JP2008076485A - Lens barrel and imaging apparatus - Google Patents

Lens barrel and imaging apparatus Download PDF

Info

Publication number
JP2008076485A
JP2008076485A JP2006252495A JP2006252495A JP2008076485A JP 2008076485 A JP2008076485 A JP 2008076485A JP 2006252495 A JP2006252495 A JP 2006252495A JP 2006252495 A JP2006252495 A JP 2006252495A JP 2008076485 A JP2008076485 A JP 2008076485A
Authority
JP
Japan
Prior art keywords
lens
lens barrel
optical axis
frame
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252495A
Other languages
Japanese (ja)
Inventor
Yoshiji Mitani
芳史 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006252495A priority Critical patent/JP2008076485A/en
Publication of JP2008076485A publication Critical patent/JP2008076485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens barrel that is small and rigid and can easily be incorporated and to provide a small imaging apparatus. <P>SOLUTION: The box-shaped lens barrel includes: an imaging optical system having two lens groups held in lens frames; and two drive shafts for supporting the respective lens frames so that they are movable relative to each other in the direction of an optical axis. In the lens barrel, openings are made in opposite walls of the lens barrel, which are orthogonal to a plane including the two drive shafts so as to be displaced from each other in the direction of the optical axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レンズ鏡胴、及び撮像装置に関する。   The present invention relates to a lens barrel and an imaging device.

従来、レンズの玉枠(移動枠)に固定したピンと、入子式に嵌合する複数の筒状部材に形成したカムスロットとの係合を利用して、レンズを光軸方向に駆動させていた。   Conventionally, the lens is driven in the optical axis direction by utilizing the engagement between the pin fixed to the lens frame (moving frame) of the lens and the cam slot formed in the plurality of cylindrical members fitted in a telescopic manner. It was.

ところが、このようなカム機構においては、カムスロットが形成される筒状部材やこれと係合するピン等の部品を小型化しようとしても、加工上および組立上の限度があり、このため、カム機構の小型化が光学系の小型化についていけないという問題があった。   However, in such a cam mechanism, there is a limit in processing and assembling even when trying to downsize parts such as a cylindrical member in which a cam slot is formed and a pin engaged therewith. There was a problem that the miniaturization of the mechanism could not keep up with the miniaturization of the optical system.

また、上記カム機構においては、光軸方向に進退する各レンズが光軸に対して傾斜するのを防止する傾き規制機構が設けられるが、レンズを保持する移動枠が光軸を中心として回転しながら進退するために、複数の移動枠についてその相互干渉を避けながら小型化を図ろうとすると、傾き規制機構のスパンを長くとることができなくなり、この結果、レンズの傾斜を防止することが困難となっていた。   In addition, the cam mechanism is provided with a tilt regulating mechanism that prevents each lens moving forward and backward in the optical axis direction from tilting with respect to the optical axis. However, the moving frame that holds the lens rotates around the optical axis. In order to move forward and backward while trying to reduce the size of a plurality of moving frames while avoiding their mutual interference, the span of the tilt regulating mechanism cannot be made long, and as a result, it is difficult to prevent the lens from tilting. It was.

さらに、従来のカム機構においては、各レンズが上記筒状部材の内側に収容されるため、組立後に光学系の調心を行うことは困難であった。
そこで、螺旋状のねじを外周面に設けた棒状の駆動軸をレンズの光軸に対して平行に配置するとともに、駆動軸のねじに係合するねじをレンズ枠に設けて、駆動軸の回転によりレンズを光軸方向に移動させることが行われるようになっている。この場合、光軸の傾きや位置ずれを防止する必要があり、そのために、レンズの光軸に平行なガイド軸を設け、ガイド軸を通す貫通孔をレンズ枠に設けて、ガイド軸によってレンズ枠を移動可能に支持するのが一般的である。この構成では、鏡胴の形状に制約がなく、駆動軸やガイド軸と共に、駆動軸を回転させる駆動部を鏡胴内に配置することができて、全体としての大きさを抑えることが容易になる。
Further, in the conventional cam mechanism, since each lens is housed inside the cylindrical member, it is difficult to align the optical system after assembly.
Therefore, a rod-shaped drive shaft provided with a spiral screw on the outer peripheral surface is arranged in parallel to the optical axis of the lens, and a screw that engages with the screw of the drive shaft is provided on the lens frame to rotate the drive shaft. Thus, the lens is moved in the optical axis direction. In this case, it is necessary to prevent tilting and displacement of the optical axis. For this purpose, a guide shaft parallel to the optical axis of the lens is provided, and a through hole through which the guide shaft passes is provided in the lens frame. It is common to support the movably. In this configuration, there is no restriction on the shape of the lens barrel, and a drive unit for rotating the drive shaft can be arranged in the lens barrel together with the drive shaft and the guide shaft, so that the overall size can be easily suppressed. Become.

近年では、このような構成を採用するとともに、撮像光学系の光軸をミラーやプリズムによって折り曲げる屈曲光学系を採用することで、カメラの薄型化(前後方向についての小型化)を図ることも行われている(例えば特許文献1参照)。   In recent years, in addition to adopting such a configuration, by adopting a bending optical system that bends the optical axis of the imaging optical system with a mirror or prism, the camera can also be thinned (downsized in the front-rear direction). (For example, see Patent Document 1).

また、圧電素子等の電気機械素子を利用した直線駆動機構を用いて可動レンズを光軸方向に駆動する方法も行われている。例えば特許文献2では、2つのレンズ群に連結する平板状移動体を、光軸方向に直交する方向に互いにその位置をずらして配置し、直線駆動機構を用いてそれぞれ駆動することにより、小型で各レンズへのアクセスを容易にしたレンズ駆動機構が開示されている。
特開2005−352236号公報 特開平11−95082号公報
In addition, a method of driving the movable lens in the optical axis direction using a linear drive mechanism using an electromechanical element such as a piezoelectric element is also performed. For example, in Patent Document 2, a flat plate-like moving body connected to two lens groups is arranged with its position shifted from each other in a direction orthogonal to the optical axis direction, and each is driven by using a linear drive mechanism. A lens driving mechanism that facilitates access to each lens is disclosed.
JP 2005-352236 A JP-A-11-95082

しかしながら、特許文献1の構成では、鏡胴にレンズを組み立てるための大きな開口があるため、剛性を保つために鏡胴の肉厚を厚くする必要がある。そのため、小型、軽量化をする上での障害になっていた。   However, in the configuration of Patent Document 1, since there is a large opening for assembling a lens in the lens barrel, it is necessary to increase the thickness of the lens barrel in order to maintain rigidity. Therefore, it has become an obstacle to reducing the size and weight.

特許文献2で開示されているレンズ駆動機構は固定基板上にレンズを組み立てる構成のため、組み立ては容易である。しかしながら、基板だけでは剛性を十分高くできないので、高精度が要求される高倍率のズームレンズや屈曲光学系には適用できない。   Since the lens driving mechanism disclosed in Patent Document 2 is configured to assemble a lens on a fixed substrate, assembly is easy. However, since the rigidity cannot be sufficiently increased only by the substrate, it cannot be applied to a high-magnification zoom lens or a bending optical system that requires high accuracy.

本発明は、上記課題に鑑みてなされたものであって、小型で高い剛性を持ち、組み込みやすいレンズ鏡胴、及び小型の撮像装置を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a lens barrel and a small imaging device that are small and have high rigidity and are easy to incorporate.

1.
玉枠に保持される2つのレンズ群を含む撮像光学系と、
前記各々の玉枠を光軸方向に相対的に移動可能に支持する2つの駆動軸と、
を備えた箱形形状のレンズ鏡胴において、
2つの駆動軸を含む平面と直交する前記レンズ鏡胴の対向する壁面に、それぞれ光軸方向に位置をずらして開口部を設けたことを特徴とするレンズ鏡胴。
1.
An imaging optical system including two lens groups held by a ball frame;
Two drive shafts that support the respective ball frames so as to be relatively movable in the optical axis direction;
In a box-shaped lens barrel with
A lens barrel characterized in that openings are provided on the opposing wall surfaces of the lens barrel perpendicular to a plane including two drive shafts, with the positions being shifted in the optical axis direction.

2.
前記2つの駆動軸を前記レンズ鏡胴の同じ壁面側に、前記2つのレンズ群の光軸方向と光軸に直交する方向にそれぞれ互いにその位置をずらして配置したことを特徴とする1に記載のレンズ鏡胴。
2.
2. The two drive shafts are disposed on the same wall surface side of the lens barrel and are shifted from each other in the optical axis direction of the two lens groups and in a direction perpendicular to the optical axis. Lens barrel.

3.
前記2つの駆動軸は、リニアアクチュエータによって光軸方向に駆動されることを特徴とする1または2に記載のレンズ鏡胴。
3.
The lens barrel according to 1 or 2, wherein the two drive shafts are driven in a direction of an optical axis by a linear actuator.

4.
前記玉枠に連結し、前記玉枠の当接部に挿入された前記2つの駆動軸と接する押圧板と、
前記押圧板を前記2つの駆動軸に押し当てる方向に付勢するバネ部材と、を有し、
前記バネ部材はそれぞれの前記開口部の側から脱着可能に配置されていることを特徴とする3に記載のレンズ鏡胴。
4).
A pressing plate connected to the lens frame and in contact with the two drive shafts inserted into the contact portion of the lens frame;
A spring member that urges the pressing plate in a direction in which the pressing plate is pressed against the two drive shafts,
4. The lens barrel according to claim 3, wherein the spring member is detachably arranged from each opening side.

5.
前記撮像光学系は、前記2つのレンズ群よりも被写体側に光を反射する反射素子を
含み、
撮像光学系の光軸が反射素子によって折り曲げられ、前記撮像光学系の入射光軸と前記2つのレンズ群の光軸とが形成する平面は前記2つの駆動軸を含む平面と略平行であることを特徴とする1乃至4の何れか1項に記載のレンズ鏡胴。
5.
The imaging optical system includes a reflective element that reflects light closer to the subject side than the two lens groups,
The optical axis of the imaging optical system is bent by a reflecting element, and the plane formed by the incident optical axis of the imaging optical system and the optical axes of the two lens groups is substantially parallel to the plane including the two drive axes. 5. The lens barrel according to any one of 1 to 4, wherein:

6.
撮像時に前記玉枠に保持された2つのレンズ群が光軸方向に移動する範囲は、重なっていることを特徴とする1乃至5の何れか1項に記載のレンズ鏡胴。
6).
6. The lens barrel according to any one of claims 1 to 5, wherein ranges in which the two lens groups held by the lens frame move in the optical axis direction at the time of imaging overlap each other.

7.
1乃至6の何れか1項に記載のレンズ鏡胴を有することを特徴とする撮像装置。
7).
An image pickup apparatus comprising the lens barrel according to any one of 1 to 6.

本発明によれば、駆動手段をレンズ鏡胴の同じ面側に、光軸方向と光軸方向に直交する方向にそれぞれ互いにその位置をずらして配置し、レンズ鏡胴の前記駆動手段を配置した面と直交する2面に、面に近い方の前記駆動手段の光軸方向の位置にあわせてそれぞれ開口部を設けるので、小型で高い剛性を持ち、組み込みやすいレンズ鏡胴、及び小型の撮像装置を提供できる。   According to the present invention, the driving means is arranged on the same surface side of the lens barrel, the optical axis direction and the direction orthogonal to the optical axis direction are shifted from each other, and the driving means of the lens barrel is arranged. Since the openings are provided on the two surfaces orthogonal to the surface in accordance with the position in the optical axis direction of the driving means closer to the surface, the lens barrel having a small size and high rigidity and easy to incorporate, and a small imaging device Can provide.

以下、実施の形態により本発明を詳しく説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited thereto.

図1は、本発明に係るレンズ鏡胴1を備えたカメラ100の一例を示す外観図である。図1はカメラ100前面の斜視図である。   FIG. 1 is an external view showing an example of a camera 100 provided with a lens barrel 1 according to the present invention. FIG. 1 is a perspective view of the front surface of the camera 100.

図1において、点線で示す1は本発明の実施の形態で説明したレンズ鏡胴であり、カメラ本体部102の内部にレンズ鏡胴1が組み込まれている状態を表している。161はレリーズボタン、162は電源スイッチである。電源スイッチ162に連動してカメラ100は起動状態になる。レリーズボタン161はその1段の押し込みによりカメラ100の撮影準備動作、即ち焦点合わせ動作や測光動作が行われ、その2段の押し込みにより撮影露光動作が行われる。   In FIG. 1, 1 indicated by a dotted line is the lens barrel described in the embodiment of the present invention, and represents a state in which the lens barrel 1 is incorporated in the camera body 102. 161 is a release button, and 162 is a power switch. The camera 100 is activated in conjunction with the power switch 162. When the release button 161 is pushed in one step, a shooting preparation operation of the camera 100, that is, a focusing operation and a photometric operation are performed.

図2は、本発明の実施の形態に係る変倍光学系を有するレンズ鏡胴1の開口部を説明する外観斜視図、図3は、レンズ鏡胴1のワイド時の状態を示す断面図である。   FIG. 2 is an external perspective view for explaining the opening of the lens barrel 1 having the variable magnification optical system according to the embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the lens barrel 1 in a wide state. is there.

図2(a)はレンズ鏡胴1の外観斜視図、図2(b)はレンズ鏡胴1を図2(a)と反対側の面から見た外観斜視図である。以下の説明においては、図1、図2に示すXYZ3次元直交座標系を適宜用いて、方向および向きを示すこととする。   2A is an external perspective view of the lens barrel 1, and FIG. 2B is an external perspective view of the lens barrel 1 as viewed from the surface opposite to FIG. 2A. In the following description, directions and directions will be indicated by appropriately using the XYZ three-dimensional orthogonal coordinate system shown in FIGS.

図2に示したレンズ鏡胴1の内部構成を、図3を用いて説明する。図3(b)は図1のレンズ鏡胴1のZ方向から見た正面図である。また、図3(a)は図3(b)の断面C−Cから見た断面図、図3(c)は図3(b)の断面D−Dから見た断面図、図3(d)は図3(b)の断面A−Aから見た断面図、図3(e)は図3(b)の断面B−Bから見た断面図である。   The internal configuration of the lens barrel 1 shown in FIG. 2 will be described with reference to FIG. FIG. 3B is a front view of the lens barrel 1 of FIG. 1 viewed from the Z direction. 3A is a cross-sectional view as seen from a cross-section CC in FIG. 3B, FIG. 3C is a cross-sectional view as seen from a cross-section DD in FIG. 3B, and FIG. ) Is a cross-sectional view seen from the cross-section AA of FIG. 3B, and FIG. 3E is a cross-sectional view seen from the cross-section BB of FIG.

図3において、10は第1可動レンズ群、20は第2可動レンズ群、70は第1の固定レンズ、71はプリズム、72は第2の固定レンズであり、この2つの可動レンズ群と固定された光学部品により撮像光学系が形成されている。第1の固定レンズ70から入射した光束は、プリズム71でY軸負方向に折り曲げられて第1可動レンズ群10と第2可動レンズ群20、第2の固定レンズ72により撮像素子8の撮像面に結像する。撮像素子8の撮像面の前には、図示せぬ赤外カットフィルタまたは赤外カットフィルタとオプティカルローパスフィルタが積層された光学フィルタが配置されている。撮像素子8と撮像素子8を駆動する回路を搭載した撮像素子基板9は固定枠4に固定されている。   In FIG. 3, 10 is a first movable lens group, 20 is a second movable lens group, 70 is a first fixed lens, 71 is a prism, and 72 is a second fixed lens, which are fixed to the two movable lens groups. An imaging optical system is formed by the optical parts. The light beam incident from the first fixed lens 70 is bent in the Y-axis negative direction by the prism 71, and is imaged on the imaging element 8 by the first movable lens group 10, the second movable lens group 20, and the second fixed lens 72. To form an image. An infrared filter (not shown) or an optical filter in which an infrared cut filter and an optical low-pass filter are stacked is disposed in front of the imaging surface of the imaging element 8. An image sensor substrate 9 on which an image sensor 8 and a circuit for driving the image sensor 8 are mounted is fixed to the fixed frame 4.

本実施形態では第1の固定レンズ70から入射しプリズム71で折り曲げられるまでの光軸L1はZ軸方向、プリズム71で折り曲げられてから撮像素子8上に結像するまでの光軸L2はY軸方向である。プリズム71は本発明の反射素子である。以下、第1可動レンズ群10、第2可動レンズ群20の移動方向については、Y軸正方向を対物側、Y軸負方向を像面側と呼ぶ。   In the present embodiment, the optical axis L1 from the first fixed lens 70 until it is bent by the prism 71 is the Z-axis direction, and the optical axis L2 from the time it is bent by the prism 71 to the image formation on the image sensor 8 is Y Axial direction. The prism 71 is a reflective element of the present invention. Hereinafter, regarding the moving direction of the first movable lens group 10 and the second movable lens group 20, the Y-axis positive direction is referred to as the objective side, and the Y-axis negative direction is referred to as the image plane side.

なお、本発明の実施の形態では、光学装置として小型化に適した屈曲光学系を用いた撮影光学系で説明するが、本発明は屈曲光学系を用いた撮影光学系に限られるものではない。また反射素子としてプリズムを用いた例を説明するが、プリズムに限定されるものではなく蒸着ミラー等を用いても良い。   In the embodiment of the present invention, a description will be given of a photographing optical system using a bending optical system suitable for miniaturization as an optical device, but the present invention is not limited to a photographing optical system using a bending optical system. . An example in which a prism is used as a reflective element will be described, but the invention is not limited to a prism, and a vapor deposition mirror or the like may be used.

図3(a)に示すように、ロッド40とロッド41は光軸L2の方向、すなわちY軸方向と光軸L2と直交する方向であるZ軸方向に位置をずらして配置されている。ロッド40とロッド41は図2(b)に示す固定枠の面4d側に取り付けられている。ロッド40、ロッド41は本発明の駆動軸である。   As shown in FIG. 3A, the rod 40 and the rod 41 are arranged with their positions shifted in the direction of the optical axis L2, that is, the Z-axis direction that is a direction orthogonal to the Y-axis direction and the optical axis L2. The rod 40 and the rod 41 are attached to the surface 4d side of the fixed frame shown in FIG. The rod 40 and the rod 41 are drive shafts of the present invention.

また、図2(a)に示すようにロッド40に近い固定枠の面4bには第1の開口部2が、図2(b)に示すようにロッド41に近い固定枠の面4cは第2の開口部3がそれぞれ設けられている。固定枠の面4bと固定枠の面4cは固定枠の面4dと直交する面である。第1の開口部2と第2の開口部3は、固定枠の面4bと固定枠の面4cに光軸L2方向にそれぞれの位置をずらして設けられている。第1の開口部2、第2の開口部3は第1玉枠11、第2玉枠21を駆動手段5、駆動手段6に脱着可能な大きさであり、それぞれの開口から各レンズ群を組み立てることにより、鏡胴の組み立て作業を簡単に行うことができる。また、故障時などの部品交換も容易に行うことができる。   2A, the first opening 2 is formed on the surface 4b of the fixed frame close to the rod 40, and the surface 4c of the fixed frame close to the rod 41 as shown in FIG. Two openings 3 are provided respectively. The surface 4b of the fixed frame and the surface 4c of the fixed frame are surfaces orthogonal to the surface 4d of the fixed frame. The first opening 2 and the second opening 3 are provided on the surface 4b of the fixed frame and the surface 4c of the fixed frame with their positions shifted in the optical axis L2 direction. The first opening 2 and the second opening 3 are sized so that the first lens frame 11 and the second lens frame 21 can be attached to and detached from the driving means 5 and the driving means 6. By assembling, the assembling work of the lens barrel can be easily performed. In addition, it is possible to easily replace parts when a failure occurs.

このように、1つの玉枠を脱着可能な大きさの開口部を固定枠の面4bと固定枠の面4cに斜交いの位置に設けるので、それぞれの面の開口を小さくすることができ固定枠4の剛性を高めることができる。   As described above, since the opening of a size that allows one ball frame to be attached / detached is provided at a position obliquely intersecting the surface 4b of the fixed frame and the surface 4c of the fixed frame, the opening of each surface can be reduced. The rigidity of the fixed frame 4 can be increased.

なお、各開口部は固定枠に取り付ける不図示カバーにより被覆されており光が入ることはない。   Each opening is covered with a cover (not shown) attached to the fixed frame, so that no light enters.

次に、本発明のレンズ鏡胴1の組み立てについて図4、図5を用いて説明する。図4、は第1玉枠11をロッド40に取り付けた時の平面図である。図5は第1玉枠11をロッド40への取り付け手順を説明する説明図である。図5は図4に示すE−E部の断面図であり、図5(g)の断面図が図4の状態を示している。   Next, assembly of the lens barrel 1 of the present invention will be described with reference to FIGS. FIG. 4 is a plan view when the first lens frame 11 is attached to the rod 40. FIG. 5 is an explanatory diagram for explaining a procedure for attaching the first lens frame 11 to the rod 40. FIG. 5 is a cross-sectional view taken along line EE shown in FIG. 4, and the cross-sectional view of FIG. 5G shows the state of FIG.

図5を用いて、第1玉枠11のロッド40への取り付けを順に説明する。   The attachment of the first lens frame 11 to the rod 40 will be described in order with reference to FIG.

図5(a)は固定枠4にロッド40と図5(a)には図示せぬ圧電素子42が取り付けられた状態である。   5A shows a state in which a rod 40 and a piezoelectric element 42 not shown in FIG. 5A are attached to the fixed frame 4.

次に、第1の開口部2から図5(b)のように第1玉枠11を入れ、図5(c)のように当接部11aをロッド40に係合させる。押圧板23の一端を図5(d)のように第1玉枠11に設けられた穴に差し込み、他端を図5(e)のように付勢バネ48で押さえる。付勢バネ48は本発明のバネ部材であり、第1の開口部2の側に設けられているので組み立てが容易である。   Next, the first ball frame 11 is inserted from the first opening 2 as shown in FIG. 5B, and the contact portion 11a is engaged with the rod 40 as shown in FIG. One end of the pressing plate 23 is inserted into a hole provided in the first ball frame 11 as shown in FIG. 5D, and the other end is pressed by a biasing spring 48 as shown in FIG. The biasing spring 48 is a spring member of the present invention, and is easily assembled because it is provided on the first opening 2 side.

図5(f)は付勢バネ保持板61を第1玉枠11に嵌め込んで付勢バネ48の一端を固定した状態である。この状態で、第1玉枠11の当接部11aはバネ付勢された押圧板23によりロッド40と摩擦係合している。   FIG. 5F shows a state in which the biasing spring holding plate 61 is fitted into the first ball frame 11 and one end of the biasing spring 48 is fixed. In this state, the contact portion 11a of the first lens frame 11 is frictionally engaged with the rod 40 by the pressing plate 23 biased by the spring.

図5(g)はガイド60を固定枠4のY軸負方向に設けられた開口から差し込んだ状態である。ガイド60は第2玉枠21と共通の部品なので、第2玉枠21のロッド41への取り付けが終わってからガイド60の組み立てを行う。第2玉枠21のロッド41への取り付けは、第2の開口部3から第1玉枠11と同様の手順で行う。   FIG. 5G shows a state in which the guide 60 is inserted from an opening provided in the Y axis negative direction of the fixed frame 4. Since the guide 60 is a component common to the second lens frame 21, the guide 60 is assembled after the second lens frame 21 is attached to the rod 41. The second lens frame 21 is attached to the rod 41 in the same procedure as the first lens frame 11 through the second opening 3.

以上このように、第1玉枠11、第2玉枠21を簡単に組み立てることができる。組み立てのために必要な開口部は、固定枠4の面4b(表面)と面4c(裏面)に設けられているので、同一面に開口部を設ける場合と比べて固定枠4の剛性を高くすることができる。   As described above, the first ball frame 11 and the second ball frame 21 can be easily assembled. Since the opening necessary for assembly is provided on the surface 4b (front surface) and the surface 4c (back surface) of the fixed frame 4, the rigidity of the fixed frame 4 is higher than that in the case where the opening is provided on the same surface. can do.

本実施形態の構造は、屈曲光学系を用いた撮影光学系において特に効果が高い。本実施形態では、光軸L1に直交する固定枠の面4b,面4cに開口部を設け、駆動部など可動玉枠の部分的な突起を各々の開口部側に配置しているので、面4b、4cの内側の面をこれらの突起よりも内側に設けることができる。このようにすると、剛性を損なわないように面4b、4cの厚みを確保しながら、レンズ鏡胴1の光軸L1と直交する方向(Z軸方向)の大きさを小さくすることができる。特に、厚み方向(Z軸方向)に薄型化を要求される屈曲光学系を用いたカメラにレンズ鏡胴1を搭載する場合に効果的である。   The structure of this embodiment is particularly effective in a photographing optical system using a bending optical system. In the present embodiment, the openings 4 are provided on the surfaces 4b and 4c of the fixed frame orthogonal to the optical axis L1, and the partial protrusions of the movable lens frame such as the drive unit are arranged on the respective opening sides. The inner surfaces of 4b and 4c can be provided inside these protrusions. In this way, the size of the lens barrel 1 in the direction perpendicular to the optical axis L1 (Z-axis direction) can be reduced while ensuring the thickness of the surfaces 4b and 4c so as not to impair the rigidity. This is particularly effective when the lens barrel 1 is mounted on a camera using a bending optical system that is required to be thin in the thickness direction (Z-axis direction).

なお、以上説明した本発明の駆動機構においては、駆動源として圧電素子を利用しているが、これに限定されるものではなくリニアモータ等を利用しても良い。   In the drive mechanism of the present invention described above, a piezoelectric element is used as a drive source. However, the present invention is not limited to this, and a linear motor or the like may be used.

図6は、ズーミング時における第1可動レンズ群10および第2可動レンズ群20のズーム曲線を示している。紙面上下方向は撮像光学系の焦点距離を表し、紙面上側がワイド側、紙面下側がテレ側である。また、紙面左右方向は各焦点距離における各光学系の光軸上の位置を表している。図中のO1は第1の固定レンズ70の位置を、O2は第1可動レンズ群10の位置を、O3は第2可動レンズ群20の位置を、O4は第2の固定レンズ72の位置をそれぞれ示している。   FIG. 6 shows zoom curves of the first movable lens group 10 and the second movable lens group 20 during zooming. The vertical direction of the drawing represents the focal length of the imaging optical system, with the upper side of the drawing being the wide side and the lower side of the drawing being the tele side. Further, the horizontal direction of the drawing represents the position on the optical axis of each optical system at each focal length. In the figure, O1 is the position of the first fixed lens 70, O2 is the position of the first movable lens group 10, O3 is the position of the second movable lens group 20, and O4 is the position of the second fixed lens 72. Each is shown.

第1可動レンズ群10と第2可動レンズ群20が光軸L2方向に移動する範囲は、図6のQで示す部分が重なっている。このようにすることにより、光軸L2方向の移動距離を少なくすることができるので、レンズ鏡胴1の光軸L2方向(Y軸方向)の長さを短くすることができる。このようにすることにより、レンズ鏡胴1の光軸L2方向の長さを大きくすることなく高倍率化、製造難度の低減ができ、小型かつ安価なレンズユニットを提供できる。   In the range in which the first movable lens group 10 and the second movable lens group 20 move in the direction of the optical axis L2, the portions indicated by Q in FIG. 6 overlap. By doing so, the moving distance in the direction of the optical axis L2 can be reduced, so that the length of the lens barrel 1 in the direction of the optical axis L2 (Y-axis direction) can be shortened. By doing so, it is possible to increase the magnification and reduce the manufacturing difficulty without increasing the length of the lens barrel 1 in the optical axis L2 direction, and it is possible to provide a small and inexpensive lens unit.

また、本実施形態の構造は、上記可動群の移動範囲が重なる光学系において特に有効である。可動群の移動範囲が重なっている場合は、片面だけに開口部を設けると2つのレンズ群を組み込む開口部が繋がり、枠体の剛性が極端に低下する。また、可動群の移動範囲が重なっているため固定枠内部に補強用のリブ等を設けることが困難である。本実施形態に示すように開口部を斜交いに設けることにより、枠体の剛性確保と小型化の両立が可能で高性能でかつ小型なレンズユニットを提供できる。   In addition, the structure of this embodiment is particularly effective in an optical system in which the movable ranges of the movable groups overlap. When the movable range of the movable group overlaps, if the opening is provided only on one side, the opening for incorporating the two lens groups is connected, and the rigidity of the frame is extremely reduced. In addition, since the movable ranges of the movable groups overlap, it is difficult to provide reinforcing ribs or the like inside the fixed frame. By providing the openings obliquely as shown in the present embodiment, it is possible to provide a high-performance and small-sized lens unit capable of ensuring the rigidity of the frame and reducing the size.

次に第1可動レンズ群10を駆動するロッド40と、第2可動レンズ群10を駆動するロッド41について説明する。ロッド40は圧電素子42によって駆動されている。ロッド41も圧電素子43によって駆動されているので動作原理の説明はロッド40を例に説明する。   Next, the rod 40 that drives the first movable lens group 10 and the rod 41 that drives the second movable lens group 10 will be described. The rod 40 is driven by a piezoelectric element 42. Since the rod 41 is also driven by the piezoelectric element 43, the explanation of the operation principle will be made by taking the rod 40 as an example.

次に、第1玉枠11と第2玉枠21の駆動について説明する。   Next, driving of the first lens frame 11 and the second lens frame 21 will be described.

図3(a)の断面図に示すよう固定枠4の内面には、圧電素子42、43のY軸正方向の一端が接着固定されている。固定枠4には図3(a)のように貫通孔が形成されており、この貫通孔にロッド40が摺動可能に挿通されている。そして、ロッド40の一端が、圧電素子42の他端に接着固定されている。圧電素子42は、多数の圧電板を積層してなる一種の電気機械変換手段である。ロッド40、ロッド41と圧電素子42、43は本発明のリニアアクチュエータであり、ロッド40、ロッド41は駆動軸を兼ねている。   As shown in the cross-sectional view of FIG. 3A, one end of the piezoelectric elements 42 and 43 in the positive direction of the Y axis is bonded and fixed to the inner surface of the fixed frame 4. A through hole is formed in the fixed frame 4 as shown in FIG. 3A, and a rod 40 is slidably inserted into the through hole. One end of the rod 40 is bonded and fixed to the other end of the piezoelectric element 42. The piezoelectric element 42 is a kind of electromechanical conversion means formed by laminating a large number of piezoelectric plates. The rod 40 and rod 41 and the piezoelectric elements 42 and 43 are linear actuators of the present invention, and the rod 40 and rod 41 also serve as a drive shaft.

第1可動レンズ群10は第1玉枠11に保持され、この第1玉枠11はガイド60とロッド40によって支持されている。また、第2可動レンズ群20は第2玉枠21に保持され、この第2玉枠21はガイド60とロッド41によって支持されている。   The first movable lens group 10 is held by a first lens frame 11, and the first lens frame 11 is supported by a guide 60 and a rod 40. The second movable lens group 20 is held by a second lens frame 21, and the second lens frame 21 is supported by a guide 60 and a rod 41.

第1玉枠11の当接部11aはバネ付勢された押圧板23によりロッド40と摩擦係合している。すなわち、図3(d)のように押圧板23のX軸負方向の一端は当接部11aに係止されていて、他端が付勢バネ48によりZ軸負方向に付勢されている。このようにバネ付勢された押圧部23と対向する第1玉枠11の当接部11aとがロッド40を弾性的に挟持している。なお、付勢バネ48は例えばコイルバネであり、付勢バネ48の一端は付勢バネ保持板61により第1玉枠11に保持されている。   The contact portion 11a of the first lens frame 11 is frictionally engaged with the rod 40 by a spring-biased pressing plate 23. That is, as shown in FIG. 3D, one end of the pressing plate 23 in the negative X-axis direction is locked to the contact portion 11a, and the other end is biased in the negative Z-axis direction by the biasing spring 48. . The pressing portion 23 thus spring-biased and the abutting portion 11a of the first ball frame 11 facing the rod 40 elastically sandwiches the rod 40. The biasing spring 48 is, for example, a coil spring, and one end of the biasing spring 48 is held on the first ball frame 11 by a biasing spring holding plate 61.

圧電素子42に図7に実線で示したような鋸刃形の波形で表される変動電圧を連続的に印加すると、圧電素子42が伸縮振動し、これに伴ってロッド40がその長さ方向に振動する。図8は、このときのロッド40の移動速度を示すグラフである。図8においては、ロッド40がY軸負方向へと移動する場合の速度をプラスにとっている。   When a fluctuating voltage represented by a sawtooth waveform as shown by a solid line in FIG. 7 is continuously applied to the piezoelectric element 42, the piezoelectric element 42 expands and contracts, and the rod 40 moves in the length direction accordingly. Vibrate. FIG. 8 is a graph showing the moving speed of the rod 40 at this time. In FIG. 8, the speed when the rod 40 moves in the negative Y-axis direction is positive.

図7に実線で示した電圧波形の緩やかな立上がり傾斜部51に対して圧電素子42は比較的ゆっくりと伸長し、ロッド40がY軸負方向へとゆっくりと移動する。また、急激な立下がり傾斜部52に対して圧電素子42は急速に縮んで初期長さに戻り、ロッド40が急激にY軸正方向へと移動する。同様の波形が繰り返すように連続的に電圧を印加すると、ロッド40は、Y軸負方向へのゆっくりとした移動(図8における速度v1)とY軸正方向への急激な移動(図8における速度−v2)とを繰り返して振動する。   The piezoelectric element 42 expands relatively slowly with respect to the gently rising slope 51 of the voltage waveform shown by the solid line in FIG. 7, and the rod 40 moves slowly in the negative Y-axis direction. In addition, the piezoelectric element 42 rapidly contracts with respect to the sudden falling inclined portion 52 and returns to the initial length, and the rod 40 suddenly moves in the positive Y-axis direction. When a voltage is continuously applied so that the same waveform repeats, the rod 40 moves slowly in the Y-axis negative direction (velocity v1 in FIG. 8) and suddenly moves in the Y-axis positive direction (in FIG. 8). Velocity -v2) is repeated to vibrate.

ここで、ロッド40がゆっくりと移動する場合には第1玉枠11が該ロッド40と共に移動し、ロッド40が急激に移動する場合には第1玉枠11が慣性によってその場に止まる(または、ロッド40よりも少量だけ移動する)こととなるように、押圧板23を付勢する付勢バネ48(押圧板23と第1玉枠11のロッド40に対する摩擦結合力)が調節されている。したがって、ロッド40が振動する間に第1玉枠11は固定枠4に対して相対的にY軸負方向に移動することとなる(このときの第1玉枠11の速度を図8に破線で示している
)。第1玉枠11をB方向に移動させる場合には、図7に破線で示したような、緩やかな立下がり傾斜部53と、急激な立上がり傾斜部54とを有する変動電圧を連続的に印加すればよい。
Here, when the rod 40 moves slowly, the first lens frame 11 moves together with the rod 40, and when the rod 40 moves suddenly, the first lens frame 11 stops on the spot due to inertia (or The biasing spring 48 for biasing the pressing plate 23 (the frictional coupling force of the pressing plate 23 and the first ball frame 11 with respect to the rod 40) is adjusted so as to move by a smaller amount than the rod 40). . Therefore, the first lens frame 11 moves in the Y-axis negative direction relative to the fixed frame 4 while the rod 40 vibrates (the speed of the first lens frame 11 at this time is indicated by a broken line in FIG. 8). ). When the first lens frame 11 is moved in the B direction, a fluctuating voltage having a gradual falling slope 53 and a sudden rise slope 54 as shown by a broken line in FIG. 7 is continuously applied. do it.

ロッド40の振幅は非常に小さいため、1パルスの電圧に対応する第1玉枠11の移動量は非常に小さく、したがって、レンズ群の位置を精密に制御することができる。固定枠4には第1玉枠11の移動量を検出するための第1のパルス発生器215(図3には図示せず)と、第2玉枠21の移動量を検出するための第2のパルス発生器216(図3には図示せず)がそれぞれ設けられていて移動量および移動方向を検出することができる。   Since the amplitude of the rod 40 is very small, the amount of movement of the first lens frame 11 corresponding to the voltage of one pulse is very small. Therefore, the position of the lens group can be precisely controlled. The fixed frame 4 has a first pulse generator 215 (not shown in FIG. 3) for detecting the amount of movement of the first lens frame 11 and a first pulse generator 215 for detecting the amount of movement of the second lens frame 21. Two pulse generators 216 (not shown in FIG. 3) are provided to detect the amount and direction of movement.

第1のパルス発生器215の構成例を説明する。   A configuration example of the first pulse generator 215 will be described.

例えば、第1玉枠11の上表面にはロッド40と平行に延びる図示せぬ細長いマグネットスケールが設ける。このマグネットスケールは、長手方向に数十μmのピッチでS極とN極とが交互に入れ替わるパターンで着磁されたものである。一方、固定枠4の内面には図示せぬMRセンサが固定されており、このMRセンサが板バネの弾性力によってマグネットスケールに圧接されている。したがって、第1玉枠11が移動するとマグネットスケール上をMRセンサが摺動し、MRセンサは2相の信号を発生する。したがって、これを利用して第1玉枠11の移動量および移動方向を検出することができる。第2のパルス発生器216も同じ構成で第2玉枠21の移動量および移動方向を検出することができる。   For example, an elongated magnet scale (not shown) extending in parallel with the rod 40 is provided on the upper surface of the first ball frame 11. This magnet scale is magnetized in a pattern in which S poles and N poles are alternately switched at a pitch of several tens of μm in the longitudinal direction. On the other hand, an MR sensor (not shown) is fixed to the inner surface of the fixed frame 4, and this MR sensor is pressed against the magnet scale by the elastic force of the leaf spring. Therefore, when the first lens frame 11 moves, the MR sensor slides on the magnet scale, and the MR sensor generates a two-phase signal. Therefore, the amount and direction of movement of the first lens frame 11 can be detected using this. The second pulse generator 216 can also detect the moving amount and moving direction of the second lens frame 21 with the same configuration.

また、固定枠4には第1玉枠11の初期位置を検出するための第1のフォトインタラプタ213と、第2玉枠21の初期位置を検出するための第2のフォトインタラプタ214がそれぞれ設けられている。例えば第1玉枠11が初期位置になると、第1玉枠11の一部が第1のフォトインタラプタ213の光束を遮光し、信号を発生する。なお、センサはフォトインタラプタに限定されるものではなく、初期位置を検出できるものであれば磁気センサやメカニカルスイッチなども利用できる。   The fixed frame 4 is provided with a first photo interrupter 213 for detecting the initial position of the first lens frame 11 and a second photo interrupter 214 for detecting the initial position of the second lens frame 21. It has been. For example, when the first lens frame 11 reaches the initial position, a part of the first lens frame 11 blocks the light flux of the first photo interrupter 213 and generates a signal. The sensor is not limited to a photo interrupter, and a magnetic sensor, a mechanical switch, or the like can be used as long as the initial position can be detected.

なお、ロッド41は図3において固定枠4の裏面側(Z軸負方向)に設けられているが、第2可動レンズ群21に対する駆動機構は、第1可動レンズ群10に対する駆動機構と全く同様のものである。   The rod 41 is provided on the back surface side (Z-axis negative direction) of the fixed frame 4 in FIG. 3, but the drive mechanism for the second movable lens group 21 is exactly the same as the drive mechanism for the first movable lens group 10. belongs to.

図9は、本発明に係る撮像装置として機能するカメラ100の回路ブロック図である。図中、図1〜図8と同じ部分には同じ番号を付与した。   FIG. 9 is a circuit block diagram of the camera 100 that functions as an imaging apparatus according to the present invention. In the figure, the same parts as those in FIGS.

本実施の形態における制御手段であるカメラ制御部107は、図示しないCPU(中央処理装置)、ワークメモリ等から構成され、図示せぬ記憶部に記憶されているプログラムを図示せぬワークメモリに読み出し、当該プログラムに従ってレンズ鏡胴1及びレンズ鏡胴のレンズ群を含むカメラ100の各部を集中制御する。   The camera control unit 107, which is a control means in the present embodiment, includes a CPU (Central Processing Unit) (not shown), a work memory, and the like, and reads a program stored in a storage unit (not shown) to a work memory (not shown). According to the program, each part of the camera 100 including the lens barrel 1 and the lens group of the lens barrel is centrally controlled.

また、カメラ制御部107は、操作部160に設けられたレリーズボタン161、電源スイッチ162、ズームボタン164、操作ボタン165等からの入力を受信してカメラ100全体を制御し、図示せぬ電源部を制御することでカメラ各部に電源を供給する。   The camera control unit 107 receives inputs from a release button 161, a power switch 162, a zoom button 164, an operation button 165, and the like provided on the operation unit 160 to control the entire camera 100, and a power unit (not shown) Is used to supply power to each part of the camera.

カメラ制御部107は、撮影に関するシーケンスを司っている。カメラ制御部107は、CCD駆動部106を介して撮像素子8の撮像動作を制御する。なお、本実施の形態において撮像素子は、CCDに代えて、CMOSセンサ、CIDセンサ等の固体撮像素子であってもよい。撮像素子8にて取得されたアナログ信号の画像はA/D変換部121にてノイズ除去の処理後デジタル信号に変換され、画像処理部122に画像のデジタル信号を順次出力する。   The camera control unit 107 manages a sequence related to shooting. The camera control unit 107 controls the imaging operation of the imaging element 8 via the CCD driving unit 106. In the present embodiment, the image sensor may be a solid-state image sensor such as a CMOS sensor or a CID sensor instead of the CCD. The image of the analog signal acquired by the image sensor 8 is converted to a digital signal after noise removal processing by the A / D conversion unit 121, and the digital signal of the image is sequentially output to the image processing unit 122.

画像処理部122はガンマ補正、輪郭補正、画像圧縮などの画像処理機能を有する。これらの画像処理もカメラ制御部107の指令により行われる。カメラ制御部107は撮像素子8の画像出力を画像処理を行って画像メモリ123に一旦記録し、画像表示部125に表示する。レリーズボタン161をONにすると、撮像素子8の画像出力を画像処理を行った後、画像メモリ123に一旦記録し、最終的にはメモリカード25に記録する。   The image processing unit 122 has image processing functions such as gamma correction, contour correction, and image compression. These image processes are also performed by commands from the camera control unit 107. The camera control unit 107 performs image processing on the image output of the image sensor 8, temporarily records it in the image memory 123, and displays it on the image display unit 125. When the release button 161 is turned ON, the image output of the image sensor 8 is subjected to image processing, and then temporarily recorded in the image memory 123 and finally recorded in the memory card 25.

次にレンズ鏡胴1の制御について説明する。   Next, control of the lens barrel 1 will be described.

第1の駆動電圧発生部211、第2の駆動電圧発生部212はカメラ制御部107からの制御信号により、図7で説明した鋸刃形の波形で表される変動電圧を発生する。電源スイッチ162をONにすると、カメラ制御部107は第1玉枠11と第2玉枠21を初期位置に戻るようにY軸負方向に駆動する制御信号を第1の駆動電圧発生部211と第2の駆動電圧発生部212に与える。   The first drive voltage generator 211 and the second drive voltage generator 212 generate a variable voltage represented by the sawtooth waveform described with reference to FIG. 7 in response to a control signal from the camera controller 107. When the power switch 162 is turned ON, the camera control unit 107 sends a control signal for driving the first lens frame 11 and the second lens frame 21 in the negative Y-axis direction to return to the initial position with the first drive voltage generating unit 211. This is applied to the second drive voltage generator 212.

第1の駆動電圧発生部211から変動電圧を与えられた圧電素子42はロッド40を駆動し、第1玉枠11をY軸負方向に移動する。カメラ制御部107は第1のフォトインタラプタ213の検知信号を受信すると、第1の駆動電圧発生部211の信号発生を停止させる。第2の駆動電圧発生部212についても同様である。   The piezoelectric element 42 to which the variable voltage is applied from the first drive voltage generator 211 drives the rod 40 and moves the first lens frame 11 in the negative Y-axis direction. When the camera control unit 107 receives the detection signal of the first photo interrupter 213, the camera control unit 107 stops the signal generation of the first drive voltage generation unit 211. The same applies to the second drive voltage generator 212.

次に、カメラ制御部107は第1のパルス発生部215からのパルスをカウントしながら、目標の位置に第1玉枠11と第2玉枠21を移動させる。   Next, the camera control unit 107 moves the first lens frame 11 and the second lens frame 21 to target positions while counting pulses from the first pulse generation unit 215.

撮影時において、カメラ制御部107は撮像素子8の画像出力から得られるピント情報と露出情報に基いて、第1の駆動電圧発生部211を介して圧電素子42を制御し、撮像素子8のシャッタスピードを制御する。   At the time of shooting, the camera control unit 107 controls the piezoelectric element 42 via the first drive voltage generation unit 211 based on the focus information and exposure information obtained from the image output of the image sensor 8, and the shutter of the image sensor 8. Control the speed.

また、カメラ制御部107は、撮像素子8によって撮像された画像のライブビューを、ディスプレイボタン127の設定に従って、画像表示部127に表示し、画像メモリ123に記録された画像をアフタービューとして画像表示部127に表示し、メモリカード25に記録された画像を再生画像として画像表示部127に表示する。   Further, the camera control unit 107 displays a live view of the image captured by the image sensor 8 on the image display unit 127 according to the setting of the display button 127, and displays the image recorded in the image memory 123 as an after view. The image displayed on the unit 127 and recorded on the memory card 25 is displayed on the image display unit 127 as a reproduced image.

以上このように、本発明によれば、小型で高い剛性を持ち、組み込みやすいレンズ鏡胴、及び小型の撮像装置を提供できる。   As described above, according to the present invention, it is possible to provide a lens barrel and a small imaging device that are small and have high rigidity and are easy to incorporate.

本発明に係るレンズ鏡胴1を備えたカメラ100の一例を示す外観図である。It is an external view which shows an example of the camera 100 provided with the lens barrel 1 which concerns on this invention. 本発明に係るレンズ鏡胴1の開口部を説明する外観斜視図である。It is an external appearance perspective view explaining the opening part of the lens barrel 1 which concerns on this invention. 本発明に係るレンズ鏡胴1のワイド時の状態を示す断面図である。It is sectional drawing which shows the state at the time of wide of the lens barrel 1 which concerns on this invention. 第1玉枠11をロッド40に取り付けた時の平面図である。FIG. 6 is a plan view when the first lens frame 11 is attached to the rod 40. 第1玉枠11をロッド40への取り付け手順を説明する説明図である。It is explanatory drawing explaining the attachment procedure to the rod 40 of the 1st ball frame 11. FIG. 第1可動レンズ群10および第2可動レンズ群20のズーム曲線の図である。4 is a diagram of zoom curves of a first movable lens group 10 and a second movable lens group 20. FIG. 圧電素子を駆動する電圧波形のグラフである。It is a graph of the voltage waveform which drives a piezoelectric element. ロッドの移動速度のグラフである。It is a graph of the moving speed of a rod. 本発明に係る撮像装置として機能するカメラ100の回路ブロック図である。1 is a circuit block diagram of a camera 100 that functions as an imaging apparatus according to the present invention.

符号の説明Explanation of symbols

1 レンズ鏡胴
2 第1の開口部
3 第2の開口部
4 固定枠
8 撮像素子
9 撮像素子基板
10 第1可動レンズ群
11 第1玉枠
20 第2可動レンズ群
21 第2玉枠
11a、21a 当接部
23、33 押圧板
40、41 ロッド
42、43 圧電素子
48、49 付勢バネ
60 ガイド
61、62 付勢バネ保持板
70 第1の固定レンズ
71 プリズム
72 第2の固定レンズ
L1、L2 光路
DESCRIPTION OF SYMBOLS 1 Lens barrel 2 1st opening part 3 2nd opening part 4 Fixed frame 8 Imaging element 9 Imaging element board | substrate 10 1st movable lens group 11 1st lens frame 20 2nd movable lens group 21 2nd lens frame 11a, 21a Contact portion 23, 33 Press plate 40, 41 Rod 42, 43 Piezo element 48, 49 Biasing spring 60 Guide 61, 62 Biasing spring holding plate 70 First fixed lens 71 Prism 72 Second fixed lens L1, L2 optical path

Claims (7)

玉枠に保持される2つのレンズ群を含む撮像光学系と、
前記各々の玉枠を光軸方向に相対的に移動可能に支持する2つの駆動軸と、
を備えた箱形形状のレンズ鏡胴において、
2つの駆動軸を含む平面と直交する前記レンズ鏡胴の対向する壁面に、それぞれ光軸方向に位置をずらして開口部を設けたことを特徴とするレンズ鏡胴。
An imaging optical system including two lens groups held by a ball frame;
Two drive shafts that support the respective ball frames so as to be relatively movable in the optical axis direction;
In a box-shaped lens barrel with
A lens barrel characterized in that openings are provided on the opposing wall surfaces of the lens barrel perpendicular to a plane including two drive shafts, with the positions being shifted in the optical axis direction.
前記2つの駆動軸を前記レンズ鏡胴の同じ壁面側に、前記2つのレンズ群の光軸方向と光軸に直交する方向にそれぞれ互いにその位置をずらして配置したことを特徴とする請求項1に記載のレンズ鏡胴。 2. The two drive shafts are disposed on the same wall surface side of the lens barrel and are shifted from each other in the optical axis direction of the two lens groups and in a direction perpendicular to the optical axis. The lens barrel described in 1. 前記2つの駆動軸は、リニアアクチュエータによって光軸方向に駆動されることを特徴とする請求項1または2に記載のレンズ鏡胴。 The lens barrel according to claim 1, wherein the two drive shafts are driven in the optical axis direction by a linear actuator. 前記玉枠に連結し、前記玉枠の当接部に挿入された前記2つの駆動軸と接する押圧板と、
前記押圧板を前記2つの駆動軸に押し当てる方向に付勢するバネ部材と、を有し、
前記バネ部材はそれぞれの前記開口部の側から脱着可能に配置されていることを特徴とする請求項3に記載のレンズ鏡胴。
A pressing plate connected to the lens frame and in contact with the two drive shafts inserted into the contact portion of the lens frame;
A spring member that urges the pressing plate in a direction in which the pressing plate is pressed against the two drive shafts,
The lens barrel according to claim 3, wherein the spring member is detachably disposed from each opening side.
前記撮像光学系は、前記2つのレンズ群よりも被写体側に光を反射する反射素子を
含み、
撮像光学系の光軸が反射素子によって折り曲げられ、前記撮像光学系の入射光軸と前記2つのレンズ群の光軸とが形成する平面は前記2つの駆動軸を含む平面と略平行であることを特徴とする請求項1乃至4の何れか1項に記載のレンズ鏡胴。
The imaging optical system includes a reflective element that reflects light closer to the subject side than the two lens groups,
The optical axis of the imaging optical system is bent by a reflecting element, and the plane formed by the incident optical axis of the imaging optical system and the optical axes of the two lens groups is substantially parallel to the plane including the two drive axes. The lens barrel according to any one of claims 1 to 4, wherein:
撮像時に前記玉枠に保持された2つのレンズ群が光軸方向に移動する範囲は、重なっていることを特徴とする請求項1乃至5の何れか1項に記載のレンズ鏡胴。 6. The lens barrel according to claim 1, wherein ranges in which the two lens groups held by the lens frame move in the optical axis direction at the time of imaging overlap each other. 請求項1乃至6の何れか1項に記載のレンズ鏡胴を有することを特徴とする撮像装置。 An imaging apparatus comprising the lens barrel according to claim 1.
JP2006252495A 2006-09-19 2006-09-19 Lens barrel and imaging apparatus Pending JP2008076485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252495A JP2008076485A (en) 2006-09-19 2006-09-19 Lens barrel and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252495A JP2008076485A (en) 2006-09-19 2006-09-19 Lens barrel and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008076485A true JP2008076485A (en) 2008-04-03

Family

ID=39348661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252495A Pending JP2008076485A (en) 2006-09-19 2006-09-19 Lens barrel and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008076485A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146440A (en) * 2016-02-17 2017-08-24 新シコー科技株式会社 Lens drive unit, camera device, and electronic apparatus
EP3395056A4 (en) * 2017-01-12 2018-12-05 Corephotonics Ltd. Compact folded camera
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
JP2019091096A (en) * 2019-03-20 2019-06-13 新シコー科技株式会社 Lens driving device, camera device, and electronic apparatus
US10356332B2 (en) 2015-08-13 2019-07-16 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10372022B2 (en) 2015-06-24 2019-08-06 Corephotonics Ltd Low profile tri-axis actuator for folded lens camera
US10488631B2 (en) 2016-05-30 2019-11-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10509209B2 (en) 2014-08-10 2019-12-17 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US10578948B2 (en) 2015-12-29 2020-03-03 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10591705B2 (en) 2016-02-17 2020-03-17 New Shicoh Technology Co., Ltd. Lens driving device, camera device and electronic apparatus
US10616484B2 (en) 2016-06-19 2020-04-07 Corephotonics Ltd. Frame syncrhonization in a dual-aperture camera system
US10645286B2 (en) 2017-03-15 2020-05-05 Corephotonics Ltd. Camera with panoramic scanning range
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US10706518B2 (en) 2016-07-07 2020-07-07 Corephotonics Ltd. Dual camera system with improved video smooth transition by image blending
US10845565B2 (en) 2016-07-07 2020-11-24 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
USRE48444E1 (en) 2012-11-28 2021-02-16 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
US10976567B2 (en) 2018-02-05 2021-04-13 Corephotonics Ltd. Reduced height penalty for folded camera
US11268830B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
US11315276B2 (en) 2019-03-09 2022-04-26 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11333955B2 (en) 2017-11-23 2022-05-17 Corephotonics Ltd. Compact folded camera structure
US11363180B2 (en) 2018-08-04 2022-06-14 Corephotonics Ltd. Switchable continuous display information system above camera
US11368631B1 (en) 2019-07-31 2022-06-21 Corephotonics Ltd. System and method for creating background blur in camera panning or motion
US11543619B2 (en) 2016-02-17 2023-01-03 New Shicoh Motor Co., Ltd. Lens driving device, camera device and electronic apparatus
US11635596B2 (en) 2018-08-22 2023-04-25 Corephotonics Ltd. Two-state zoom folded camera
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US11770618B2 (en) 2019-12-09 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11832018B2 (en) 2020-05-17 2023-11-28 Corephotonics Ltd. Image stitching in the presence of a full field of view reference image
US11910089B2 (en) 2020-07-15 2024-02-20 Corephotonics Lid. Point of view aberrations correction in a scanning folded camera
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11946775B2 (en) 2020-07-31 2024-04-02 Corephotonics Ltd. Hall sensor—magnet geometry for large stroke linear position sensing
US11968453B2 (en) 2020-08-12 2024-04-23 Corephotonics Ltd. Optical image stabilization in a scanning folded camera
US12007671B2 (en) 2021-06-08 2024-06-11 Corephotonics Ltd. Systems and cameras for tilting a focal plane of a super-macro image
US12007668B2 (en) 2020-02-22 2024-06-11 Corephotonics Ltd. Split screen feature for macro photography
US12081856B2 (en) 2021-03-11 2024-09-03 Corephotonics Lid. Systems for pop-out camera
US12101575B2 (en) 2021-12-24 2024-09-24 Corephotonics Ltd. Video support in a multi-aperture mobile camera with a scanning zoom camera

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265212A (en) * 1998-03-17 1999-09-28 Minolta Co Ltd Driving device
JP2004133054A (en) * 2002-10-08 2004-04-30 Olympus Corp Lens barrel
JP2004348030A (en) * 2003-05-26 2004-12-09 Sony Corp Lens system
JP2006018247A (en) * 2004-06-03 2006-01-19 Seiko Epson Corp Projector
JP2006113155A (en) * 2004-10-13 2006-04-27 Konica Minolta Opto Inc Lens unit
JP2006119570A (en) * 2004-09-22 2006-05-11 Fuji Photo Film Co Ltd Lens device and imaging device
JP2006126348A (en) * 2004-10-27 2006-05-18 Nikon Corp Lens unit and camera
JP2006133344A (en) * 2004-11-04 2006-05-25 Sony Corp Lens barrel, imaging apparatus, and manufacturing method of lens barrel
JP2006349950A (en) * 2005-06-15 2006-12-28 Canon Inc Lens barrel and camera unit therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265212A (en) * 1998-03-17 1999-09-28 Minolta Co Ltd Driving device
JP2004133054A (en) * 2002-10-08 2004-04-30 Olympus Corp Lens barrel
JP2004348030A (en) * 2003-05-26 2004-12-09 Sony Corp Lens system
JP2006018247A (en) * 2004-06-03 2006-01-19 Seiko Epson Corp Projector
JP2006119570A (en) * 2004-09-22 2006-05-11 Fuji Photo Film Co Ltd Lens device and imaging device
JP2006113155A (en) * 2004-10-13 2006-04-27 Konica Minolta Opto Inc Lens unit
JP2006126348A (en) * 2004-10-27 2006-05-18 Nikon Corp Lens unit and camera
JP2006133344A (en) * 2004-11-04 2006-05-25 Sony Corp Lens barrel, imaging apparatus, and manufacturing method of lens barrel
JP2006349950A (en) * 2005-06-15 2006-12-28 Canon Inc Lens barrel and camera unit therewith

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48945E1 (en) 2012-11-28 2022-02-22 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE48444E1 (en) 2012-11-28 2021-02-16 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE48477E1 (en) 2012-11-28 2021-03-16 Corephotonics Ltd High resolution thin multi-aperture imaging systems
USRE48697E1 (en) 2012-11-28 2021-08-17 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE49256E1 (en) 2012-11-28 2022-10-18 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
US11470257B2 (en) 2013-06-13 2022-10-11 Corephotonics Ltd. Dual aperture zoom digital camera
US11838635B2 (en) 2013-06-13 2023-12-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10841500B2 (en) 2013-06-13 2020-11-17 Corephotonics Ltd. Dual aperture zoom digital camera
US10326942B2 (en) 2013-06-13 2019-06-18 Corephotonics Ltd. Dual aperture zoom digital camera
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10904444B2 (en) 2013-06-13 2021-01-26 Corephotonics Ltd. Dual aperture zoom digital camera
US12069371B2 (en) 2013-06-13 2024-08-20 Corephotonics Lid. Dual aperture zoom digital camera
US11614635B2 (en) 2013-07-04 2023-03-28 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10620450B2 (en) 2013-07-04 2020-04-14 Corephotonics Ltd Thin dual-aperture zoom digital camera
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11287668B2 (en) 2013-07-04 2022-03-29 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11856291B2 (en) 2013-08-01 2023-12-26 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10469735B2 (en) 2013-08-01 2019-11-05 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10694094B2 (en) 2013-08-01 2020-06-23 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US11716535B2 (en) 2013-08-01 2023-08-01 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US11470235B2 (en) 2013-08-01 2022-10-11 Corephotonics Ltd. Thin multi-aperture imaging system with autofocus and methods for using same
US11991444B2 (en) 2013-08-01 2024-05-21 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US11042011B2 (en) 2014-08-10 2021-06-22 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11982796B2 (en) 2014-08-10 2024-05-14 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11262559B2 (en) 2014-08-10 2022-03-01 Corephotonics Ltd Zoom dual-aperture camera with folded lens
US11543633B2 (en) 2014-08-10 2023-01-03 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11002947B2 (en) 2014-08-10 2021-05-11 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10976527B2 (en) 2014-08-10 2021-04-13 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10571665B2 (en) 2014-08-10 2020-02-25 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10509209B2 (en) 2014-08-10 2019-12-17 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US12007537B2 (en) 2014-08-10 2024-06-11 Corephotonics Lid. Zoom dual-aperture camera with folded lens
US11994654B2 (en) 2015-01-03 2024-05-28 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
US11125975B2 (en) 2015-01-03 2021-09-21 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
US10558058B2 (en) 2015-04-02 2020-02-11 Corephontonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10372022B2 (en) 2015-06-24 2019-08-06 Corephotonics Ltd Low profile tri-axis actuator for folded lens camera
US10917576B2 (en) 2015-08-13 2021-02-09 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US12022196B2 (en) 2015-08-13 2024-06-25 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10567666B2 (en) 2015-08-13 2020-02-18 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10356332B2 (en) 2015-08-13 2019-07-16 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US11546518B2 (en) 2015-08-13 2023-01-03 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US11770616B2 (en) 2015-08-13 2023-09-26 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US11350038B2 (en) 2015-08-13 2022-05-31 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10498961B2 (en) 2015-09-06 2019-12-03 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10578948B2 (en) 2015-12-29 2020-03-03 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11392009B2 (en) 2015-12-29 2022-07-19 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11314146B2 (en) 2015-12-29 2022-04-26 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10935870B2 (en) 2015-12-29 2021-03-02 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11726388B2 (en) 2015-12-29 2023-08-15 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11599007B2 (en) 2015-12-29 2023-03-07 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
CN107092071B (en) * 2016-02-17 2023-12-12 新思考电机有限公司 Lens driving device, camera device and electronic equipment
CN107092071A (en) * 2016-02-17 2017-08-25 新思考电机有限公司 Lens driver, photographic means and electronic equipment
US10591705B2 (en) 2016-02-17 2020-03-17 New Shicoh Technology Co., Ltd. Lens driving device, camera device and electronic apparatus
US11543619B2 (en) 2016-02-17 2023-01-03 New Shicoh Motor Co., Ltd. Lens driving device, camera device and electronic apparatus
JP2017146440A (en) * 2016-02-17 2017-08-24 新シコー科技株式会社 Lens drive unit, camera device, and electronic apparatus
US11650400B2 (en) 2016-05-30 2023-05-16 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10488631B2 (en) 2016-05-30 2019-11-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
US11977210B2 (en) 2016-05-30 2024-05-07 Corephotonics Ltd. Rotational ball-guided voice coil motor
US11150447B2 (en) 2016-05-30 2021-10-19 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10616484B2 (en) 2016-06-19 2020-04-07 Corephotonics Ltd. Frame syncrhonization in a dual-aperture camera system
US11689803B2 (en) 2016-06-19 2023-06-27 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
US11172127B2 (en) 2016-06-19 2021-11-09 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
US11048060B2 (en) 2016-07-07 2021-06-29 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US10845565B2 (en) 2016-07-07 2020-11-24 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US11977270B2 (en) 2016-07-07 2024-05-07 Corephotonics Lid. Linear ball guided voice coil motor for folded optic
US11550119B2 (en) 2016-07-07 2023-01-10 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US10706518B2 (en) 2016-07-07 2020-07-07 Corephotonics Ltd. Dual camera system with improved video smooth transition by image blending
CN109417589B (en) * 2017-01-12 2021-10-22 核心光电有限公司 Compact folding camera and method of assembling the same
US10884321B2 (en) 2017-01-12 2021-01-05 Corephotonics Ltd. Compact folded camera
US11809065B2 (en) 2017-01-12 2023-11-07 Corephotonics Ltd. Compact folded camera
JP2020514800A (en) * 2017-01-12 2020-05-21 コアフォトニクス リミテッド Compact bendable camera
CN109417589A (en) * 2017-01-12 2019-03-01 核心光电有限公司 Compact type folding formula video camera
US11693297B2 (en) 2017-01-12 2023-07-04 Corephotonics Ltd. Compact folded camera
JP7057364B2 (en) 2017-01-12 2022-04-19 コアフォトニクス リミテッド Compact flexible camera
US11815790B2 (en) 2017-01-12 2023-11-14 Corephotonics Ltd. Compact folded camera
US12038671B2 (en) 2017-01-12 2024-07-16 Corephotonics Ltd. Compact folded camera
EP3395056A4 (en) * 2017-01-12 2018-12-05 Corephotonics Ltd. Compact folded camera
US10571644B2 (en) 2017-02-23 2020-02-25 Corephotonics Ltd. Folded camera lens designs
US10670827B2 (en) 2017-02-23 2020-06-02 Corephotonics Ltd. Folded camera lens designs
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US11671711B2 (en) 2017-03-15 2023-06-06 Corephotonics Ltd. Imaging system with panoramic scanning range
US10645286B2 (en) 2017-03-15 2020-05-05 Corephotonics Ltd. Camera with panoramic scanning range
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
US11695896B2 (en) 2017-10-03 2023-07-04 Corephotonics Ltd. Synthetically enlarged camera aperture
US12007672B2 (en) 2017-11-23 2024-06-11 Corephotonics Ltd. Compact folded camera structure
US11619864B2 (en) 2017-11-23 2023-04-04 Corephotonics Ltd. Compact folded camera structure
US11333955B2 (en) 2017-11-23 2022-05-17 Corephotonics Ltd. Compact folded camera structure
US11809066B2 (en) 2017-11-23 2023-11-07 Corephotonics Ltd. Compact folded camera structure
US10976567B2 (en) 2018-02-05 2021-04-13 Corephotonics Ltd. Reduced height penalty for folded camera
US11686952B2 (en) 2018-02-05 2023-06-27 Corephotonics Ltd. Reduced height penalty for folded camera
US12007582B2 (en) 2018-02-05 2024-06-11 Corephotonics Ltd. Reduced height penalty for folded camera
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US10911740B2 (en) 2018-04-22 2021-02-02 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US11867535B2 (en) 2018-04-23 2024-01-09 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11733064B1 (en) 2018-04-23 2023-08-22 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11976949B2 (en) 2018-04-23 2024-05-07 Corephotonics Lid. Optical-path folding-element with an extended two degree of freedom rotation range
US11268830B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US12085421B2 (en) 2018-04-23 2024-09-10 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11268829B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US11359937B2 (en) 2018-04-23 2022-06-14 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11363180B2 (en) 2018-08-04 2022-06-14 Corephotonics Ltd. Switchable continuous display information system above camera
US11635596B2 (en) 2018-08-22 2023-04-25 Corephotonics Ltd. Two-state zoom folded camera
US11852790B2 (en) 2018-08-22 2023-12-26 Corephotonics Ltd. Two-state zoom folded camera
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
US12025260B2 (en) 2019-01-07 2024-07-02 Corephotonics Ltd. Rotation mechanism with sliding joint
US11527006B2 (en) 2019-03-09 2022-12-13 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11315276B2 (en) 2019-03-09 2022-04-26 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
JP2019091096A (en) * 2019-03-20 2019-06-13 新シコー科技株式会社 Lens driving device, camera device, and electronic apparatus
US11368631B1 (en) 2019-07-31 2022-06-21 Corephotonics Ltd. System and method for creating background blur in camera panning or motion
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US12075151B2 (en) 2019-12-09 2024-08-27 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11770618B2 (en) 2019-12-09 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US12007668B2 (en) 2020-02-22 2024-06-11 Corephotonics Ltd. Split screen feature for macro photography
US11832018B2 (en) 2020-05-17 2023-11-28 Corephotonics Ltd. Image stitching in the presence of a full field of view reference image
US12096150B2 (en) 2020-05-17 2024-09-17 Corephotonics Ltd. Image stitching in the presence of a full field of view reference image
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11832008B2 (en) 2020-07-15 2023-11-28 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US12003874B2 (en) 2020-07-15 2024-06-04 Corephotonics Ltd. Image sensors and sensing methods to obtain Time-of-Flight and phase detection information
US11910089B2 (en) 2020-07-15 2024-02-20 Corephotonics Lid. Point of view aberrations correction in a scanning folded camera
US11946775B2 (en) 2020-07-31 2024-04-02 Corephotonics Ltd. Hall sensor—magnet geometry for large stroke linear position sensing
US11968453B2 (en) 2020-08-12 2024-04-23 Corephotonics Ltd. Optical image stabilization in a scanning folded camera
US12081856B2 (en) 2021-03-11 2024-09-03 Corephotonics Lid. Systems for pop-out camera
US12007671B2 (en) 2021-06-08 2024-06-11 Corephotonics Ltd. Systems and cameras for tilting a focal plane of a super-macro image
US12101575B2 (en) 2021-12-24 2024-09-24 Corephotonics Ltd. Video support in a multi-aperture mobile camera with a scanning zoom camera
US12108151B2 (en) 2022-12-11 2024-10-01 Corephotonics Ltd. Point of view aberrations correction in a scanning folded camera
US12105268B2 (en) 2024-04-28 2024-10-01 Corephotonics Ltd. Zoom dual-aperture camera with folded lens

Similar Documents

Publication Publication Date Title
JP2008076485A (en) Lens barrel and imaging apparatus
JP6960983B2 (en) Imaging device with image stabilization function
US20060133786A1 (en) Driving mechanism, driving system, anti-shake unit, and image sensing apparatus
JP4661915B2 (en) Image blur correction device, lens barrel device, and camera device
JP2007089246A (en) Driver and lens barrel, and imaging apparatus
JP4513879B2 (en) Image blur correction device, lens barrel device, and camera device
JP2008089803A (en) Imaging apparatus
JP2007164065A (en) Lens unit and imaging apparatus
JP2007102062A (en) Imaging apparatus with shaking correction function
JP2008089804A (en) Imaging apparatus
JP2021121874A (en) Interchangeable lens and control method thereof, imaging device, and camera system
JP2011160067A (en) Camera shake correcting device and method, camera module, and cellular phone
KR101586242B1 (en) Camera module having separated auto-focusing device and image stabilizing apparatus
JP2011158552A (en) Camera module and cellular phone
JP2011158551A (en) Camera module and cellular phone
JP2006343698A (en) Dust removing device and imaging apparatus
JP2007094320A (en) Imaging apparatus with blurring correction function
JP2007025164A (en) Device for correcting shake and optical apparatus
JP2010243900A (en) Lens driving device and lens barrel having the same
JP4923691B2 (en) Lens barrel and imaging device
JP2006171449A (en) Imaging apparatus and electronic camera
JP2008102388A (en) Lens barrel and imaging apparatus
JP2009237265A (en) Lens group positioning method and image capturing apparatus
JP2010026172A (en) Lens barrel, method of adjusting lens barrel, optical device, and method of adjusting optical device
CN111479038A (en) Driving device, image blur correction device, and image pickup apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004