JPS63195228A - Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance - Google Patents

Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance

Info

Publication number
JPS63195228A
JPS63195228A JP2702787A JP2702787A JPS63195228A JP S63195228 A JPS63195228 A JP S63195228A JP 2702787 A JP2702787 A JP 2702787A JP 2702787 A JP2702787 A JP 2702787A JP S63195228 A JPS63195228 A JP S63195228A
Authority
JP
Japan
Prior art keywords
weight
steel
less
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2702787A
Other languages
Japanese (ja)
Inventor
Shunichi Hashimoto
俊一 橋本
Terutoshi Yakushiji
輝敏 薬師寺
Takahiro Kashima
高弘 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2702787A priority Critical patent/JPS63195228A/en
Publication of JPS63195228A publication Critical patent/JPS63195228A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the longitudinal crack resistance of a high r value hot rolled steel sheet, by adding specific ratios of B and Ca independently or in combination to a dead soft C-Al killed steel having a specific compsn. added with Ti and Nb alone or in combination. CONSTITUTION:The steel which contains, by weight, <=0.013% C, 0.05-0.35% Mn, <=0.03% S, <=0.02% P, 0.005-0.080% sol.Al, and 0.0005-0.005% B, is added with Ti or Nb at <=0.2% Ti and >=0.3% Nb and at such weight % as to attain formula I (where formula II) and consists of the balance Fe is used. While such steel is lubricated at 500-800 deg.C, the steel is rolled at 60-95% total draft and is then subjected to an annealing treatment or high-temp. coiling at 700-750 deg.C. The steel formed by incorporating 0.0005-0.01% Ca further into the above-mentioned steel and adding Ti and/or Nb at such weight % as to attain formula I (where formula III) may be used as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高r値熱延鋼板の製造方法に関し、特に、
深絞り性に優れた極低C−A j!キルド−T1又はN
bの単独添加鋼又はTi及びNbの複合添加鋼における
耐たてわれ性の改善に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high r-value hot rolled steel sheet, and in particular,
Ultra-low C-A j with excellent deep drawability! Killed-T1 or N
This invention relates to improvement of the standing resistance in steel with the sole addition of Ti and Nb or in steel with the combined addition of Ti and Nb.

〔従来の技術〕[Conventional technology]

近年、主に自動車部材において、プレス成形用鋼板の深
絞り性(r値)に対する要求は従来にも増して一段と厳
しいものがある。
In recent years, the requirements for deep drawability (r value) of press-forming steel sheets, mainly for automobile parts, have become even more severe than before.

そしてこの深絞り性向上のための研究開発は精力的に行
なわれており、その1例として、極低C−A1キルド鋼
を温間で熱延し、高r値熱延鋼板を得る試みがなされて
いる。この温間圧延による熱延鋼板においても、高い深
絞り性を得るためには、鋼中の固溶C,Mnを低減させ
る必要がある。
Research and development to improve this deep drawability is being carried out vigorously, and one example is an attempt to warm-roll ultra-low C-A1 killed steel to obtain a high r-value hot-rolled steel sheet. being done. In order to obtain high deep drawability also in this warm-rolled hot-rolled steel sheet, it is necessary to reduce solid solution C and Mn in the steel.

これに対して今日の製鋼技術の進歩及びTi、Nb等の
C固着原子の鋼中への単独又は複合添加によって、鋼中
の固溶C量をほぼ零まで下げることが可能になっている
On the other hand, with the progress of today's steel manufacturing technology and the addition of C-fixed atoms such as Ti and Nb to steel, either singly or in combination, it has become possible to reduce the amount of solid solute C in steel to almost zero.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし一方で、固溶C量の低減は結晶粒界における原子
間の結合力を弱め、2次加工時における耐たてわれ性を
劣化させることが知られており、このことはri、Nb
を原子当量以上添加した橿低C−AJキルド鋼を温間域
で熱延した熱延鋼板についても同様である。
However, on the other hand, it is known that reducing the amount of solid solute C weakens the bonding force between atoms at grain boundaries and deteriorates the durability during secondary processing.
The same applies to a hot-rolled steel sheet obtained by hot-rolling a low C-AJ killed steel containing atomic equivalents or more of .

この発明は、かかる問題点に鑑み、耐たてわれ性を改善
した高r値熱延鋼板の製造方法を提供せんとするもので
ある。
In view of these problems, the present invention aims to provide a method for producing a high r-value hot-rolled steel sheet with improved vertical resistance.

そして本件発明者は、従来の極低C−Alキルド−TI
あるいは、Nbの単独又はTi及びNbの複添加鋼の温
間域圧延鋼板における耐たてわれ性の改善について鋭意
研究し、検討を重ねた結果、B又はCaを単独又は複合
添加することで、耐たてわれ性に優れた高r値熱延鋼板
が得られることを見出し、本件発明をなしたものである
The inventor of the present invention has proposed the conventional extremely low C-Al killed-TI
Alternatively, as a result of intensive research and repeated studies on improving the longitudinal resistance of steel sheets with the addition of Nb alone or in combination with Ti and Nb, we have found that by adding B or Ca alone or in combination, The present invention was made based on the discovery that a high r-value hot-rolled steel sheet with excellent vertical resistance can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本願の第1の発明は、C: 0.013重量%以
下、M n : 0.05〜0.35重量%、S : 
0.03重景気以下、P j 0.02重量%以下、s
o 1 、 A 12 : 0.005〜0゜080重
M%、B : 0.0005〜o、oos重量%を含存
し、Ti:0.2重置%以下、Nb:0.3重量%以下
で、かつC/12< (T + */4B+N b/9
3)<3×C/12(但し、T i * = T t−
48/14・N−48/32・S)となるような重量%
のTiあるいはNbを単独添加又は複合添加した残部F
s及び不可避的不純物よりなる鋼に対し、500℃〜8
00℃の温度範囲で潤滑を施しつつ60〜95%の合計
圧下率で圧延を行ない、その後焼鈍処理又は700℃〜
750℃の高温巻取を行うようにしたものである。
That is, the first invention of the present application has C: 0.013% by weight or less, Mn: 0.05 to 0.35% by weight, S:
0.03 heavy economy or less, P j 0.02 weight% or less, s
Contains o1, A12: 0.005 to 0°080% by weight, B: 0.0005 to o, oos% by weight, Ti: 0.2% by weight or less, Nb: 0.3% by weight and C/12< (T + */4B+N b/9
3) <3×C/12 (However, T i * = T t-
48/14・N-48/32・S)
The remainder F after Ti or Nb was added singly or in combination.
s and unavoidable impurities, 500℃~8
Rolling is performed at a total reduction ratio of 60 to 95% with lubrication in the temperature range of 00°C, followed by annealing treatment or rolling at 700°C to
The winding is performed at a high temperature of 750°C.

また本願の第2の発明は、C: 0.013重量%以下
、M n : 0.05〜0.35重量%、S : 0
.03重量%以下、P : 0.02重量%以下、5a
lt、 AJ :0.O05〜o、oso重置%、B 
! 0.0005〜0.005重量%、Ca : 0.
0005〜O,01重量%を含有し、Ti:0.2重量
%以下、Nb:0.3重量%以下で、かつC/12<(
Ti本/4B+ N b /93) < 3 X C/
12 (l旦し、T i * −T 1−48/14・
N −48/32 (S −32/40・Ca))とな
るような重量%のTiあるいはNbを単独添加又は複合
添加した残部F6及び不可避的不純物よりなる綱に対し
、500℃〜800℃の温度範囲で潤滑を施しつつ60
〜95%の合計圧下率で圧延を行ない、その後焼鈍処理
又は700℃〜750℃の高温巻取を行うようにしたも
のである。
Further, the second invention of the present application provides C: 0.013% by weight or less, M n : 0.05 to 0.35% by weight, and S: 0.
.. 03% by weight or less, P: 0.02% by weight or less, 5a
lt, AJ: 0. O05~o, oso overlay %, B
! 0.0005-0.005% by weight, Ca: 0.
0005 to O, 01% by weight, Ti: 0.2% by weight or less, Nb: 0.3% by weight or less, and C/12<(
Ti book/4B+ Nb/93) < 3 X C/
12 (1 day, T i * -T 1-48/14・
N -48/32 (S -32/40・Ca)) A steel made of the remaining F6 and unavoidable impurities to which Ti or Nb was added singly or in combination at a weight percent of 500°C to 800°C 60 with lubrication in the temperature range
Rolling is performed at a total reduction ratio of ~95%, and then annealing treatment or high-temperature winding at 700°C to 750°C is performed.

ここで本願発明における含有成分及び含有割合の限定理
由について説明する。まず第1の発明について説明する
Here, the reasons for limiting the contained components and content ratios in the present invention will be explained. First, the first invention will be explained.

CTCは深絞り性に大きな影響を有する元素であり、含
を量が低いほど高い深絞り性が得られる。
CTC is an element that has a large effect on deep drawability, and the lower the CTC content, the higher the deep drawability can be obtained.

従って所望の高深絞り性を得るためにはC含有量は0.
013重量%以下にする必要がある。一方、下限は製鋼
技術によって決定されるが、現在のところはo、ooi
重量%程度である。
Therefore, in order to obtain the desired high deep drawability, the C content should be 0.
0.013% by weight or less. On the other hand, the lower limit is determined by steelmaking technology, but currently it is o, ooi
It is about % by weight.

Mn:MnはCと同様に、深絞り性に影響する元素で、
これも低いほど好ましい、しかし含有量が0.05重量
%未満では熱間脆性が防止できず、又0.35重量%を
越えると深絞り性が劣化する。そのためMn含有量は0
.05〜0.35重量%とする。
Mn: Like C, Mn is an element that affects deep drawability.
The lower the content, the better. However, if the content is less than 0.05% by weight, hot brittleness cannot be prevented, and if it exceeds 0.35% by weight, the deep drawability will deteriorate. Therefore, the Mn content is 0
.. 05 to 0.35% by weight.

T i、 N b : T i、 Nbハff絞す性t
−向上サすeる添加元素としては特に重量である*Ti
、NbはTic、NbCを析出させて鋼中の固?容Cを
固着し、固溶C量を製鋼技術で低減した限界量よりさら
に低くすることができる。しかし多量のTi。
T i, N b: T i, Nb
- As an additive element that improves the weight, especially *Ti
, Nb precipitates Tic, NbC and solidifies in steel? By fixing the capacity C, it is possible to make the amount of solid solute C even lower than the limit amount reduced by steelmaking technology. However, a large amount of Ti.

Nb添加は極端に固溶C1を低減させるために、粒界が
脆弱化し、2次加工脆性を起こす危険性があり、また経
済性を考慮して、TIは0.2重量%、Nbは0.3重
量%を上限とする。TiCの析出についてはSlによっ
て制御することが可能であるが、このTiC析出の制御
に可能なTI量の範囲は、炭化物生成元素であるNb量
も考慮すれば、(T + *+Nb) /C(但し、T
i*−Ti−48/14・N −48/32 S )の
原子量比が1〜3の間である。従ってTiあるいはNb
の一方又は両方の添加11(重量%)は、C/12< 
(T i * /48+ Nb/93) < 3 X 
C/12を満足する量とする。
Since the addition of Nb extremely reduces solid solution C1, there is a risk of weakening the grain boundaries and causing secondary processing embrittlement.In addition, considering economic efficiency, TI is 0.2% by weight and Nb is 0%. The upper limit is .3% by weight. The precipitation of TiC can be controlled by Sl, but the range of the amount of TI that is possible for controlling this TiC precipitation is (T + ** + Nb) /C if the amount of Nb, which is a carbide forming element, is also taken into account. (However, T
The atomic weight ratio of i*-Ti-48/14·N-48/32 S is between 1 and 3. Therefore, Ti or Nb
Addition 11 (wt%) of one or both of C/12<
(T i * /48+Nb/93) < 3 X
The amount should satisfy C/12.

P:Pを添加すると、脆性破壊の危険性及びスボント溶
接不良の危険性があり、低減させる必要があるが、現在
の製鋼技術の限界から、0.02重量%以下とする。
P: When P is added, there is a risk of brittle fracture and a risk of defective spont welding, which needs to be reduced, but due to the limitations of current steelmaking technology, the content should be 0.02% by weight or less.

SO3は従来より、成形時に割れを生じさせるMnS介
在物の成形元素として知られており、Sの低減が必要で
あり、0.03重量%以下とする。
SO3 has conventionally been known as a forming element for MnS inclusions that cause cracks during forming, and it is necessary to reduce the S content, which is set at 0.03% by weight or less.

BIBは耐たてわれの有効元素であり、Bを0゜000
5〜0.005重量%添加することで、十分な耐たてわ
れ性を確保できる。Bの量は0.0005重量%未満で
は所望の耐たてわれの効果は得られず、0.005!量
%を越えると、その効果は飽和する。このことから経済
性を考慮してB量はo、ooos〜0.005重量%と
定めた。
BIB is an effective element for durability, and B is 0°000
By adding 5 to 0.005% by weight, sufficient standing resistance can be ensured. If the amount of B is less than 0.0005% by weight, the desired anti-sagging effect cannot be obtained; When the amount exceeds %, the effect becomes saturated. From this, in consideration of economic efficiency, the amount of B was determined to be from o,oos to 0.005% by weight.

A1:AJは綱の脱酸、及びAINの生成による自由な
Nを固定させるために添加される。Nの固定が不十分で
あると歪時効性が現れるようになる。この/Mlによる
Nの固定効果を有効に得るには、o、oos重量%の添
加が必要である。一方、過多に含有させると、A ji
 z Os系介在物を析出させて延性を劣化させ、又経
済性の低下も招くので、o、oso重量%以下とする。
A1: AJ is added to deoxidize the steel and fix free N by forming AIN. If N is insufficiently fixed, strain aging will appear. In order to effectively obtain the N fixing effect of /Ml, it is necessary to add o, oos in weight percent. On the other hand, if too much is contained, A ji
Since z causes Os-based inclusions to precipitate, which deteriorates ductility and also lowers economic efficiency, it is set to less than o, oso weight%.

次に本願の第2の発明における含有成分及び含有割合の
限定理由について説明する。なお、C1P、Mn、S、
An!、Ti、Nbについては第1の発明と同様である
ので、その説明は省略する。
Next, the reason for limiting the content components and content ratios in the second invention of the present application will be explained. In addition, C1P, Mn, S,
An! , Ti, and Nb are the same as those in the first invention, so their explanations will be omitted.

Ca5Caについては詳細な機構は不明であるが、粒界
結合力を増加させる効果がある。またCaを添加するこ
とにより、SはMnSの代わりにCaSを形成する* 
M n Sは熱間圧延中に変形し、後々この介在物を基
点として割れを生じやすいのに対し、CaSは熱間圧延
中に変形しに<<、割れを発生しにくい、そしてCa量
はo、ooos重量%未満では十分なCaSの析出を得
られず、又0.001重量%を越えるとCaSの量が多
くなり、かえって延性を低下させる。そのためCa量は
0.0005〜0.01重量%とする。
Although the detailed mechanism of Ca5Ca is unknown, it has the effect of increasing grain boundary bonding force. Also, by adding Ca, S forms CaS instead of MnS*
MnS is deformed during hot rolling and tends to crack later based on these inclusions, whereas CaS deforms during hot rolling and is less likely to crack, and the amount of Ca is If it is less than 0.001% by weight, the amount of CaS will increase, and the ductility will be reduced. Therefore, the amount of Ca is set to 0.0005 to 0.01% by weight.

次に本願の第:0.第2発明における製造条件について
説明する。
Next, No. 0 of this application. Manufacturing conditions in the second invention will be explained.

鋼板の深絞り性を良好にするためには、鋼板の結晶方位
を板面に対して(111)面が平行になるように制御す
ることが必要である。そして500℃〜800℃の温度
範囲で合計圧下率が60〜95%の圧延を行うようにし
たのは次の理由による。即ち、この条件で圧延すると、
ND//< 111 >及びRD//<110>方位群
に属する圧延集合&II¥aが発達し、その後の焼鈍処
理又は高温巻取によりND//<111>方位群の発達
した再結晶集合組織が得られる。この(111)方位を
多(有する)ニライト粒は熱延板におけるr値(深絞り
性)を高くする原因となる。一方、50’0℃より低い
温度での圧延ではTi又はNbのC4pNとの結晶が不
完全であるため、r値が低下し、又800℃を越える温
度では動的再結晶が生じ、集合組織がランダム化し、r
値は500℃〜800℃での圧延より低下する。
In order to improve the deep drawability of a steel sheet, it is necessary to control the crystal orientation of the steel sheet so that the (111) plane is parallel to the sheet surface. The reason why rolling was carried out at a temperature range of 500° C. to 800° C. and a total reduction ratio of 60 to 95% is as follows. That is, when rolled under these conditions,
Rolling set &II\a belonging to ND//<111> and RD//<110> orientation group develops, and recrystallized texture with ND//<111> orientation group developed by subsequent annealing treatment or high temperature coiling. is obtained. These nyrite grains having many (111) orientations are responsible for increasing the r value (deep drawability) in the hot rolled sheet. On the other hand, when rolling at a temperature lower than 50'0°C, the r value decreases because the crystallization of Ti or Nb with C4pN is incomplete, and at a temperature exceeding 800°C, dynamic recrystallization occurs, resulting in texture is randomized, r
The value is lower than rolling at 500°C to 800°C.

また潤滑を行うようにした理由は、鋼板表面部の摩擦力
による板厚方向の圧延不均一性を除くためである。
The reason why lubrication is performed is to eliminate rolling non-uniformity in the thickness direction due to frictional force on the surface of the steel sheet.

さらに、潤滑中における熱延の後に、焼鈍処理又は70
0℃〜750℃の高温巻取を施すようにした理由は、こ
れらの熱処理によ、て、結晶中の(111)方位の発達
した再結晶粒が得られ、深絞り性に優れた熱延鋼板を得
ることができるからである。ここで焼鈍には、連続焼鈍
、バッチ焼鈍だけでなく溶融亜鉛メツキラインにおける
浸漬工程前の熱処理等が含まれる。なお、この溶融亜鉛
メツキラインにおいては、例えば溶融亜鉛の均質付着及
び亜鉛付着時の温度制御の観点から、一旦500℃〜8
50℃に昇温し、10〜30sec均熱保持した後、4
〜10℃/secで300℃〜500℃に冷却して溶融
亜鉛浴に浸漬することが行なわれる。さらに600℃に
10秒程度再加熱処理を行い合金化処理を行い耐食性向
上の処置を行う場合もある。
Furthermore, after hot rolling during lubrication, annealing treatment or
The reason for performing high temperature coiling at 0°C to 750°C is that these heat treatments produce recrystallized grains with a developed (111) orientation in the crystal, resulting in hot rolling with excellent deep drawability. This is because steel plates can be obtained. Here, annealing includes not only continuous annealing and batch annealing but also heat treatment before the dipping step in a hot-dip galvanizing line. In addition, in this hot-dip galvanizing line, for example, from the viewpoint of homogeneous adhesion of molten zinc and temperature control during zinc adhesion, the temperature is set at 500°C to 8°C.
After raising the temperature to 50°C and maintaining soaking for 10 to 30 seconds,
It is cooled to 300°C to 500°C at a rate of 10°C/sec and immersed in a molten zinc bath. Further, in some cases, reheating treatment is performed at 600° C. for about 10 seconds to perform alloying treatment to improve corrosion resistance.

(作用〕 本願の第:0.第2の発明においては、Ti、Nbの添
加によって固溶Cを低減し、温間域圧延の際の熱処理条
件を制御して結晶方位の制御を行って延性を増加させる
ようにしたことから、優れた深絞り性が得られ、又S量
を低減して割れの原因となるMnS生成量を低減すると
ともに、耐たてわれに有効なり又はCaを単独又は複合
添加するようにしたことから、優れた耐たてわれ性が得
られる。
(Function) No. 0. In the second invention of the present application, solid solution C is reduced by adding Ti and Nb, and the crystal orientation is controlled by controlling the heat treatment conditions during warm region rolling to improve ductility. As a result, excellent deep drawability is obtained, and the amount of S is reduced to reduce the amount of MnS generated, which causes cracking. Since it is added in combination, excellent standing resistance can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1表は本願発明鋼及び比較鋼の化学成分を示し、同表
中発明鋼1〜6は第1の発明、発明鋼19〜24は第2
の発明に各々従つたm1lliを示す。
Table 1 shows the chemical composition of the invention steel and comparative steel, in which invention steels 1 to 6 are the first invention steels, and invention steels 19 to 24 are the second invention steels.
mllli each according to the invention of .

本実施例においては第1表に示す含有成分及び含有割合
の鋼を溶製した後、300〜850℃で均熱し、合計圧
下率90%(10t −5t−It)の圧延を行った。
In this example, after melting steel having the components and content ratios shown in Table 1, it was soaked at 300 to 850°C and rolled at a total reduction rate of 90% (10t-5t-It).

その後、バッチ処理を想定した750℃X1hrの真空
焼鈍炉処理(第2表の符号A参照)、CAL処理を想定
した850 Xl、5分のソルトバス処理第2表の符号
B参照)、及び高温巻取法については700℃〜800
℃の間で圧延を行った後、速やかに750℃×30分F
%Cの高温巻取相当の熱処理(第2表の符号C参照)を
行い、引張り強さ、伸び、r値、Al(時効指数)及び
脆性遷移温度について調べた。
After that, vacuum annealing furnace treatment at 750°C for 1 hour assuming batch processing (see code A in Table 2), salt bath treatment at 850Xl for 5 minutes assuming CAL treatment (see code B in Table 2), and high temperature treatment. For winding method: 700℃~800℃
After rolling at 750°C x 30 minutes F
%C (see code C in Table 2) equivalent to high-temperature coiling, and the tensile strength, elongation, r value, Al (aging index), and brittle transition temperature were investigated.

上記遷移温度については、バンチ処理を行った熱延板を
用いてブランク145、絞すヒα:2.0で試験用カッ
プを作成し、第1図に示すカップ縦割れ試験を行った。
Regarding the above-mentioned transition temperature, a test cup was prepared using a hot-rolled sheet subjected to bunching treatment with a blank of 145 and a drawing force α of 2.0, and a vertical cup cracking test shown in FIG. 1 was conducted.

この試験では、液体窒素で冷却したフロン1中において
、円錐ポンチ2に試験用カップ3をかぶせ、液体窒素温
度から常温までの温度範囲でカップ3の底面より荷重4
を加えて穴ふちを拡げ、その時の脆性破壊率から遷移温
度を測第3表 定した。結果を第2表に示す。
In this test, a test cup 3 was placed over a conical punch 2 in a Freon 1 cooled with liquid nitrogen, and a load of 4 was applied from the bottom of the cup 3 in a temperature range from liquid nitrogen temperature to room temperature.
was added to expand the hole edge, and the transition temperature was measured from the brittle fracture rate at that time and was expressed in the third table. The results are shown in Table 2.

第2表によれば、本願発明鋼では比較鋼に比して同等又
はそれ以上の引張り強さ、伸び及びr値が得られ、優れ
た深絞り性が得られている。またAIは比較鋼のそれに
比して高く、又遷移温度は比較鋼のそれに比して低く、
これにより耐たてわり性が向上していることがわかる。
According to Table 2, the steel according to the present invention has tensile strength, elongation, and r value equal to or higher than that of the comparative steel, and has excellent deep drawability. In addition, the AI is higher than that of the comparative steel, and the transition temperature is lower than that of the comparative steel.
It can be seen that this improves the warp resistance.

さらに発明f421の鋼種については、CAL。Furthermore, regarding the steel type of invention f421, CAL.

バッチ及び高温巻取相当の熱処理を行い、その際の仕上
温度とr値との関係を求めた。その結果を第3表及び第
2図に示す。これによれば、いずれの熱処理であっても
、本願発明の仕上温度範囲(第2図のA参照)で良好な
r値が得られている。
A heat treatment equivalent to batch and high-temperature winding was performed, and the relationship between the finishing temperature and r value at that time was determined. The results are shown in Table 3 and Figure 2. According to this, a good r value is obtained in the finishing temperature range of the present invention (see A in FIG. 2) in any heat treatment.

〔発明の効果〕〔Effect of the invention〕

以上のように、本願の第1〜第3の発明に係る熱延鋼板
の製造方法によれば、TI、Nb添加によって固溶C量
を低減するとともに、熱処理条件を制御して結晶方位を
制御し、又S量を低減するとともに耐たてわれにを効な
り、Caを単独又は複合添加するようにしたので、優れ
た深絞り性及び耐たてわれ性を有する熱延綱板が得られ
る効果がある。
As described above, according to the method for manufacturing a hot rolled steel sheet according to the first to third inventions of the present application, the amount of solid solute C is reduced by adding TI and Nb, and the crystal orientation is controlled by controlling the heat treatment conditions. In addition, by reducing the amount of S and increasing the resistance to vertical cracking, by adding Ca alone or in combination, a hot-rolled steel sheet with excellent deep drawability and resistance to vertical cracking can be obtained. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の詳細な説明するためのカップ縦割れ
試験の状態を示す図、第2図は本願発明の実施例におけ
る仕上温度とr(i[との関係を示す図である。 特許出願人  株式会社神戸製網所 代理人    弁理士 下車 努 第1図 官2図
FIG. 1 is a diagram showing the state of a vertical cup crack test for explaining the present invention in detail, and FIG. 2 is a diagram showing the relationship between finishing temperature and r(i[ in an example of the present invention. Patent Applicant Kobe Seirisho Co., Ltd. Agent Patent Attorney Get off Tsutomu Figure 1, Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.013重量%以下、Mn:0.05〜0
.35重量%、S:0.03重量%以下、P:0.02
重量%以下、sol.Al:0.005〜0.080重
量%、B:0.0005〜0.005重量%を含有し、
Ti:0.2重量%以下、Nb:0.3重量%以下で、
かつC/12<(Ti*/48+Nb/93)<3×C
/12(但し、Ti*=Ti−48/14・N−48/
32・S)となるような重量%のTiあるいはNbを単
独添加又は複合添加した残部Fe及び不可避的不純物よ
りなる鋼に対し、500℃〜800℃の温度範囲で潤滑
を施しつつ合計圧下率が60〜95%の圧延を行った後
、焼鈍処理又は700℃〜750℃の温度範囲で高温巻
取を行うようにしたことを特徴とする耐たてわれ性に優
れた高r値熱延鋼板の製造方法。
(1) C: 0.013% by weight or less, Mn: 0.05-0
.. 35% by weight, S: 0.03% by weight or less, P: 0.02
% by weight or less, sol. Contains Al: 0.005 to 0.080% by weight, B: 0.0005 to 0.005% by weight,
Ti: 0.2% by weight or less, Nb: 0.3% by weight or less,
and C/12<(Ti*/48+Nb/93)<3×C
/12 (However, Ti*=Ti-48/14・N-48/
32・S), the total reduction rate is A high r-value hot-rolled steel sheet with excellent warp resistance, characterized in that it is annealed or coiled at a high temperature in a temperature range of 700°C to 750°C after 60 to 95% rolling. manufacturing method.
(2)C:0.013重量%以下、Mn:0.05〜0
.35重量%、S:0.03重量%以下、P:0.02
重量%以下、sol.Al:0.005〜0.080重
量%、B:0.0005〜0.005重量%、Ca:0
.0005〜0.01重量%を含有し、Ti:0.2重
量%以下、Nb:0.3重量%以下で、かつC/12<
(Ti*/48+Nb/93)<3×C/12(但し、
Ti*=Ti−48/14・N−48/32(S−32
/40・Ca))となるような重量%のTiあるいはN
bを単独添加又は複合添加した残部Fe及び不可避的不
純物よりなる鋼に対し、500℃〜800℃の温度範囲
で潤滑を施しつつ合計圧下率が60〜95%の圧延を行
った後、焼鈍処理又は700℃〜750℃の温度範囲で
高温巻取を行うようにしたことを特徴とする耐たてわれ
性に優れた高r値熱延鋼板の製造方法。
(2) C: 0.013% by weight or less, Mn: 0.05-0
.. 35% by weight, S: 0.03% by weight or less, P: 0.02
% by weight or less, sol. Al: 0.005-0.080% by weight, B: 0.0005-0.005% by weight, Ca: 0
.. 0005 to 0.01% by weight, Ti: 0.2% by weight or less, Nb: 0.3% by weight or less, and C/12<
(Ti*/48+Nb/93)<3×C/12 (However,
Ti*=Ti-48/14・N-48/32 (S-32
/40・Ca)) by weight% of Ti or N
The steel consisting of the remainder Fe and unavoidable impurities to which b is added singly or in combination is rolled at a total reduction rate of 60 to 95% while being lubricated at a temperature range of 500 ° C to 800 ° C, and then annealed. Alternatively, a method for producing a high r-value hot-rolled steel sheet with excellent bending resistance, characterized in that high-temperature coiling is performed in a temperature range of 700°C to 750°C.
JP2702787A 1987-02-06 1987-02-06 Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance Pending JPS63195228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2702787A JPS63195228A (en) 1987-02-06 1987-02-06 Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2702787A JPS63195228A (en) 1987-02-06 1987-02-06 Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance

Publications (1)

Publication Number Publication Date
JPS63195228A true JPS63195228A (en) 1988-08-12

Family

ID=12209591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2702787A Pending JPS63195228A (en) 1987-02-06 1987-02-06 Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance

Country Status (1)

Country Link
JP (1) JPS63195228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145727A (en) * 1988-11-24 1990-06-05 Kobe Steel Ltd Manufacture of deep drawability hot rolled steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140333A (en) * 1983-01-28 1984-08-11 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS59226149A (en) * 1983-06-03 1984-12-19 Nippon Steel Corp Hot rolled steel sheet with superior formability and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140333A (en) * 1983-01-28 1984-08-11 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS59226149A (en) * 1983-06-03 1984-12-19 Nippon Steel Corp Hot rolled steel sheet with superior formability and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145727A (en) * 1988-11-24 1990-06-05 Kobe Steel Ltd Manufacture of deep drawability hot rolled steel sheet

Similar Documents

Publication Publication Date Title
US20080251168A1 (en) Bake-Hardenable Cold Rolled Steel Sheet With Superior Strength and Aging Resistance, Gal-Vannealed Steel Sheet Using the Cold Rolled Steel Sheet and Method For Manufacturing the Cold Rolled Steel Sheet
EP0572666B1 (en) Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof
WO2008078901A1 (en) The method for manufacturing thin steel sheet for deep drawing having excellent workability
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JPS63190141A (en) High-tensile cold-rolled steel sheet having superior formability and its production
EP0535238A1 (en) High-strength steel sheet for forming and production thereof
JPS63195228A (en) Production of high r value hot rolled steel sheet having excellent longitudinal crack resistance
JPH0559970B2 (en)
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JP3049104B2 (en) Manufacturing method of high tensile cold rolled steel sheet for deep drawing
JP2505038B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JPH0849038A (en) Baking hardening type cold rolled steel sheet excellent in deep drawability and its production
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP3473039B2 (en) Manufacturing method of low strength deep drawn cold rolled steel sheet with excellent corrosion resistance
JP3266317B2 (en) High tensile cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH055156A (en) High strength steel sheet for forming and its production
JPH02175837A (en) High r value high tensile strength cold rolled steel sheet having excellent longitudinal cracking resistance
JPS63195223A (en) Manufacture of hot rolled steel sheet having high r-value and superior longitudinal crack resistance
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability
JP2571585B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JPH0627312B2 (en) Method for producing hot dip galvanized steel sheet for processing
JPS63195222A (en) Production of zinc hot dipped steel sheet for deep drawing having excellent longitudinal crack resistance