JPH0344398A (en) Antifungal and antibiotic substance r106 derivative
EP0134563B1 (en) Novel aminoglycoside compounds and their acid addition salts and process for production thereof
JPS631956B2 (en)
CA1044229A (en) Antibiotic derivatives of xk-62-2 and method of production thereof
JP2952829B2 (en) Pradimicinamide derivative
US4283528A (en) 1-N-aminohydroxyacyl derivatives of gentamicin B
SE461148B (en) POLYSILYLATED CANAMYCIN A OR B DERIVATE
EP0040764B1 (en) Novel aminoglycosides, and antibiotic use thereof