JPS63194441A - Clock reproduction circuit - Google Patents

Clock reproduction circuit

Info

Publication number
JPS63194441A
JPS63194441A JP62027740A JP2774087A JPS63194441A JP S63194441 A JPS63194441 A JP S63194441A JP 62027740 A JP62027740 A JP 62027740A JP 2774087 A JP2774087 A JP 2774087A JP S63194441 A JPS63194441 A JP S63194441A
Authority
JP
Japan
Prior art keywords
circuit
tank circuit
differential amplifier
resistor
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62027740A
Other languages
Japanese (ja)
Other versions
JPH0732390B2 (en
Inventor
Fumihiro Kato
文浩 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62027740A priority Critical patent/JPH0732390B2/en
Publication of JPS63194441A publication Critical patent/JPS63194441A/en
Publication of JPH0732390B2 publication Critical patent/JPH0732390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To remove the unstable factors of a tank circuit completely and to make a circuit into an integrated circuit, by generating a waveform equivalent to noise generated at the tank circuit, and removing the noise by using a differential amplifier, in the circuit where a timing component is extracted from an equalization signal with a digital transmission system and a clock signal is generated. CONSTITUTION:The equalization signal inputted to an input terminal A is binary- encoded at a binary encoding circuit 1, and after a sine wave being obtained by extracting a timing wave at the tank circuit 3, is inputted to the first input terminal of the differential amplifier 5. Also, the binary encoded signal, after the same waveform as the noise generated at the output of the tank circuit 3 via a capacitor 15 and a resistor 13 being obtained, is inputted to the second input terminal of the differential amplifier 5. In such a way, a noise component that is a problem in a conventional circuit is removed the in-phase noise eliminating function of the differential amplifier 5, and it is possible to obtain a pulse clock waveform without turbulence stably. As a result, it is possible to design the tank circuit with an arbitrary delay quantity since a delay phase is operated stably in any phase state, and to make a clock reproduction circuit including the tank circuit into an LSI.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ディジタル伝送方式で伝送路信号を等化増幅
した等化信号を識別するために等化信号よりタイミング
成分を抽出してクロック信号を生成するクロック再生回
路に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention extracts a timing component from an equalized signal to identify an equalized signal obtained by equalizing and amplifying a transmission line signal using a digital transmission method. This invention relates to a clock regeneration circuit that generates a clock.

(従来技術) 一般にディジタル伝送方式においては、伝送路等化信号
よりタイミング成分を抽出して、等化波形の識別及び再
生のためのクロック信号を生成する自己タイミング方式
が広く用いられている。従来の自己タイミング方式にお
けるタイミング抽出回路は、第2図に示すように、2値
符号化回路1と、積分器2と、タンク回路3と、パルス
整形回路4とにより構成されており、抵抗11及び12
はそれぞれタンク回路の入力及び出力における整合抵抗
である。入力端子Aには等化信号が入力し、2値符号化
回路1にて2値符号化され、タンク回路3にてタイミン
グ成分を抽出して正弦波出力を得た後、パルス整形回路
4にて振幅制限及び波形整形を施しパルスクロック信号
を得ている。
(Prior Art) In general, in digital transmission systems, a self-timing system is widely used in which a timing component is extracted from a transmission line equalized signal to generate a clock signal for identifying and reproducing an equalized waveform. As shown in FIG. 2, the timing extraction circuit in the conventional self-timing method is composed of a binary encoding circuit 1, an integrator 2, a tank circuit 3, and a pulse shaping circuit 4. and 12
are the matching resistances at the input and output of the tank circuit, respectively. An equalized signal is input to the input terminal A, is binary encoded by the binary encoding circuit 1, and after the timing component is extracted by the tank circuit 3 to obtain a sine wave output, it is sent to the pulse shaping circuit 4. A pulse clock signal is obtained by applying amplitude limitation and waveform shaping.

(発明が解決しようとする問題点) 第2図のクロック再生回路から、積分器を除いた場合の
タンク回路の入出力波形について述べる。
(Problems to be Solved by the Invention) The input and output waveforms of the tank circuit when the integrator is removed from the clock recovery circuit of FIG. 2 will be described.

理想的なタンク回路においては第3図(イ)の入カバル
スに対して第3図(ロ)に示す正弦波が出力され、パル
ス整形回路の波形は第3図(ハ)に示すようにパルスク
ロック信号として使用できる。
In an ideal tank circuit, the sine wave shown in Figure 3 (B) is output in response to the input signal in Figure 3 (A), and the waveform of the pulse shaping circuit is a pulse as shown in Figure 3 (C). Can be used as a clock signal.

しかし、従来一般に使われているタンク回路では第3図
(ニ)に示すようにタンク回路の入力パルスの立上り、
立下り部の高周波成分が雑音として入力パルス振幅に比
例したある一定量だけ出力に重畳される。この雑音がし
きい値レベルを越えてしまうため、パルスクロック信号
は第3図(ホ)のようになり、クロック信号として使用
することができなかった。特に伝送路符号のマーク率が
小さい場合この信号に含まれるタイミング成分が小さく
なるため、タンク回路出力レベルは小さくなり、先に雑
音の影響を受はパルスクロック信号が乱れるきいう問題
が生じた。
However, in the tank circuit commonly used in the past, as shown in Figure 3 (d), the rise of the input pulse of the tank circuit,
The high frequency component of the falling portion is superimposed on the output as noise by a certain amount proportional to the input pulse amplitude. Since this noise exceeds the threshold level, the pulse clock signal becomes as shown in FIG. 3 (E) and cannot be used as a clock signal. In particular, when the mark rate of the transmission line code is small, the timing component included in this signal becomes small, so the tank circuit output level becomes small, and the problem arises that the pulse clock signal may be disturbed if it is affected by noise first.

この問題を解決するために従来は第2図の回路示すよう
にタンク回路入力パルスの立上り部と立下り部をなめら
かにして第3図(ト)に示すようにタンク回路出力に重
畳した雑音成分を抑制している。また、タンク回路の出
力レベルには正弦波と入力パルス振幅に比例した雑音が
重畳している。
In order to solve this problem, in the past, the rising and falling parts of the tank circuit input pulse were smoothed as shown in the circuit shown in Figure 2, and the noise component superimposed on the tank circuit output was created as shown in Figure 3 (G). is suppressed. Furthermore, a sine wave and noise proportional to the input pulse amplitude are superimposed on the output level of the tank circuit.

タンク回路の入力振幅によるタンク回路出力の波形を第
4図に示す。ここで第4図(イ)は入力大の場合、同図
(ロ)は人力率の場合である。同じマーク率の入力パル
スにおいて入力レベルが小さくなると第4図のように雑
音を重畳した信号がしきい値レベルに近ずくため、しき
い値レベルの識別不確定幅の変動により、パルスクロツ
タ波形に乱れを生ずることがある。このため大きな振幅
レベル、例えばCMOS又はTTLのような一般論理I
Cレベルを入力しておかねばならなかった。
FIG. 4 shows the waveform of the tank circuit output depending on the input amplitude of the tank circuit. Here, FIG. 4(a) shows the case of large input, and FIG. 4(b) shows the case of manpower factor. When the input level becomes smaller for input pulses with the same mark rate, the signal with superimposed noise approaches the threshold level as shown in Figure 4, so the fluctuation of the discrimination uncertainty width of the threshold level causes disturbances in the pulse crotter waveform. may occur. For this reason, large amplitude levels, such as general logic I
I had to enter C level.

更に、先の雑音の影響を避けるためにタンク回路の遅延
位相を制限して使わねばならず、タンク回路の実現上の
大きな制約となっており、技術的設計上の困難さを有す
るとともにタンク回路の高価格化につながっている。
Furthermore, in order to avoid the influence of the aforementioned noise, the delay phase of the tank circuit must be limited and used, which is a major constraint on the realization of the tank circuit, and it is difficult to design the tank circuit. leading to higher prices.

また、従来の使用方法では雑音成分は抑圧されているも
のの、依然として雑音が重畳したままであり、パルス整
形回路の温度変動、製造による素子のバラツキにより突
如としてパルスクロック信号が乱れるという不安定要素
が残されたままであった。
In addition, although the noise component is suppressed in the conventional usage method, noise is still superimposed, and there is an unstable factor where the pulse clock signal suddenly becomes distorted due to temperature fluctuations in the pulse shaping circuit or variations in elements due to manufacturing. It was left as it was.

そして更に、タンク回路をIC化するにはタンク回路の
入力レベルを従来のCMOS又はTTL。
Furthermore, in order to convert the tank circuit into an IC, the input level of the tank circuit must be changed to conventional CMOS or TTL.

レベルに比べてはるかに小さいレベルで使用しなければ
ならないため、タンク回路のIC化が不可能であった。
Since it has to be used at a much lower level than the current level, it has been impossible to integrate the tank circuit into an IC.

このため、高い消費電力、高価格、大きい実装規模のま
まで実現せざるを得なかった。
For this reason, it had to be realized with high power consumption, high price, and large implementation scale.

本発明はこうした問題点をなくし、タンク回路の不安定
要素を完全に除去した上で集積回路化が可能なりロック
再生回路を提供することにある。
The object of the present invention is to eliminate these problems and provide a lock regeneration circuit which can be integrated into an integrated circuit after completely eliminating the unstable elements of the tank circuit.

(問題点を解決するための手段) 本発明のクロック再生回路は、2値符号化信号とした伝
送路等化信号を第1の抵抗の一端に入力し、該第1の抵
抗の他方をタンク回路の入力及びコンデンサの一端に接
続し、前記タンク回路の出力を第2の抵抗を介して接地
するとともに差動増幅器の第1の入力に接続し、前記コ
ンデンサの他方を第3の抵抗の一端に接続し、第3の抵
抗の他方を第4の抵抗を介して接地するとともに前記差
動増幅器の第2の人力に接続し、前記差動増幅器の出力
をパルスクロック信号として出力するようにしたもので
ある。
(Means for Solving the Problems) The clock regeneration circuit of the present invention inputs a transmission path equalization signal in the form of a binary encoded signal to one end of a first resistor, and connects the other end of the first resistor to a tank. The output of the tank circuit is connected to the input of the circuit and one end of the capacitor, the output of the tank circuit is grounded through a second resistor, and the first input of the differential amplifier is connected, and the other of the capacitor is connected to one end of the third resistor. and the other of the third resistors is grounded through a fourth resistor and connected to the second human power of the differential amplifier, so that the output of the differential amplifier is output as a pulse clock signal. It is something.

(実施例) 次に、本発明を図面を参照して実施例につき説明する。(Example) Next, the present invention will be explained by way of example with reference to the drawings.

第1図は本発明の実施例に係るクロック再生回路のブロ
ック図である。また第3図(イ)〜(ホ)はタンク回路
における波形を示した図であり、特に第3図(イ)、(
へ)はタンク回路の入力パルス波形を示し、第3図(ロ
)、(ニ)、(ト)ハタンク回路の出力波形を示したも
のである。また生 第3図は(ハ)、(ホ)はクロック再を回路の出力波形
を示す図である。
FIG. 1 is a block diagram of a clock recovery circuit according to an embodiment of the present invention. In addition, Figures 3 (A) to (E) are diagrams showing waveforms in the tank circuit, especially Figures 3 (A) and (E).
(f) shows the input pulse waveform of the tank circuit, and FIGS. 3(b), (d), and (g) show the output waveform of the tank circuit. Furthermore, FIGS. 3(c) and 3(e) are diagrams showing output waveforms of the clock recirculating circuit.

第1図を参照すれば本発明のり0ツク再生回路は、2値
符号化回路1により2値符号化信号とした伝送路等化信
号を第1の抵抗11の一端に入力し、この第1の抵抗1
1の他端をタンク回路3の入力端及びコンデンサ15の
一端に接続し、前記タンク回路3の出力端を第2の抵抗
12を介して接地するとともに差動増幅器5の第1の入
力端に接続し、前記コンデンサ15の他端を第3の抵抗
13の一端に接続し、該第3の抵抗13の他端を第4の
抵抗14を介して接地するとともに前記差動増幅器5の
第2の入力端に接続し、該差動増幅器5の出力端子Bか
らパルスクロック信号として出力するように構成されて
いる。
Referring to FIG. 1, the glue regeneration circuit of the present invention inputs a transmission path equalization signal converted into a binary encoded signal by a binary encoding circuit 1 to one end of a first resistor 11, and resistance 1
1 is connected to the input end of the tank circuit 3 and one end of the capacitor 15, and the output end of the tank circuit 3 is grounded via the second resistor 12 and connected to the first input end of the differential amplifier 5. The other end of the capacitor 15 is connected to one end of the third resistor 13, the other end of the third resistor 13 is grounded via the fourth resistor 14, and the second The differential amplifier 5 is connected to the input terminal of the differential amplifier 5, and outputted from the output terminal B of the differential amplifier 5 as a pulse clock signal.

この構成における動作をさらに詳しく説明すれば、まず
入力端子Aに入力した等化信号は、2値符号化回路1に
て2値符号化され、タンク回路3にてタイミング波を抽
出して正弦波を得た後、差動増幅器5の第1の入力端に
入力される。また、前記2値符号化信号は、コンデンサ
15と第3の抵抗13を介してタンク回路3の出力に生
じる雑音と同等な波形を得た後、差動増幅器5の第2の
入力端に入力される。これによって従来問題となってい
た雑音成分は差動増幅器5の同相ノイズ除去作用により
除去され、第3図(ロ)のような乱れのないパルスクロ
ック波形が安定に得られるようになる。この結果、遅延
位相はいかなる位相状態でも安定に動作するため自由な
遅延量にてタンク回路が設計でき、高特性かつ安価なタ
ンク回路を採用することができる。更にタンク回路入力
パルスレベルは、従来のCMO9又はTTLレベル等の
大振幅レベルばかりでなく、各種LSIで使用している
小振幅レベルでも確実な動作が可能となるため、タンク
回路を含むクロック再生回路のLSI化が可能となる。
To explain the operation in this configuration in more detail, first, the equalized signal input to the input terminal A is binary encoded in the binary encoding circuit 1, and the timing wave is extracted in the tank circuit 3 to generate a sine wave. After obtaining, the signal is input to the first input terminal of the differential amplifier 5. Further, the binary encoded signal is inputted to the second input terminal of the differential amplifier 5 after obtaining a waveform equivalent to the noise generated at the output of the tank circuit 3 via the capacitor 15 and the third resistor 13. be done. As a result, the noise component, which has been a problem in the prior art, is removed by the common mode noise removal action of the differential amplifier 5, and a pulse clock waveform without disturbance as shown in FIG. 3(b) can be stably obtained. As a result, since the delay phase operates stably in any phase state, a tank circuit can be designed with a free amount of delay, and a tank circuit with high characteristics and low cost can be employed. Furthermore, the tank circuit input pulse level enables reliable operation not only at large amplitude levels such as the conventional CMO9 or TTL level, but also at small amplitude levels used in various LSIs. It becomes possible to convert it into an LSI.

(発明の効果) 以上説明したように本発明によれば、従来の高価で実装
規模が大きくかつ高消費電力でLSI化が不可能であっ
た回路から、雑音等不安定要素を完全に除去した上でL
SI化が可能となるため、実装規模の大幅な削減及び低
消費電力化、低コスト化が達成できる効果がある。
(Effects of the Invention) As explained above, according to the present invention, unstable elements such as noise can be completely removed from conventional circuits that are expensive, have a large implementation scale, have high power consumption, and cannot be integrated into LSI. L on top
Since it becomes possible to implement SI, it has the effect of significantly reducing the implementation scale, lowering power consumption, and lowering costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るクロック再生回路のブロ
ック図、第2図は従来のクロック再生回路のブロック図
、第3図(イ)〜(ホ)はタンク回路における波形を示
した図、第4図(イ)。 (ロ)はタンク回路入力レベルによるタンク回路の出力
波形を示した図である。 1・・・2値符号化回路、2・・・積分器、3・・・タ
ンク回路、4・・・クロック整形回路、5・・・差動増
幅器、 11.12,13.14・・・抵抗、 15・・・コンデンサ、A・・・等化信号入力端子、B
・・・パルスクロック信号出力端子。 代理人  弁理士  染 川 利 吉 第3図 第4区 手続(甫正琺F(方式) 1、事件の表示 昭和62年特許願第27740号 2、発明の名称 クロック再生回路 3、補正をする者 事件との関係 特許出願人 住所   東京都港区芝五丁目33番1号名称   (
423)日本電気株式会社代表者関本忠弘 4、代理人     ■101 居 所    東京都千代田区内神田−丁目11番11
号藤井第−ビル 昭和62年3月31日(発送日;同年4月28日)6、
補正の対象 +−−^ 明細書第9頁第2行の「示した図、」と「第4図」との
間に、r第3図(へ)はタンク回路の人カパルス波形を
示した図、第3図(ト)はタンク回路の出力波形を示し
た図、1を加入する。
Fig. 1 is a block diagram of a clock regeneration circuit according to an embodiment of the present invention, Fig. 2 is a block diagram of a conventional clock regeneration circuit, and Figs. 3 (A) to (E) are diagrams showing waveforms in a tank circuit. , Figure 4 (a). (b) is a diagram showing the output waveform of the tank circuit depending on the tank circuit input level. 1... Binary encoding circuit, 2... Integrator, 3... Tank circuit, 4... Clock shaping circuit, 5... Differential amplifier, 11.12, 13.14... Resistor, 15... Capacitor, A... Equalization signal input terminal, B
...Pulse clock signal output terminal. Agent Patent Attorney Toshikichi Somekawa Figure 3 Section 4 Procedures (Fu Zhengqin F (method) 1. Indication of the case 1988 Patent Application No. 27740 2. Name of the invention Clock regeneration circuit 3. Person making the amendment Relationship to the incident Patent applicant address 5-33-1 Shiba, Minato-ku, Tokyo Name (
423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent ■101 Address 11-11 Uchikanda-chome, Chiyoda-ku, Tokyo
No. Fujii No.-Building March 31, 1988 (Shipping date: April 28 of the same year) 6.
Target of correction +--^ Between "Diagram shown" and "Figure 4" on page 9, line 2 of the specification, Figure 3 (f) shows the human pulse waveform of the tank circuit. Figure 3(g) is a diagram showing the output waveform of the tank circuit, and 1 is added thereto.

Claims (1)

【特許請求の範囲】[Claims] 2値符号化した伝送路等化信号を第1の抵抗の一端に入
力し、前記第1の抵抗の他端をタンク回路の入力端及び
コンデンサの一端に接続し、前記タンク回路の出力端を
第2の抵抗を介して接地するとともに差動増幅器の第1
の入力端に接続し、前記コンデンサの他端を第3の抵抗
の一端に接続し、前記第3の抵抗の他端を第4の抵抗を
介して接地するとともに前記差動増幅器の第2の入力端
に接続し、前記差動増幅器の出力をパルスクロック信号
として出力することを特徴とするクロック再生回路。
A binary encoded transmission line equalization signal is input to one end of a first resistor, the other end of the first resistor is connected to the input end of a tank circuit and one end of a capacitor, and the output end of the tank circuit is connected to the input end of the first resistor. ground through the second resistor and the first resistor of the differential amplifier.
The other end of the capacitor is connected to one end of a third resistor, the other end of the third resistor is grounded via a fourth resistor, and the second end of the differential amplifier is connected to the input terminal of the differential amplifier. A clock regeneration circuit connected to an input terminal and outputting the output of the differential amplifier as a pulse clock signal.
JP62027740A 1987-02-09 1987-02-09 Clock reproduction circuit Expired - Lifetime JPH0732390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62027740A JPH0732390B2 (en) 1987-02-09 1987-02-09 Clock reproduction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027740A JPH0732390B2 (en) 1987-02-09 1987-02-09 Clock reproduction circuit

Publications (2)

Publication Number Publication Date
JPS63194441A true JPS63194441A (en) 1988-08-11
JPH0732390B2 JPH0732390B2 (en) 1995-04-10

Family

ID=12229428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027740A Expired - Lifetime JPH0732390B2 (en) 1987-02-09 1987-02-09 Clock reproduction circuit

Country Status (1)

Country Link
JP (1) JPH0732390B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101516A (en) * 1981-12-14 1983-06-16 Sharp Corp Comparator
JPS59127425A (en) * 1983-01-12 1984-07-23 Nec Corp Phase-locked circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101516A (en) * 1981-12-14 1983-06-16 Sharp Corp Comparator
JPS59127425A (en) * 1983-01-12 1984-07-23 Nec Corp Phase-locked circuit

Also Published As

Publication number Publication date
JPH0732390B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPS62260408A (en) Insulated amplifier with precision timing of signal coupled with isolating barrier
JPH0648587B2 (en) Clocking method and apparatus for use with partially response coded binary data
US4344093A (en) Delay and optimum amplitude equalizers for a readback circuit
DK243282A (en) PROCEDURE AND CIRCUIT FOR DEMODULATION OF FSK SIGNALS
US4395703A (en) Precision digital random data generator
JPS63194441A (en) Clock reproduction circuit
JPS59114947A (en) Cmi decoder
US4628282A (en) Clock generator for digital demodulators
US4803701A (en) Digital detection circuit
JPH04259136A (en) Clock recovery circuit
AU767209B2 (en) Waveform output device with EMI noise canceler mechanism
JPH03192842A (en) Clock recovering circuit
JPH057201A (en) Clock reproducing circuit
JPH04212537A (en) Clock reproducing circuit
JPH01286539A (en) Clock recovery circuit
JP2000353940A (en) Signal waveform processing circuit equipped with agc circuit
US6828840B2 (en) Clock pulse generator
JPH0758604A (en) Clock generating circuit
JP3350476B2 (en) Receiving circuit of communication system
JP2967713B2 (en) Clock pulse phase control circuit
JP2754795B2 (en) Three-state setting circuit with one logic control line
CN117811502A (en) Amplifying stage circuit, signal amplifying method and crystal oscillator
SU1156246A1 (en) Method of demodulating two-phase three-level signals
KR950003658B1 (en) Real time noise filtering method of digital signal using inertia
JP2005348124A (en) Digital signal input circuit