JPS63193775A - Autofocusing device for video camera - Google Patents
Autofocusing device for video cameraInfo
- Publication number
- JPS63193775A JPS63193775A JP62024586A JP2458687A JPS63193775A JP S63193775 A JPS63193775 A JP S63193775A JP 62024586 A JP62024586 A JP 62024586A JP 2458687 A JP2458687 A JP 2458687A JP S63193775 A JPS63193775 A JP S63193775A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- focusing
- lens group
- focusing mechanism
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 239000000284 extract Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 18
- 238000003384 imaging method Methods 0.000 description 8
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 241000283283 Orcinus orca Species 0.000 description 1
- 241001057181 Orcus Species 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/36—Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
- G02B7/365—Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はビデオカメラ、電子スチルカメラ等の芽−トフ
ォーカス装置に係り、特に撮映信号から高域周波数成分
(焦点電圧)を検出し、焦点電圧が最大となるようにレ
ンズ位置を制御するTTL映像方式に用いて好適なオー
トフォーカス装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a focus device for a video camera, an electronic still camera, etc., and in particular detects a high frequency component (focus voltage) from a video signal. The present invention relates to an autofocus device suitable for use in a TTL video system that controls the lens position so that the focal voltage is maximized.
被写体と撮像素子受光面との光路長を所定の基準周波数
の信号で微少変動させ、撮像素子より得た映像信号から
高域周波数成分信号を抽出し、核高域周波数成分信号か
ら前記所定の微少変動周波数成分信号を得、該信号と前
記光路長微少変動周基単周波数信号と比較し、該比較し
て得た信号で合焦方向を判断、レンズの焦点整合装置を
駆動し、前記高域周波数成分信号が最大となるように帰
還回路を構成してなろTTL映像方式オートフォーカス
装置が、例えば特開昭60−42725号、あるいはナ
ショナルテクニカルレボ−) 、 51巻、 6 号、
1985年12月、第65頁〜第67頁に記載のように
提案されている。前記%開昭60−42723号には光
路長微少変動装置として、撮像素子の前に振動プリ女ム
を設け、該プリズムに取り付けられた圧電素子を所定の
基準周波数の電気信号により振動させることによってレ
ンズ系の光軸方向の光路長を微少量変化させる方法と、
7オーカシングレ/ズとは別のレンズを、前記同様圧電
素子を介して振動させることによって光路長を微少量変
化させる方法が記載され、後者の具体的な実用化例が前
記文献に記載されている。The optical path length between the subject and the light-receiving surface of the image sensor is slightly varied using a signal of a predetermined reference frequency, a high frequency component signal is extracted from the video signal obtained from the image sensor, and the predetermined minute signal is extracted from the nuclear high frequency component signal. A fluctuating frequency component signal is obtained, and this signal is compared with the optical path length minute fluctuation period base single frequency signal, the focusing direction is determined based on the signal obtained by the comparison, the focusing device of the lens is driven, and the high-frequency component signal is A TTL image type autofocus device in which a feedback circuit is configured to maximize the frequency component signal is disclosed in, for example, Japanese Patent Laid-Open No. 60-42725, or National Technical Review), Vol. 51, No. 6,
It is proposed as described in December 1985, pages 65 to 67. According to the above-mentioned patent application No. 60-42723, a vibrating prism is provided in front of the image pickup element as an optical path length minute variation device, and a piezoelectric element attached to the prism is vibrated by an electric signal of a predetermined reference frequency. A method of slightly changing the optical path length in the optical axis direction of a lens system,
A method is described in which the optical path length is slightly changed by vibrating a lens other than the 7 Orcas single lens via a piezoelectric element as described above, and a specific practical example of the latter is described in the above-mentioned document. .
また第3図に示すようにビデオカメラ等におけるズーム
レンズ系1は、一般にフォーカシングレンズ(前玉レン
ズ)群2、バリエータレンズ群3、コンベンセータレン
ズ群4、絞り装置1C5,結像レンズ(マスタレンズ)
群6によって基本的構成がなされている。周知のように
この基本的構成のうちフォーカシングレンズ群1は任意
の距離にある所望する撮影被写体に対して焦点合わせを
するよう働く作用を有し、バリエータレンズ群3はズー
ミングのための変倍作用、コンベンセータレンズ1fP
4はズーミングと共に可動し、撮影所望の被写体に対す
るズーミング中の焦点ずれを防ぐ補正作用、結像レンズ
6は撮像素子7上に光字像を結像させる作用を有する。As shown in FIG. 3, a zoom lens system 1 in a video camera or the like generally includes a focusing lens (front lens) group 2, a variator lens group 3, a convencator lens group 4, an aperture device 1C5, and an imaging lens (master lens). )
Group 6 forms the basic structure. As is well known, in this basic configuration, the focusing lens group 1 has the function of focusing on a desired photographic subject located at an arbitrary distance, and the variator lens group 3 has the function of changing the magnification for zooming. , convencator lens 1fP
Numeral 4 moves with zooming, and has a correcting function to prevent defocusing of the object desired to be photographed during zooming, and imaging lens 6 has a function of forming an optical character image on image sensor 7 .
前記文献等に示された例はこのような基本的構成ヲなす
レンズ系1においてピント合わせ用レンズ群2とは別に
、撮像素子7の前に別途配置したプリズム、あるいは結
f!’ (マスク)レンズ6を圧電素子により撮動させ
る光路長微少変動機構を設げることによって達成されて
いる。The examples shown in the above-mentioned documents include a lens system 1 having such a basic configuration, in which a prism or f! ' (Mask) This is achieved by providing an optical path length minute variation mechanism that moves the lens 6 using a piezoelectric element.
上記従来技術はレンズの焦点整合装置が痛還ルーズに入
っているので焦点整合装置の組み豆て精度など機械的f
#度がラフでありても、合焦精度の良好なる自動合焦装
置が実現できる長所がある。In the above-mentioned conventional technology, the focusing device of the lens is very loose, so mechanical flaws such as assembly precision of the focusing device
An advantage is that even if the angle is rough, an automatic focusing device with good focusing accuracy can be realized.
しかしながら上記したように従来技術は圧電素子を用い
た光路長微少撮動機構を必要とするので、その取付は支
持方法などに長期的な安定性を考慮した構造的な工夫が
必要となる。また圧電素子を駆動するには数10V以上
の駆動電圧を必要とするので、ビデオカメラ等の低電圧
のバッテリで動作させる機器の場合、このような比較的
高い電圧を発生させる手段を余分に設ける必要がある。However, as described above, the conventional technology requires a small optical path length imaging mechanism using a piezoelectric element, and therefore, its mounting requires structural innovation in consideration of long-term stability, such as a supporting method. In addition, driving a piezoelectric element requires a driving voltage of several tens of volts or more, so in the case of devices that operate on low-voltage batteries, such as video cameras, it is necessary to provide an extra means to generate such a relatively high voltage. There is a need.
このような点を考慮して第3図あるいは前記公知文献等
における7オ一カシングレンズ群をモータで微少撮動さ
せながら移動させることができれば、上記した光路長微
少撮動機構を別途設置する必要がないので構成が簡単に
なることが考えられる。しかし一般に合焦のための駆動
には直流モータが用いられており、この様なモータで、
比較的重たいフォーカシングレンズ群を目に検知できな
い程度に、微動させるのは慣性等の影響も大きく非常に
困難であり、またモータを常時撮動(反転)運動をさせ
るのはモータの寿命の観点からも実用化は極めて困難で
ある。Taking these points into consideration, if it is possible to move the 7-occurring lens group shown in FIG. 3 or the above-mentioned known document while performing micro-imaging using a motor, the above-mentioned optical path length micro-imaging mechanism can be installed separately. Since this is not necessary, the configuration may be simplified. However, generally a DC motor is used to drive the focus, and with such a motor,
It is extremely difficult to move a relatively heavy focusing lens group so slightly that it cannot be detected by the human eye due to the influence of inertia, etc. Also, from the viewpoint of the lifespan of the motor, it is difficult to make the motor constantly perform photographing (reversing) motion. However, it is extremely difficult to put it into practical use.
本殆明は、圧電素子による光路長微少撮動装置を設置す
ることなく、レンズを微動しながら移動させて7を一力
シングする、すなわち光路長微少振動とフォーカシング
を兼用可能とする装置を実現することによって、実効的
に従来技術と等価な効果を得るとともに、低コスト、簡
易な自動合焦装置を提供するものである。The present invention has realized a device that can perform both optical path length micro vibration and focusing without installing a piezoelectric element-based optical path length micro-imaging device by moving the lens while moving it in a single motion. By doing so, it is possible to obtain an effect effectively equivalent to that of the prior art, and to provide a low-cost, simple automatic focusing device.
で問題点を解決するための手段〕
上記目的はバリエータレンズ群以降にフォーカシング機
構を有し、撮像信号の高域周波数成分が最大となるよう
に駆動する撮像のピント合わせは、マスタレンズの一部
、もしくは全部を、あるいはコンペンセータレンズの一
部、もしくは全部をあるいは撮像素子を移動することに
よりなし、かつこれを所定の周期で微少変動させながら
移動する様にモータ駆動することにより達成される。[Means for solving the problem] The above purpose is to have a focusing mechanism after the variator lens group, and the focusing mechanism for driving the image so that the high frequency component of the imaging signal is maximized is a part of the master lens. , or all of the compensator lens, or a part or all of the compensator lens, or the image pickup device, and is achieved by driving a motor to move the compensator lens while slightly changing it at a predetermined period.
纂3図に示す、一般のズームレンズ系1におい【、フォ
ーカシングレンズ群2の位置を固定とし、マスタレンズ
群6の一部、もしくは全部、あるいは撮@*子7を動か
丁ことによりても近接から無限遠に至る任意の被写体に
対してピント調整することが原理的に可能である。この
場合バリエータレンズ群3以降にフォーカシング機能を
持たせることになるので、ズーミングを行いズーム位置
が変れば、同一距離の被写体に対してもピントずれを生
じ、したがってズーミングとともに最適マスタレンズ位
置、あるいは最適撮像素子位置が変化する。しかしなが
ら上記のように構成したオートフォーカス装置は、撮影
信号の高域周波数成分が最大となるように、換言すれば
撮影lff1I像のボケを検知し、ボケが最少となるよ
う帰還回路を構成してなるオートフォーカス装置である
ので、ズーミング操作を行ってもオート2オーカス動作
させることができるので、適性な撮F!に画像を常に得
ることができる。また近年撮像素子は撮像貨に変わりて
、小域、@菫な固体撮像素子が実用化され、主流化して
きた。このような固体撮像素子は第3図に示したフォー
カシングレンズ群2(数1of)に比らべ小m@量(2
〜49)である。一方、マスタレンズ群6も7を一カシ
ングレンズ群2に比らべ光分小さく軽量であり、ピント
合わせに必要とするレンズはその1部、例えばレンズ群
6のうち1〜2枚のレンズを移動すればよくその重量は
たかだか1f〜2faKである。したかっ【慣性も少な
く、モータ駆動によりて、マスタレンズ、あるいは撮像
素子を所望の量微少変動させながら移動してピント合わ
せさせることが可能となる。さらにはこの様な軽量なフ
ォーカシング機構を駆動するには小屋低トルクのモータ
でよい。したがってパルスモータ、超音波モータなとブ
ラシレス。In a general zoom lens system 1 shown in Figure 3, the position of the focusing lens group 2 is fixed, and part or all of the master lens group 6 or the camera lens 7 can be moved to achieve close-up. In principle, it is possible to adjust the focus on any subject from the distance to infinity. In this case, the focusing function is provided in the variator lens group 3 and beyond, so if the zoom position changes during zooming, the focus will shift even for subjects at the same distance. The image sensor position changes. However, in the autofocus device configured as described above, the feedback circuit is configured so that the high frequency component of the photographing signal is maximized, in other words, the blur of the photographed lff1I image is detected and the blur is minimized. Since it is an autofocus device, it can perform auto 2 orcus operation even when zooming, making it suitable for shooting F! You can always get the picture. In addition, in recent years, image sensors have become a commodity, and small-area solid-state image sensors have been put into practical use and have become mainstream. Such a solid-state image sensor has a small m@ amount (2 of) compared to the focusing lens group 2 shown in FIG.
~49). On the other hand, the master lens group 6 also has a light weight smaller than the focusing lens group 2, and only a portion of the lenses are required for focusing, for example, one or two lenses of the lens group 6. The weight is at most 1f to 2faK. [The inertia is small, and by driving the motor, it is possible to move the master lens or the image sensor while slightly changing the desired amount to adjust the focus. Furthermore, a low-torque motor can be used to drive such a lightweight focusing mechanism. Therefore pulse motors, ultrasonic motors and brushless motors.
パルス駆動可能なモータの採用が可能となり、モータ自
体の慣性も小さく、所定量変移させるための制御も容易
となり一層所望する適切な量だけ微変動させることが可
能となり、寿命も大幅に向上する。It is now possible to use a motor that can be driven by pulses, and the inertia of the motor itself is small, making it easier to control the displacement by a predetermined amount, making it possible to make slight fluctuations by the desired and appropriate amount, and greatly improving the lifespan.
上記説明のようにマスタレンズ、あるいは撮像素子を7
オ一カシング機構とし、かつ所定の周期で微動させなが
ら移動することによって、撮**子より得られる映像信
号は、従来技術と同質の信号を得ることができる。した
がって特別の光路長微動機構も必要なく、従来の7オー
カシング(前玉)レンズも固定でよいので簡易、低コス
トなオートフォーカス装置が実現できる。As explained above, the master lens or image sensor
By using a focusing mechanism and moving the camera while making slight movements at a predetermined period, the video signal obtained from the camera can be of the same quality as that of the prior art. Therefore, there is no need for a special optical path length fine adjustment mechanism, and the conventional 7-focus (front lens) lens can be fixed, making it possible to realize a simple and low-cost autofocus device.
以下、本発明の一実施例を@1図により説明する。第1
図において1は撮像レンズ系、2′は従来の前玉レンズ
群に相当するが移動させない固定レンズ群、3はバリエ
ータレンズ群、4はコンベンセータレンズ群、5は絞り
装置、6′はマスタレンズ群、7は撮像素子である。1
9はマスタレンズ群6′を保持し、かつ移動させるため
の手段である。Hereinafter, one embodiment of the present invention will be explained with reference to Figure @1. 1st
In the figure, 1 is an imaging lens system, 2' is a fixed lens group that corresponds to the conventional front lens group but is not moved, 3 is a variator lens group, 4 is a convencator lens group, 5 is an aperture device, and 6' is a master lens. Group 7 is an image sensor. 1
9 is means for holding and moving the master lens group 6'.
第1図に示した例ではマスタレンズ群6′全体を保持、
移動するようにしているが、マスタレンズ群の一部であ
ってもよい。18はモータ17により駆動される歯車で
移動手設置9に設けた歯と噛み合い、マスタレンズ群6
′を光軸方向く所定の周期で、所定量微変動させながら
移動させる。16は制御回路12からの信号でモータ1
7を駆動するための駆動回路である。13は上記マスタ
レンズを所定の周期で微変動させるための基準周波数信
号を発生する基準信号発生源で、制御信号発生回路14
4と同期検波回路15にその信号を入力する。制御信号
発生回路14には基準信号発生源13と同期検波回路1
5からの信号が入力され、マスタレンズ群6を上記基準
周波数で微変動させ、目には検知できない程度フを一カ
スを変化させながら移動しピント合わせするための制御
信号を出力し、駆動回路16に与える。上記マスタレン
ズ群6′の微変動に応動して撮像素子7の出力電圧が変
化する。撮像素子7に得られた出力信号を前置増幅回路
8にて増幅し、カメラ回路9にてカメラ信号が生成され
る。10は映像信号から高域周波数成分を抽出する高域
成分抽出回路である。高域成分抽出回路10の出力信号
はフォーカスを微変化させているのでその変化成分を含
む。11はその変化成分、すなわち微変動基準周波数成
分を検出する検出回路であり、検出信号を同期検波回路
15に入力し、原基単周波a信号を用いて同期検波する
。これにより、検出した基準周波数成分信号の極性と振
幅を検出し、制御信号発生回路14に加え、撮像素子7
の高周波取分の振幅が最大となるよう、すなわちピント
合わせを行なうようにモータ17を駆動する。次に撮像
素子7の高周波成分の出力電圧とモータの駆動回路16
0制御方法について第4図を用いて説明する。レンズ1
の焦点整合装置、すなわちマスタレンズ群6′を近接合
焦距離から無限遠合焦距離まで移動し、今、距11fI
PoK被写体があったとすれば、高域周波数成分の振幅
は第4図に示すように位fIPoで最大となる山の型を
示す。21はモータの微変動を示し、被写体に対して近
距離側に位置されている場合は22の極性の信号が、遠
距離側に位置する場合は23の極性の信号が検出回路1
1の出力に検出される。In the example shown in FIG. 1, the entire master lens group 6' is held;
Although it is designed to move, it may also be part of the master lens group. A gear 18 is driven by the motor 17 and meshes with teeth provided on the moving hand installation 9, and is connected to the master lens group 6.
' is moved in the optical axis direction at a predetermined period while being slightly varied by a predetermined amount. 16 is a signal from the control circuit 12 to the motor 1.
This is a drive circuit for driving 7. 13 is a reference signal generation source that generates a reference frequency signal for slightly varying the master lens at a predetermined period, and a control signal generation circuit 14
4 and the signal is input to the synchronous detection circuit 15. The control signal generation circuit 14 includes a reference signal generation source 13 and a synchronous detection circuit 1.
5, the master lens group 6 is slightly fluctuated at the above-mentioned reference frequency, and a control signal is outputted to move and focus while changing the lens by a degree that cannot be detected by the human eye. Give to 16. The output voltage of the image sensor 7 changes in response to slight fluctuations in the master lens group 6'. The output signal obtained by the image sensor 7 is amplified by a preamplifier circuit 8, and a camera signal is generated by a camera circuit 9. 10 is a high frequency component extraction circuit that extracts high frequency components from the video signal. The output signal of the high-frequency component extraction circuit 10 contains a component of the change since the focus is slightly changed. Reference numeral 11 denotes a detection circuit for detecting the changing component, that is, the slightly fluctuating reference frequency component.The detection signal is input to the synchronous detection circuit 15, and synchronous detection is performed using the original single frequency a signal. As a result, the polarity and amplitude of the detected reference frequency component signal are detected, and in addition to the control signal generation circuit 14, the image sensor 7
The motor 17 is driven so that the amplitude of the high frequency portion of the image is maximized, that is, focusing is performed. Next, the output voltage of the high frequency component of the image sensor 7 and the motor drive circuit 16
The zero control method will be explained using FIG. lens 1
The focusing device, that is, the master lens group 6', is moved from the close focusing distance to the infinity focusing distance, and the distance is now 11fI.
Assuming that there is a PoK object, the amplitude of the high frequency component exhibits a mountain shape that reaches its maximum at position fIPo, as shown in FIG. 21 indicates slight fluctuations of the motor; when the object is located close to the subject, a signal with the polarity 22 is sent; when the object is located far away, the signal with the polarity 23 is sent to the detection circuit 1.
1 output.
22の信号を同期検波した信号でモータ17を無限遠■
方向に、23の信号を同期検波した信号で至近方向に向
うよ5モータ17を駆動するので高域周波数成分の振幅
の最大値、すなわち第4図の山の頂上で安定する。The motor 17 is moved to infinity by the signal obtained by synchronously detecting the signal of 22.
Since the motor 17 is driven toward the nearest direction using the signal obtained by synchronously detecting the signal 23, it is stabilized at the maximum value of the amplitude of the high frequency component, that is, at the top of the mountain in FIG.
以上説明のようにモータによってマスタレンズ群6′を
微動しながら移動してピント合わせ調整を行なうが、本
発明によれば軽量なマスタレンズ群6′の全部、あるい
はその一部を微動するので慣性も少なく、目に検知でき
ない程度の適切な蓋フォーカスを変化させることができ
ろ。As explained above, the motor moves the master lens group 6' slightly to adjust the focus. However, according to the present invention, since all or a part of the lightweight master lens group 6' is slightly moved, the inertia It should be possible to change the lid focus appropriately so that it is so small that it cannot be detected by the eye.
本発明の第2の実施例を第2図に示す。第2図において
、第1図と同一符号を示すもの、は第1図の実施例と同
一機能1作用を有する。第1図の実施例と異なるところ
は、第1図では7を一力シング機能ヲマスタレンズ群6
′にもたせたが、第2図の実施例は撮像素子7に7オ一
カシング機能をもたせるようにしたもので、モータ17
は撮像素子7を微動させながら移動してピント合わせす
るよう可動する。この場合、マスタレンズ群6は固定す
る。A second embodiment of the invention is shown in FIG. In FIG. 2, the same reference numerals as in FIG. 1 have the same functions and operations as in the embodiment of FIG. The difference from the embodiment shown in FIG. 1 is that in FIG.
' However, in the embodiment shown in FIG.
is movable so as to move and focus while slightly moving the image sensor 7. In this case, the master lens group 6 is fixed.
この第2図の実施例によれば帰還回路系が、撮像素子7
′、前置増幅回路8、高域成分抽出回路10、微変動基
準周波数成分の検出回路11、制御回路12、モータの
駆動回路16、モータ17、歯車18、撮像素子移動手
段19によって構成される。すなわちレンズ系1とは切
り離して帰還回路系が構成されるので、ズーミング機構
以外はレンズ系に可動部が必要なくレンズ設計におよほ
す影響も少なく、したがって一層、簡明なオートフォー
カス装置が実現できる。According to the embodiment shown in FIG. 2, the feedback circuit system is connected to the image sensor 7.
', a preamplifier circuit 8, a high-frequency component extraction circuit 10, a detection circuit 11 for detecting a slight fluctuation reference frequency component, a control circuit 12, a motor drive circuit 16, a motor 17, a gear 18, and an image sensor moving means 19. . In other words, since the feedback circuit system is configured separately from the lens system 1, there is no need for any movable parts in the lens system other than the zooming mechanism, and there is less influence on lens design, making it possible to realize an even simpler autofocus device. .
以上、第1.第2図に示した実施例において、モータに
よって移動されるレンズあるいは撮像素子は小さく軽い
ためモータ17の種類については特に限定するものでは
ないがステッピングモータ、超音波モータのようなパル
ス駆動モータを用いれば回転子の慣性も少なく、微動意
の制御を適切に行なうことができるため、好適である。Above is the first part. In the embodiment shown in FIG. 2, since the lens or image sensor moved by the motor is small and light, the type of motor 17 is not particularly limited, but a pulse drive motor such as a stepping motor or an ultrasonic motor may be used. This is preferable because the inertia of the rotor is small and fine movements can be appropriately controlled.
また、このようなモータは無接触°型であるので高寿命
、あるいは速度制御が容易など、一層優れたオートフォ
ーカス装置とすることが可能である。In addition, since such a motor is a non-contact type, it has a long life and can be easily controlled in speed, making it possible to provide a more excellent autofocus device.
m 51i9 fl)〜(3)にステッピングモータ等
パルス駆動を行うモータにより、マスタレンズ群6、あ
るいは撮像素子7を微動しながら移動させる様子を示す
。無限遠距離のから至近距離までの移動量を1ステツプ
に、すなわち1パルスで1/n移動する場合の例である
。実線は時間tと共に、1サイクル(Tf)微動後、1
ステツプ変移をくり返えしながら、破線は1サイクル微
動後3ステツプ変移をくり返えしながら移動させるよう
システム構成した場合の例である。第5図+21 (3
)は、モータを各テップ毎に送るパルスのタイミングの
例を示すもので、(2)は第5図fl)の破線で示す動
作に、(3)は実測で示す動作に対応する。このように
変移量を任意に設定することでピント合わせ時間を任意
に設定できる。なお、1サイクルの微動量は目に検知で
きない程度でフォーカスを微変化させる量であるが、所
定の周期(Tt)円で駆動パルス数を増加し、第5図中
aに示す変化特性のように制御すれば微変化量も任意に
設定できる。51i9 fl) to (3) show how the master lens group 6 or the image sensor 7 is moved while being slightly moved by a motor that performs pulse drive such as a stepping motor. This is an example in which the amount of movement from an infinite distance to a close distance is one step, that is, one pulse is used to move 1/n. The solid line shows the time t, after 1 cycle (Tf) micro-movement, 1
The broken line is an example of a system configured to move while repeating step changes.The broken line shows an example in which the system is configured to move while repeating three step changes after one cycle of slight movement. Figure 5 +21 (3
) shows an example of the timing of the pulse sent to the motor for each step; (2) corresponds to the operation shown by the broken line in FIG. 5 fl), and (3) corresponds to the operation shown by actual measurements. By arbitrarily setting the amount of shift in this way, the focusing time can be set arbitrarily. Note that the amount of fine movement in one cycle is the amount that changes the focus so much that it cannot be detected by the eye, but by increasing the number of drive pulses at a predetermined period (Tt) circle, the change characteristics as shown in a in Fig. 5 are obtained. If controlled, the amount of slight change can be set arbitrarily.
□以上述べた例では、マスタレンズ群、あるいは撮像素
子を一移動してフを一力シンダブる場合について述べた
が、詳述しないがコンペンセータレンズ群に適用する場
合(ついても同様に実施できる。□ In the example described above, a case was described in which the master lens group or the image sensor is moved once and the lens is doubled at once, but although it will not be described in detail, the case can be applied to a compensator lens group (this can also be implemented in the same way).
このようなN1例を使用すると、従来必要でありた前玉
)を−カシングレンズのくり越し機構が必要でないので
レンズ系を小型軽量にできる。また従来、マクロ7を一
カス機能は通常、コンペンセータレンズ群の可動によっ
て実現していたが、本笑施例ではマスタレンズ群、ある
いは撮像素子の移動によってマクロ域までのピント合わ
せ動作が容易に可能となるので、マクロフォーカス機構
も簡易になるなど、小型、低コストなオートフナ−カス
装置を実現できる。さらに、従来不可能であったマクロ
オートフォーカス機能の実現も可能となるなど多くの利
点がある。When such an N1 example is used, the lens system can be made smaller and lighter because there is no need for a mechanism for hollowing out the front lens (front lens), which was required in the past. In addition, in the past, the macro 7 focus function was usually realized by moving the compensator lens group, but in this example, focusing up to the macro range can be easily achieved by moving the master lens group or the image sensor. Therefore, the macro focus mechanism becomes simple, and a compact, low-cost autofocus device can be realized. Furthermore, there are many advantages, such as the ability to implement macro autofocus functions that were previously impossible.
本発明によれば、オートフォーカスによる合焦機構とは
別に特別の光路長微動機構を設置することなく、実効的
に光路長を微動、すなわち目につかない程度にフォーカ
スを微変動させながら、かつ同等にフォーカシング機能
を有することができる。すなわち、従来別個に設けられ
ていたフォーカシング磯慣と、光路微動機構を兼用した
システムが実現できる。オートフォーカス装置を簡単に
構成することができる。According to the present invention, without installing a special optical path length fine adjustment mechanism in addition to the autofocus focusing mechanism, the optical path length can be effectively finely adjusted, that is, the focus can be slightly changed to an imperceptible degree, and the focus can be adjusted to the same level. can have a focusing function. In other words, it is possible to realize a system that combines a focusing mechanism, which has conventionally been provided separately, and an optical path fine movement mechanism. An autofocus device can be easily configured.
第1゛図は本発明のwJlの一実施例を示すシステム構
成図、第2図は論2の一実施例の部分システム構成図、
第3図はビデオカメラに用いられる一般的ズームレンズ
Q例を示す構成図、第4図は撮像素子から得られる高域
周波数成分の焦点位置に対するレベル特性を示すグラフ
、8g5図は実施例の動作を説明するための説明囚であ
る。
1・・・レンズ系、2・・・前玉レンズ群、3・・・バ
リエータレンズ群、4・・・コンペンセータレンズ群、
5・・・絞り装置、6・・・マスタレンズ群、7・・・
撮像素子、8・・・前置増幅回路、9・・・カメラ回路
、10・・・高域周波数成分信号抽出回路、11・・・
基準周波数成分信号検出回路、12・・・制御回路、1
3・・・基本周波数信号発生源、14・・・制御信号発
生回路、15・・・同期検波回路、16・・・モータ駆
動回路、17・・・モータ。
躬 1 国
第5図
マスクしン又゛°の岸、臭哨i霞り
第 5国Fig. 1 is a system configuration diagram showing an embodiment of wJl of the present invention, Fig. 2 is a partial system configuration diagram of an embodiment of theory 2,
Fig. 3 is a configuration diagram showing an example of a general zoom lens Q used in a video camera, Fig. 4 is a graph showing the level characteristics of high frequency components obtained from an image sensor with respect to the focal position, and Fig. 8g5 shows the operation of the embodiment. It is an explanatory prisoner to explain. 1... Lens system, 2... Front lens group, 3... Variator lens group, 4... Compensator lens group,
5... Aperture device, 6... Master lens group, 7...
Image sensor, 8... Preamplifier circuit, 9... Camera circuit, 10... High frequency component signal extraction circuit, 11...
Reference frequency component signal detection circuit, 12...control circuit, 1
3... Fundamental frequency signal generation source, 14... Control signal generation circuit, 15... Synchronous detection circuit, 16... Motor drive circuit, 17... Motor. 1. Country 5: Mask Shin, ゛° shore, odor sentry, haze, 5th Country
Claims (1)
を抽出し、該高域周波数成分信号が最大となるようにフ
ォーカシング機構を調整する帰還回路を構成してなるT
TL映像方式オートフォーカス装置において、ズームレ
ンズ系バリエータレンズ群以降にフォーカシング機構を
具備し、該フォーカシング機構を所定の基準周波数で微
少変動しながら移動し、該高域周波数成分から該基準周
波数微少変動成分信号を検出し、該検出信号の極性と振
幅を検出してピント合わせするよう、該フォーカシング
機構をモータ駆動することを特徴とするビデオカメラの
オートフォーカス装置。 2、上記フォーカシング機構は、マスタレンズ群の全部
、もしくはその1部を基準周波数で微少変動しながら移
動してピント合わせすることを特徴とする特許請求の範
囲第1項記載のビデオカメラのオートフォーカス装置。 3、上記フォーカシング機構は撮像素子を基準周波数で
微少変動しながら移動してピント合わせすることを特徴
とする特許請求の範囲第1項記載のビデオカメラのオー
トフォーカス装置。 4、上記フォーカシング機構はコンペンセータレンズ群
の全部、もしくはその1部を基準周波数で微少変動しな
がら移動してピント合わせすることを特徴とする特許請
求の範囲第1項記載のビデオカメラのオートフォーカス
装置。 5、上記オートフォーカス機構はステッピングモータ、
あるいは超音波モータ等、パルス信号によって駆動され
るモータにより位置制御されることを特徴とする特許請
求の範囲第1項〜第4項のいずれかに記載のビデオカメ
ラのオートフォーカス装置。[Claims] 1. A T comprising a feedback circuit that extracts a high frequency component signal from a video signal obtained from an image sensor and adjusts a focusing mechanism so that the high frequency component signal is maximized.
In a TL image type autofocus device, a focusing mechanism is provided after a zoom lens system variator lens group, and the focusing mechanism is moved while slightly fluctuating at a predetermined reference frequency, and the fine fluctuation component of the reference frequency is detected from the high frequency component. An autofocus device for a video camera, characterized in that the focusing mechanism is driven by a motor so as to detect a signal, detect the polarity and amplitude of the detection signal, and adjust the focus. 2. The autofocus of a video camera according to claim 1, wherein the focusing mechanism moves all or a part of the master lens group while making slight fluctuations at a reference frequency to adjust the focus. Device. 3. The autofocus device for a video camera according to claim 1, wherein the focusing mechanism moves and focuses the image sensor while making slight fluctuations at a reference frequency. 4. The autofocus device for a video camera according to claim 1, wherein the focusing mechanism moves all or a part of the compensator lens group with slight fluctuations at a reference frequency to adjust the focus. . 5. The above autofocus mechanism uses a stepping motor,
Alternatively, the autofocus device for a video camera according to any one of claims 1 to 4 is characterized in that the position is controlled by a motor driven by a pulse signal, such as an ultrasonic motor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62024586A JPH0754969B2 (en) | 1987-02-06 | 1987-02-06 | Video camera autofocus device |
KR1019880000878A KR910009562B1 (en) | 1987-02-06 | 1988-02-01 | Automatic focusing apparatus for use in video camera and the like |
US07/151,963 US4842387A (en) | 1987-02-06 | 1988-02-03 | Automatic focusing apparatus for use in video camera and the like |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62024586A JPH0754969B2 (en) | 1987-02-06 | 1987-02-06 | Video camera autofocus device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6123463A Division JP2816308B2 (en) | 1994-06-06 | 1994-06-06 | Video camera autofocus device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63193775A true JPS63193775A (en) | 1988-08-11 |
JPH0754969B2 JPH0754969B2 (en) | 1995-06-07 |
Family
ID=12142261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62024586A Expired - Lifetime JPH0754969B2 (en) | 1987-02-06 | 1987-02-06 | Video camera autofocus device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754969B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022291A (en) * | 1988-06-11 | 1990-01-08 | Fuji Photo Film Co Ltd | Camera with automatic focus function |
JPH02118506A (en) * | 1988-10-28 | 1990-05-02 | Hitachi Ltd | Automatic focusing device |
JPH02140074A (en) * | 1987-10-08 | 1990-05-29 | Matsushita Electric Ind Co Ltd | Video camera |
JP2003015018A (en) * | 2001-07-02 | 2003-01-15 | Canon Inc | Camera, lens unit and camera system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60143072A (en) * | 1983-12-29 | 1985-07-29 | Matsushita Electric Ind Co Ltd | Automatic focus matching device |
JPS62165484A (en) * | 1986-01-16 | 1987-07-22 | Tamuron:Kk | Automatic focusing device for video camera |
-
1987
- 1987-02-06 JP JP62024586A patent/JPH0754969B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60143072A (en) * | 1983-12-29 | 1985-07-29 | Matsushita Electric Ind Co Ltd | Automatic focus matching device |
JPS62165484A (en) * | 1986-01-16 | 1987-07-22 | Tamuron:Kk | Automatic focusing device for video camera |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140074A (en) * | 1987-10-08 | 1990-05-29 | Matsushita Electric Ind Co Ltd | Video camera |
JPH022291A (en) * | 1988-06-11 | 1990-01-08 | Fuji Photo Film Co Ltd | Camera with automatic focus function |
JPH02118506A (en) * | 1988-10-28 | 1990-05-02 | Hitachi Ltd | Automatic focusing device |
JP2003015018A (en) * | 2001-07-02 | 2003-01-15 | Canon Inc | Camera, lens unit and camera system |
JP4689094B2 (en) * | 2001-07-02 | 2011-05-25 | キヤノン株式会社 | Camera, lens apparatus and camera system |
Also Published As
Publication number | Publication date |
---|---|
JPH0754969B2 (en) | 1995-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4920420A (en) | Automatic focusing system | |
US7355802B2 (en) | Driving device, lens barrel and imaging apparatus | |
JP2008076485A (en) | Lens barrel and imaging apparatus | |
EP2698658A1 (en) | Image pickup apparatus, semiconductor integrated circuit and image pickup method | |
JPS5914723B2 (en) | Focus detection device for single-lens reflex camera | |
CN103348276A (en) | Imaging device, semiconductor integrated circuit, and imaging method | |
JPH07104166A (en) | Optical apparatus | |
KR101586242B1 (en) | Camera module having separated auto-focusing device and image stabilizing apparatus | |
KR101586244B1 (en) | Camera module with zoom function | |
KR910009562B1 (en) | Automatic focusing apparatus for use in video camera and the like | |
JP2002214504A (en) | Optical device and photographing device | |
JPS63193775A (en) | Autofocusing device for video camera | |
JPS6236632A (en) | Lens device for automatic focusing | |
JP2008003501A (en) | Lens driving device | |
JPS6366519A (en) | Auto-focusing device | |
JPH01265215A (en) | Automatic focusing device for video camera | |
JP2816308B2 (en) | Video camera autofocus device | |
JP3050897B2 (en) | Lens drive | |
JP5904930B2 (en) | Lens unit and control method thereof | |
JP2988793B2 (en) | Optical equipment | |
JP2002350714A (en) | Camera system having automatic focus detector | |
JP6679218B2 (en) | Optical equipment and actuator processing program | |
JP3118135B2 (en) | Imaging device | |
JPS63261329A (en) | Autofocusing device capable of correcting fluctuation by hand | |
JPH01155778A (en) | Auto focusing device for video camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |