JPS63194235A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS63194235A
JPS63194235A JP2629887A JP2629887A JPS63194235A JP S63194235 A JPS63194235 A JP S63194235A JP 2629887 A JP2629887 A JP 2629887A JP 2629887 A JP2629887 A JP 2629887A JP S63194235 A JPS63194235 A JP S63194235A
Authority
JP
Japan
Prior art keywords
optical waveguide
carrier
optical
injected
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2629887A
Other languages
Japanese (ja)
Inventor
Hiroaki Inoue
宏明 井上
Hitoshi Nakamura
均 中村
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2629887A priority Critical patent/JPS63194235A/en
Publication of JPS63194235A publication Critical patent/JPS63194235A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To narrow a carrier injecting part by forming the optical waveguide structure of the passing part of an injection carrier of an optical branching part where an optical waveguide intersects and branches, to a ridge type. CONSTITUTION:A light wave made incident from an optical waveguide 1 travels straight in the optical waveguide, and usually emitted to an optical waveguide 10. In this state, when a carrier is injected to a carrier injecting part 2, and the refractive index of this part is lowered, the light wave is reflected by an optical branching part, and emitted to an optical waveguide 11. Subsequently, when a current is allowed to flow between a ridge upper face electrode 8 and a reverse side electrode 9 by using a ridge type optical waveguide structure and the carrier is injected, the injected carrier is narrowed and flows only to the inside of an optical waveguide 7 through which the light wave is propagated. In such a way, the steep narrowing of a carrier injecting area can be executed efficiently without providing a special current narrowing layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導波路が交叉2分岐する光分岐部の屈折率を
キャリヤの注入により変化させ、スイッチングを行う光
スイッチに係り、特に光分岐部の光導波路をリッジ型光
導波としてキャリヤの注入領域を侠客することに関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical switch that performs switching by changing the refractive index of an optical branch where an optical waveguide intersects and branches into two, by injecting carriers. This invention relates to controlling the carrier injection region by using an optical waveguide as a ridge-type optical waveguide.

〔従来の技術〕[Conventional technology]

従来のキャリヤ注入方式を用いた光スイッチとしては、
屈折率変化を利用した光路切替え光スイッチとして全反
射型光スイッチがあり、井上他。
As an optical switch using the conventional carrier injection method,
A total internal reflection type optical switch is an optical path switching optical switch that utilizes refractive index changes, and Inoue et al.

昭和60年度電子通信学会半導体・材料部門全国大会予
稿集57−4.及び、井上他、昭和61年度電子通信学
会総合全国大会予稿集969に記載されている。これら
光スイッチはキャリヤ注入部の光導波路構造としてCS
 P (ChanneledSubstrata Pl
anar)型及びB H(Rurr、1adHeter
ostructura )型を使用しており、スイッチ
ング電流を小さくシ、消光比を向上させるため、基板及
びクラッド層内へ導電型の異なる構造を作りつけ、光導
波路内のキャリヤ注入部を狭窄している。
Proceedings of the 1985 IEICE Semiconductor and Materials Division National Conference 57-4. and Inoue et al., Proceedings of the 1986 IEICE General National Conference 969. These optical switches have CS as an optical waveguide structure in the carrier injection part.
P (ChanneledSubstrata Pl
anar) type and B H (Rurr, 1adHeter
In order to reduce the switching current and improve the extinction ratio, structures of different conductivity types are created in the substrate and cladding layer, and the carrier injection part in the optical waveguide is narrowed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの光スイッチでは、導電型の異なる構造を基板や
クラッド層内に作りつける必要があるので、作製工程が
多くなり、歩留りが低下するという問題があった。更に
、光導波路を単一モード化するために光導波路幅を狭く
すると、この狭窄領域の幅を、それに応じて狭くする必
要がある。即ち、1μm程度以下の精度で作製すること
になり。
In these optical switches, it is necessary to create structures of different conductivity types in the substrate and cladding layer, which increases the number of manufacturing steps and reduces yield. Furthermore, when the width of the optical waveguide is narrowed in order to make the optical waveguide into a single mode, the width of this constriction region must be correspondingly narrowed. In other words, it is manufactured with an accuracy of about 1 μm or less.

その実現はきわめて困難であった。Achieving this goal was extremely difficult.

本発明の目的はキャリヤ注入部の狭窄を、注入部にリッ
ジ型先導波路を用いて実現し、消費電力。
An object of the present invention is to realize constriction of the carrier injection section by using a ridge-type leading waveguide in the injection section, thereby reducing power consumption.

消光比特性に秀れた小型の光スイッチを簡便に作製する
ことにある。
The objective is to easily produce a compact optical switch with excellent extinction ratio characteristics.

c問題点を解決するための手段〕 上記目的は、基板上に形成した光導路が交差。c.Means for solving problems] For the above purpose, the optical guide paths formed on the substrate intersect.

分岐する光分岐部分の注入キャリアの経路部分の光導波
路構造をリッジ型とすることによって達成される。
This is achieved by making the optical waveguide structure of the injected carrier path portion of the optical branch portion into a ridge type.

〔作用〕 第1図及び第2図、第3図を用いて本発明を説明する。[Effect] The present invention will be explained using FIG. 1, FIG. 2, and FIG. 3.

第1図は本発明を用いたY型光スイッチの上面図、第2
図及び第3図はキャリヤ注入部の断面図を示している。
FIG. 1 is a top view of a Y-type optical switch using the present invention, and FIG.
3 and 3 show cross-sectional views of the carrier injection section.

第1図において光導波路1から入射した光波は、光導波
路内を直進し、通常光導波路10へ出射する。ここでキ
ャリヤ注入部2にキャリヤを注入し、この部分の屈折率
を低下させると、光波は光分岐部で反射され、光導波路
11へ出射する。ここで光導波路構造を従来例のように
第3図に示したC8P型光導波路とすると、基板5及び
クラッド層13内に電流狭や層12を設け、先導波路7
内へのキャリヤの狭窄を行う必要がある。しかし、第2
図に示したようにリッジ型光導波路構造を用いて、リッ
ジ上面電極8と裏面電極9の間に電流を流し、キャリヤ
を注入すると、注入されたキャリヤは光波が伝搬する光
導波路7内にのみ狭窄されて流れ、特別の電流狭窄層を
設けなくても、効率良くキャリヤ注入領域の急峻な狭窄
が実現できる。又、本発明において、第2図のリッジ型
光導波路を絶縁性の物質で埋込み埋込み型の光導波路構
造としても同様の効果が実現できる。
In FIG. 1, a light wave entering from an optical waveguide 1 travels straight through the optical waveguide and exits to a normal optical waveguide 10. As shown in FIG. When carriers are injected into the carrier injection part 2 to lower the refractive index of this part, the light wave is reflected by the optical branching part and output to the optical waveguide 11. Here, if the optical waveguide structure is a C8P type optical waveguide shown in FIG. 3 as in the conventional example, a current narrowing layer 12 is provided in the substrate 5 and the clad layer 13,
It is necessary to perform a constriction of the carrier inward. However, the second
As shown in the figure, when a current is passed between the ridge top electrode 8 and the back electrode 9 to inject carriers using a ridge-type optical waveguide structure, the injected carriers are transferred only into the optical waveguide 7 where the light wave propagates. The current flow is constricted, and a steep constriction of the carrier injection region can be efficiently achieved without providing a special current confinement layer. Furthermore, in the present invention, the same effect can be achieved even if the ridge-type optical waveguide shown in FIG. 2 is replaced with a buried-type optical waveguide structure in which the ridge-type optical waveguide shown in FIG. 2 is buried with an insulating material.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図及び第2図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は光スイッチの上面図で、第2図は第1図の点a
3における断面図である。
Figure 1 is a top view of the optical switch, and Figure 2 is a point a in Figure 1.
FIG. 3 is a sectional view at section 3;

基板5としてキャリヤ密度が2 X 1018am−”
のn型InPを用いた。■、PE法を用いて基板5上に
InGaAsP層6を光導波層として結晶成長し、ドラ
イエツチング法により、第1図に示す光分岐路の形状に
加工した0次に、A u −Z nを蒸着し、電極8を
設け、キャリヤ注入部2を形成した後、基板5の裏面に
A u −G e −N iを蒸着して電極9を形成し
て光スイッチを完成した。
As the substrate 5, the carrier density is 2×1018 am-”
n-type InP was used. (2) Crystal growth of an InGaAsP layer 6 as an optical waveguide layer is performed on the substrate 5 using the PE method, and processed into the shape of the optical branch path shown in FIG. 1 using the dry etching method. After vapor-depositing, providing an electrode 8, and forming a carrier injection part 2, Au-Ge-Ni was vapor-deposited on the back surface of the substrate 5 to form an electrode 9, thereby completing an optical switch.

この光スイッチの光入射用先導波路1に波長1.3 μ
mの光波を入射してスイッチング特性を評価した。電流
を流さず、キャリヤを注入しない時には、出射側光導波
路10からの出力Pzと出射側光導波路11からの出力
P2の比(消光比)Pt/Pzは100/lであった6
次に電流を流しく15mA)、キャリヤを注入した時の
Pt/Pzは1/90であった。この結果は実用上充分
なものである。
The optical switch has a wavelength of 1.3 μ in the leading waveguide 1 for light incidence.
The switching characteristics were evaluated by inputting a light wave of m. When no current is applied and carriers are not injected, the ratio (extinction ratio) Pt/Pz of the output Pz from the output side optical waveguide 10 and the output P2 from the output side optical waveguide 11 is 100/l6.
Next, a current of 15 mA was applied, and when carriers were injected, Pt/Pz was 1/90. This result is sufficient for practical use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、小型で消光比の大きい実用的な光スイ
ッチを簡単に、しかも歩留り良く提供できるので、光伝
送・通信システムの構築を容易にし、市場の拡大を図る
効果がある。
According to the present invention, a practical optical switch that is small and has a large extinction ratio can be provided easily and with a high yield, which facilitates the construction of optical transmission and communication systems and has the effect of expanding the market.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の概要を示す図、第3図は
、従来例の断面図である。 1.10.11・・・光導波路、2・・・キャリヤ注入
部、3・・・断面構造を示した位置、4・・・光分岐部
、5・・・基板、6・・・光導波層、7・・・光導波部
、8,9・・・電極、12・・・電流狭窄層。
1 and 2 are diagrams showing an outline of the present invention, and FIG. 3 is a sectional view of a conventional example. 1.10.11... Optical waveguide, 2... Carrier injection part, 3... Position showing cross-sectional structure, 4... Optical branching part, 5... Substrate, 6... Optical waveguide Layer 7... Optical waveguide section, 8, 9... Electrode, 12... Current confinement layer.

Claims (1)

【特許請求の範囲】 1、半導体基板上に形成した光導波路が交差、分岐する
光分岐部分の少くとも一部の屈折率をキャリヤの注入に
よって変化させてスイッチングを行う光スイッチにおい
て、該キャリヤの経路部分の光導波路構造をリッジ型光
導波路とすることを特徴とする光スイッチ。 2、上記半導体を化合物半導体とすることを特徴とする
特許請求の範囲第1項記載の光スイッチ。 3、上記キャリヤの注入を電流注入により行うための電
極を有することを特徴とする特許請求の範囲第1項記載
の光スイッチ。
[Claims] 1. An optical switch that performs switching by changing the refractive index of at least a portion of an optical branching portion where optical waveguides formed on a semiconductor substrate intersect or branch, by injecting carriers. An optical switch characterized in that the optical waveguide structure of the path portion is a ridge type optical waveguide. 2. The optical switch according to claim 1, wherein the semiconductor is a compound semiconductor. 3. The optical switch according to claim 1, further comprising an electrode for injecting the carriers by current injection.
JP2629887A 1987-02-09 1987-02-09 Optical switch Pending JPS63194235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2629887A JPS63194235A (en) 1987-02-09 1987-02-09 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2629887A JPS63194235A (en) 1987-02-09 1987-02-09 Optical switch

Publications (1)

Publication Number Publication Date
JPS63194235A true JPS63194235A (en) 1988-08-11

Family

ID=12189429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2629887A Pending JPS63194235A (en) 1987-02-09 1987-02-09 Optical switch

Country Status (1)

Country Link
JP (1) JPS63194235A (en)

Similar Documents

Publication Publication Date Title
US4813757A (en) Optical switch including bypass waveguide
US4185256A (en) Mode control of heterojunction injection lasers and method of fabrication
US4778235A (en) Optical switch
JPS60134219A (en) Optical switch
US5706374A (en) Compact digital optical switch
JPS62174728A (en) Optical switch
US4784451A (en) Waveguide optical switches
JP2000208862A (en) Semiconductor optical integrated device and its manufacture
CA2304804C (en) Tightly curved digital optical switches
US4277762A (en) Mode control of heterojunction injection lasers and method of fabrication
Hernandez-Gil et al. A tunable MQW-DBR laser with a monolithically integrated InGaAsP/InP directional coupler switch
US5490226A (en) Zero holding power digital optical switches
JPS58114476A (en) Semiconductor laser
US5537497A (en) Optimized electrode geometries for digital optical switches
JPS63194235A (en) Optical switch
Nagai et al. InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits
US5453874A (en) Semiconductor optical component and manufacturing method therefor
JPH0548889B2 (en)
JPH07146413A (en) Semiconductor light waveguide, manufacture thereof, and light waveguide type element
JPH023024A (en) Semiconductor optical switch
KR950009631B1 (en) Internal total reflection type semiconductor optical switch
JPS6381305A (en) Optical integrated circuit
JPH023025A (en) Semiconductor optical switch
JPS62297826A (en) Optical switch
Ueda et al. Very-low-current operation of InAlGaAs/InAlAs/InP Mach-Zehnder interferometer-type multi-mode interference photonic switch (MIPS-MZ)