JPS63193545A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS63193545A
JPS63193545A JP2461687A JP2461687A JPS63193545A JP S63193545 A JPS63193545 A JP S63193545A JP 2461687 A JP2461687 A JP 2461687A JP 2461687 A JP2461687 A JP 2461687A JP S63193545 A JPS63193545 A JP S63193545A
Authority
JP
Japan
Prior art keywords
layer
electrode
metal layer
substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2461687A
Other languages
Japanese (ja)
Inventor
Kazuhiro Arai
一弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2461687A priority Critical patent/JPS63193545A/en
Publication of JPS63193545A publication Critical patent/JPS63193545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To decrease grounding inductance and to enhance high frequency characteristics, by depositing a first metal layer the bottom of a through hole in a semiconductor substrate, thinning the semiconductor substrate so as to expose the first metal layer, and forming a second metal layer on the semiconductor substrate. CONSTITUTION:A grounding electrode 16a is formed on the first main surface of a semiconductor substrate 100. The substrate 100 is thinned to a desired thickness. A mask layer 18 having a hole at a part of the other main surface of the substrate 100. The substrate 100 is etched through the hole, and through holes 19 reaching the electrode 16a are formed. First metal layers 20a and 20b are deposited on the other surface of the substrate 100 and the bottom of each through hole 19 so that the layer in the hole is not connected to the layer on the main surface. The metal layer 20b on the mask layer 18 is removed together with the mask layer 18. The substrate 20a is thinned so as to expose the metal layer 20a. A second metal layer 21 is formed on the other main surface of the substrate 100, and the metal layer 21 is connected to the metal layer 20a. Thus the grounding inductance is decreased, and the high frequency characteristics are enhanced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は半導体集積回路の製造方法に関し、特にバイ
アホール構造を有するマイクロ波モノリシック集積回路
(以下MMICと略称する)の接地手段に適用される。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor integrated circuit, and in particular, to a method for manufacturing a semiconductor integrated circuit, and particularly to a method for grounding a microwave monolithic integrated circuit (hereinafter abbreviated as MMIC) having a via hole structure. Applies to means.

(従来の技術) 砒化ガリウム(GaAs)を用いたMMICの特性を向
上させ、特性のばらつきを小さくするためには、能動素
子(FET)部および整合回路部の接地インダクタンス
を低減し、その値にばらつきを生じさせないことが必要
である。MにICの接地には、インダクタンスの低減お
よび素子の小型化に有利なバイアホール構造による方法
が多く用いられている。
(Prior art) In order to improve the characteristics of MMIC using gallium arsenide (GaAs) and reduce the variation in characteristics, it is necessary to reduce the grounding inductance of the active element (FET) part and the matching circuit part, and to adjust its value. It is necessary to avoid variations. A method using a via hole structure, which is advantageous for reducing inductance and miniaturizing the device, is often used for grounding the IC.

以下、ソース電極と、整合回路素子を構成するキャパシ
タの下部電極とをバイアホール構造により接地電極に接
続したMMICの製造方法の従来例につき第2図a−e
を参照して説明する。
Hereinafter, a conventional example of a method for manufacturing an MMIC in which a source electrode and a lower electrode of a capacitor constituting a matching circuit element are connected to a ground electrode through a via hole structure will be described with reference to FIGS. 2a-e.
Explain with reference to.

第2図aに示すように、GaAs半絶縁性基板100上
にイオン注入法によって動作層(N層)101.抵抗層
CN層) 102.オーム性接触層(N十層)1o3を
選択的に形成したのち、上記オーム性接触層103、お
よび抵抗層102上に写真蝕刻法でソース、ドレイン、
抵抗層の各電極用のパターニングを行ない金ゲルマニウ
ム(AuGe)を蒸着する。続いてリフトオフ法により
各電極パターンを形成したのち、450℃に加熱し合金
化を行ない、ソース電極104s+ドレイン電極104
d 、抵抗層電極105a、 LO5bを形成する。次
に写真蝕刻法によりゲート電極、および整合回路素子を
構成するキャパシタ下地電極のパターニングを行ないア
ルミニウム(Al1)を蒸着し、リフトオフによってゲ
ート電極104g+整合回路を構成するキャパシタ下地
電極1068を形成する。
As shown in FIG. 2a, an active layer (N layer) 101 is formed on a GaAs semi-insulating substrate 100 by ion implantation. Resistance layer CN layer) 102. After selectively forming an ohmic contact layer (N layer) 1o3, a source, a drain, and a
Patterning is performed for each electrode of the resistance layer, and gold germanium (AuGe) is deposited. Subsequently, after forming each electrode pattern by a lift-off method, it is heated to 450°C to perform alloying, and the source electrode 104s+drain electrode 104 is formed.
d, resistive layer electrode 105a and LO5b are formed. Next, the gate electrode and the capacitor base electrode constituting the matching circuit element are patterned by photolithography, aluminum (Al1) is deposited, and the gate electrode 104g and the capacitor base electrode 1068 constituting the matching circuit are formed by lift-off.

次に整合回路素子を構成するキャパシタ用の絶縁膜とし
て例えば5LBN4層107をプラズマCVD(Che
mical Vapor Deposition)法に
より厚さ2000人堆積したのち、写真蝕刻法、および
フレオンガス(CF4)を用いたプラズマエツチング法
によってソース電極104s、ドレイン電極104d、
ゲート電極104g の各電極上に開孔を設ける1次に
、写真蝕刻法により整合回路素子を構成するキャパシタ
上面電極のパターニングを施し、チタン(Ti)、金(
Au)を順次蒸着し、リフトオフによって整合回路素子
を構成するキャパシタ上百雷Vi!、106bを形成す
る(第2図b)6 次ににaAs半絶縁性基板100の表面側を例えば石英
板108の支持板にワックス109で貼付けてラッピン
グとボリシングを施し、この基板の厚さを約100pに
薄化したのち、フォトレジストの一例のAZ1350J
 (商品名、シブレイ社製)を用いた写真蝕刻法によっ
てバイアホール用マスクM110を形成する(第2図C
)。このマスク層110はGaAs半絶縁性基板100
の表面に形成されているソース電極104s。
Next, as an insulating film for a capacitor constituting a matching circuit element, for example, a 5LBN4 layer 107 is deposited by plasma CVD (Che
The source electrode 104s, drain electrode 104d,
First, openings are formed on each electrode of the gate electrode 104g, and then the upper surface electrode of the capacitor constituting the matching circuit element is patterned by photolithography, and titanium (Ti), gold (
Au) is sequentially deposited and lifted off to form a matching circuit element. , 106b (FIG. 2b) 6 Next, the front side of the aAs semi-insulating substrate 100 is attached to, for example, a support plate of a quartz plate 108 with wax 109, and the thickness of the substrate is After thinning to about 100p, AZ1350J, an example of photoresist
(trade name, manufactured by Sibley) by photolithography to form a via hole mask M110 (see Fig. 2C).
). This mask layer 110 is a GaAs semi-insulating substrate 100.
A source electrode 104s formed on the surface of the source electrode 104s.

整合回路素子を構成するキャパシタ下地電極106aに
位置合わせされている。ついでりん酸系のエツチング液
を用いてGaAs基板100にエツチングを施し、ソー
ス電極104s、キャパシタ下地電極106aに到達す
るバイアホール111を形成する。続いて上記バイアホ
ール用マスク層110を例えばJ −100(商品名)
で除去する(第2図d)。
It is aligned with the capacitor base electrode 106a that constitutes the matching circuit element. Next, the GaAs substrate 100 is etched using a phosphoric acid-based etching solution to form a via hole 111 that reaches the source electrode 104s and the capacitor base electrode 106a. Subsequently, the via hole mask layer 110 is formed using, for example, J-100 (trade name).
(Fig. 2d).

次に、GaAs半絶縁性基板100の裏面側、およびバ
イアホール111内を蒸着、あるいはめっきによりAu
を約1〇−被着して裏面電極112を形成し、ソース電
極104s、およびキャパシタ下地電極106と電気的
に接続する。ここで、第3図はGaAs半絶縁性基板1
00の厚さくバイアホール111の深さ)を100μm
としたとき、裏面電極の厚さを変えてソース電極表面と
裏面電極間の電気的な導通状態を調べた図である。この
図から明らかなように、ソース電極表面と裏面電極間の
電気的な導通歩留を100%にするには裏面電極112
を厚さ10μs以上にする必要がある。従って裏面電極
の形成にあたってはその厚さを107ffi以上にする
。次にブレードダイサを用いて素子分離を行ない、最後
に素子を石英板107から剥離して第2図eに示すMM
ICが得られる。
Next, the back side of the GaAs semi-insulating substrate 100 and the inside of the via hole 111 are coated with Au by evaporation or plating.
The back electrode 112 is formed by depositing about 1000 ml of oxide, and is electrically connected to the source electrode 104s and the capacitor base electrode 106. Here, FIG. 3 shows a GaAs semi-insulating substrate 1.
00 thickness (depth of via hole 111) is 100 μm
This is a diagram in which the state of electrical continuity between the source electrode surface and the back electrode was investigated by changing the thickness of the back electrode. As is clear from this figure, in order to achieve 100% electrical continuity between the source electrode surface and the back electrode, the back electrode 112
It is necessary to make the thickness 10 μs or more. Therefore, when forming the back electrode, its thickness should be 107ffi or more. Next, elements are separated using a blade dicer, and finally the elements are peeled off from the quartz plate 107 to form an MM as shown in FIG. 2e.
IC is obtained.

(発明が解決しようとする問題点) 上記従来の方法で得られたMMICは、接地インダクタ
ンスが充分に小さく、高周波特性に優れている。しかし
、このMMICは裏面電極112のA1層の厚さが10
tIIMと厚くなるため、素子間分離に通常用いられて
いるダイヤモンドカッタによる素子分離手段では達成で
きず、やむを得ずブレードダイサ等によらねばならなか
った。その結果、GaAsの脆弱な性質により素子の欠
け1割れを生じ著るしい歩留低下を招き、そのために素
子分離完了時点でMMICの製造コストが非常に高いも
のになっていた。
(Problems to be Solved by the Invention) The MMIC obtained by the above conventional method has a sufficiently small grounding inductance and excellent high frequency characteristics. However, in this MMIC, the thickness of the A1 layer of the back electrode 112 is 10
Since the thickness is as thick as tIIM, element separation cannot be achieved using a diamond cutter, which is commonly used for element separation, and a blade dicer or the like must be used. As a result, the brittle nature of GaAs causes chipping and cracking of the device, leading to a significant drop in yield, and as a result, the manufacturing cost of the MMIC becomes extremely high upon completion of device separation.

また、素子分離にダイヤモンドカッタを用いて分離を容
易にするには、裏面電極の厚さを数千人に薄層にしなけ
ればならず、ソース電極および整合回路素子を構成する
キャパシタ電極と裏面電極の間の電気的な導通歩留が著
しく低下する。
In addition, in order to facilitate separation using a diamond cutter for element isolation, the thickness of the back electrode must be reduced to several thousand layers, and the capacitor electrode and back electrode that constitute the source electrode and matching circuit element must be thinned. The electrical conductivity between the two ends is significantly reduced.

この発明は上記従来の問題点に鑑みて、改良された半導
体集積回路の製造方法を提供する6〔発明の構成〕 (問題点を解決するための手段) この発明にかかる半導体集積回路の製造方法は。
In view of the above conventional problems, the present invention provides an improved method for manufacturing a semiconductor integrated circuit.6 [Configuration of the Invention] (Means for Solving the Problems) A method for manufacturing a semiconductor integrated circuit according to the present invention. teeth.

半導体基板の1主面に接地用電極を形成する工程。A process of forming a grounding electrode on one main surface of a semiconductor substrate.

前記半導体基板を所望厚さに薄層化する工程、前記半導
体基板の他主面の一部に開口を有するマスク層を形成す
る工程、前記開口を通して前記半導体基板にエツチング
を施し前記接地用電極に到達する貫通孔を形成する工程
、前記半導体基板の他主面上とこれと非接続に貫通孔底
に第1の金属層を被着する工程、前記マスク層上の第1
の金属層をマスク層とともにリフトオフにより除去する
工程、前記半導体基板を前記第1の金属層が露出するよ
うに薄層化する工程、前記半導体基板の他主面に第2の
金属層を形成しこれを前記貫通孔底の第1の金属層と接
続させる工程を含むものである。
a step of thinning the semiconductor substrate to a desired thickness, a step of forming a mask layer having an opening on a part of the other main surface of the semiconductor substrate, and etching the semiconductor substrate through the opening to form the ground electrode. a step of forming a through hole that reaches the semiconductor substrate, a step of depositing a first metal layer on the other main surface of the semiconductor substrate and the bottom of the through hole without being connected thereto;
removing the metal layer along with the mask layer by lift-off, thinning the semiconductor substrate so that the first metal layer is exposed, and forming a second metal layer on the other main surface of the semiconductor substrate. The method includes a step of connecting this to the first metal layer at the bottom of the through hole.

(作 用) この発明は裏面電極の厚さが薄く形成できるので、一般
に用いられるダイヤモンドカッタで素子分離ができ、さ
らに、接地用電極と裏面電極間の電気的接続も完全にで
きるので、接地インダクタンスが小さく、高周波特性の
優れたMMICが形成できる。
(Function) In this invention, since the thickness of the back electrode can be made thin, elements can be separated using a commonly used diamond cutter.Furthermore, the electrical connection between the grounding electrode and the back electrode can be made completely, so that the grounding inductance can be reduced. It is possible to form an MMIC with a small resistance and excellent high frequency characteristics.

(実施例) 以下、この発明の一実施例につき第1図を参照して説明
する。
(Example) An example of the present invention will be described below with reference to FIG.

まず、GaAs半絶縁性基板100上の動作層(N層)
11および抵抗層12の形成予定域に加速エネルギ14
0にeV、ドーズ量3X10”Cl11”のシリコン(
Si)イオンを選択的に注入する。次に、オーム性接触
層(N層層)13形成予定域に加速エネルギ120Ke
Vと250Ke V 、ドーズ量2 X 1013an
−”のSiイオンを選択的に注入する。続いて850℃
でアニールを施してSiイオンを活性化させて動作層1
1.抵抗層12゜オーム性接触pIj13を形成させる
(第1図a)。
First, the active layer (N layer) on the GaAs semi-insulating substrate 100
11 and the area where the resistance layer 12 is to be formed.
Silicon (
Si) ions are selectively implanted. Next, an acceleration energy of 120Ke is applied to the area where the ohmic contact layer (N layer) 13 is planned to be formed.
V and 250Ke V, dose amount 2 x 1013an
-'' Si ions are selectively implanted.Subsequently, at 850℃
The active layer 1 is annealed to activate the Si ions.
1. A resistive layer 12° ohmic contact pIj13 is formed (FIG. 1a).

次に、上記オーム性接触層13上、および抵抗層12上
に写真蝕刻法でソース、ドレイン、抵抗層の各電極用パ
ターニングを行ないAuGeを蒸着する。
Next, on the ohmic contact layer 13 and the resistive layer 12, patterning for the source, drain, and resistive layer electrodes is performed by photolithography, and AuGe is deposited.

続いてリフトオフ法により各電極パターンを形成シタノ
ち、450℃の温度で合金化してソース電極14s、ド
レイン電極14d、抵抗層電極15a、 15bを形成
する。次に写真蝕刻法によりゲート電極14gおよびキ
ャパシタ下地電極のパターニングを行ないAQを蒸着し
、リフトオフによって電極14g、キャパシタ下地な極
16aを形成する(第1図b)。
Subsequently, each electrode pattern is formed by a lift-off method, and then alloyed at a temperature of 450° C. to form a source electrode 14s, a drain electrode 14d, and resistance layer electrodes 15a and 15b. Next, the gate electrode 14g and the capacitor base electrode are patterned by photolithography, AQ is deposited, and the electrode 14g and the capacitor base electrode 16a are formed by lift-off (FIG. 1b).

次に、キャパシタ用として絶縁層17をプラズマCVD
法により厚さ2000人堆積したのち、写真蝕刻法およ
びCF、を用いたプラズマエツチング法にょってソース
電極14s、ドレイン電極14d、ゲート電極14gの
各電極上に開孔を設ける0次に、キャパシタ上面電極の
パターニングを施し蒸着によりTi。
Next, the insulating layer 17 for the capacitor is formed by plasma CVD.
After the film is deposited to a thickness of 2,000 layers using the photolithography method and the plasma etching method using CF, openings are formed on each of the source electrode 14s, drain electrode 14d, and gate electrode 14g. The top electrode is patterned and Ti is deposited by vapor deposition.

Auを順次被着し、リフトオフを行なってキャパシタ上
部型vi16bを形成する(第1図C)。
Au is sequentially deposited and lift-off is performed to form a capacitor upper mold vi16b (FIG. 1C).

次に、GaAs半絶縁性基板100の表面側に石英板1
08をワックス109で接着し、ラッピングとケミカル
ボリジングにより厚さ150pまで第1回目の薄層化を
行なう。次にバイアホール用およびリフトオフ用のマス
ク層18としてAZ1350J (商品名、シブレイ社
製)層を、写真蝕刻法によりソース電極14s、キャパ
シタ下地電極16aの各直下の位置に開孔して形成する
Next, a quartz plate 1 is placed on the surface side of the GaAs semi-insulating substrate 100.
08 is adhered with wax 109, and the first thinning is performed to a thickness of 150p by lapping and chemical boriding. Next, an AZ1350J (trade name, manufactured by Sibley Inc.) layer is formed as a mask layer 18 for via holes and lift-off by forming holes directly below each of the source electrode 14s and the capacitor base electrode 16a by photolithography.

次に、リン酸:過酸化水素水:水=3:4:1のエツチ
ング液でGaAs基板100にエツチングを施し、ソー
ス電極14s、キャパシタ下地電極16aに到達するバ
イアホール19を形成する。このときバイアホールマス
ク層18は、GaAs基板100エツチングの際に生じ
るサイドエツチングによりバイアボール19の開孔に対
してひさし状になる。
Next, the GaAs substrate 100 is etched using an etching solution of phosphoric acid:hydrogen peroxide:water=3:4:1 to form a via hole 19 reaching the source electrode 14s and the capacitor base electrode 16a. At this time, the via hole mask layer 18 becomes eaves-like with respect to the opening of the via ball 19 due to side etching that occurs when the GaAs substrate 100 is etched.

次に、第1の金属としてAu層を厚さ10摩にGaAs
半絶縁性基板100裏面側より全面に蒸着して第1の金
属層20a、・20bを形成する(第1図d)。ここで
バイアホール用およびリフトオフ用マスク層17のひさ
し状部分直上近傍のバイアホール19開端に近い側面部
は蒸着金属粒子に対してひさし状部分が遮るので蒸着さ
れない、したがって蒸着された第1の金属層20a、 
20bはバイアホール底から開端に近い部分に被着され
た第1の金属層20aと、リフトオフ用マスク層18に
被着された第1の金属層20bに分かれる。
Next, as the first metal, the Au layer is made of GaAs to a thickness of 10 mm.
First metal layers 20a, 20b are formed by vapor deposition over the entire surface of the semi-insulating substrate 100 from the back side (FIG. 1d). Here, the side surface near the open end of the via hole 19 directly above the eave-like part of the via-hole and lift-off mask layer 17 is not vapor-deposited because the eave-like part blocks the vapor-deposited metal particles. Therefore, the vapor-deposited first metal layer 20a,
20b is divided into a first metal layer 20a deposited from the bottom of the via hole to a portion close to the open end, and a first metal layer 20b deposited on the lift-off mask layer 18.

次にバイアホール用およびリフトオフ用マスク層18に
被着した第1の金属層20bをアセトンまたはJ−10
0(商品名、長瀬産業製剥離剤)によってリフトオフを
施す(第1図e)。
Next, the first metal layer 20b deposited on the via hole and lift-off mask layer 18 is coated with acetone or J-10.
Lift-off is performed using 0 (trade name, release agent manufactured by Nagase Sangyo Co., Ltd.) (Fig. 1 e).

なお、上記バイアホールの開孔における第1の金属層が
被着されない部分は、後に施される基板の第2の薄層化
工程によって除去され、裏面電極形成時にバイアホール
底の第1の金属420aと裏面電極とは接続されて電気
的接続が達成される。
Note that the portion of the opening of the via hole to which the first metal layer is not deposited is removed in a second thinning process of the substrate performed later, and the first metal layer at the bottom of the via hole is removed during the formation of the back electrode. 420a and the back electrode are connected to achieve electrical connection.

次に、GaAs半絶縁性基板100に第2の薄層化を施
し、100μm厚になるまでラッピングとケミカルボリ
ジングによって達成する。このとき、バイアホール19
側面に形成されている第1の金属M20aの端部はGa
As半絶縁性基板100真面に充分露出している(第1
図f)。
Next, a second thinning process is applied to the GaAs semi-insulating substrate 100, which is achieved by lapping and chemical boring to a thickness of 100 μm. At this time, via hole 19
The end of the first metal M20a formed on the side surface is made of Ga.
The As semi-insulating substrate 100 is fully exposed directly on the surface (the first
Figure f).

次にGaAs半絶縁性基板100裏面側に第2の金属層
として厚さ5000人にAu層を蒸着し、裏面電極21
を形成する。ついでワックス109を溶除してGaAs
半絶縁性基板100を石英板108から離す。最後にダ
イヤモンドカッタを用いて素子分離を行ないMMICが
得られる(第1図g)。
Next, an Au layer with a thickness of 5000 mm was deposited as a second metal layer on the back side of the GaAs semi-insulating substrate 100, and the back electrode 21
form. Then, wax 109 is dissolved and GaAs
The semi-insulating substrate 100 is separated from the quartz plate 108. Finally, elements are separated using a diamond cutter to obtain an MMIC (FIG. 1g).

叙上の如くして裏面電極21はそのAu層の厚さが50
00人と薄く形成されるので、素子分離は通常用いられ
ているダイヤモンドカッタによる方法で容易に達成され
る。これにより、素子歩留の低下を生ずることなく、ま
た、バイアホール内の第1の金属層の厚さは10−ある
ため、ソース電極104sおよびキャパシタ下地電極1
6aと裏面電極21の間の接続が完全に達せられた。
As described above, the back electrode 21 has an Au layer with a thickness of 50 mm.
Since it is formed as thin as 0.00 mm, element isolation can be easily achieved by a commonly used method using a diamond cutter. As a result, the thickness of the first metal layer in the via hole is 10 - without causing a decrease in device yield, and the source electrode 104s and the capacitor base electrode 1
A complete connection between 6a and the back electrode 21 was achieved.

なお、上記実施例ではバイアホール用およびリフトオフ
用のマスクとしてAZ1350Jを用いていたが、 こ
れに限られず、他のマスク材、例えばOMR(商品名、
東京応化工業製) 、 HPR(商品名、富士ハント社
製)等、あるいは酸化シリコン(SiOz)層、窒化シ
リコン(Si3 N4 )層およびリフトオフ可能な金
属等、 またはそれらの組合わせ1例えばSun。
In the above example, AZ1350J was used as a mask for via holes and lift-off, but the material is not limited to this, and other mask materials such as OMR (trade name,
(manufactured by Tokyo Ohka Kogyo), HPR (trade name, manufactured by Fuji Hunt), etc., or a silicon oxide (SiOz) layer, a silicon nitride (Si3 N4) layer, a lift-off metal, etc., or a combination thereof, such as Sun.

10MR,OMR/金属、 SL、N、/金属等でもよ
い。
10MR, OMR/metal, SL, N,/metal, etc. may be used.

また、リフトオフ用の溶剤として、アセトン。Also, acetone as a solvent for lift-off.

J−100を用いたが、マスク材にその材質がSiO□
J-100 was used, but the material was SiO□ for the mask material.
.

513 N4 r AR等のものを用いた場合には、ふ
っ酸(HF)を用いる等、マスク材の材質に応じて溶剤
を変えて施す。
When a material such as 513 N4 r AR is used, the solvent is changed depending on the material of the mask material, such as using hydrofluoric acid (HF).

さらに、(1;aAs半絶縁性基板に対する第2の薄層
化はラッピングおよびケミカルボリジングで行なったが
、リン酸系、あるいは硫酸系等を用いたウェットエツチ
ングによって行なってもよい。
Furthermore, although the second thinning of the (1; aAs semi-insulating substrate was performed by lapping and chemical boriding, it may also be performed by wet etching using phosphoric acid, sulfuric acid, etc.).

また、バイアホールの形成にはリン酸系の溶剤によるウ
ェットエツチングで行なう例を示したが、反応性イオン
エツチング(RIE)等によっても達成できる。ただし
、 RIEによる場合にはバイアホール用およびリフト
オフ用マスク材もエツチングされるので、バイアホール
用およびリフトオフ用マスク材は耐エツチング性に優れ
ている金属系、あるいはS x 3 N 4 /金属等
とする方が望ましい。
Further, although an example has been shown in which via holes are formed by wet etching using a phosphoric acid solvent, they can also be formed by reactive ion etching (RIE) or the like. However, in the case of RIE, the mask material for via holes and lift-off is also etched, so the mask material for via holes and lift-off should be a metal-based material with excellent etching resistance, or a material such as S x 3 N 4 /metal. It is preferable to do so.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、叙上の如く裏面電極の厚さを薄くで
きることから通常用いられているダイヤモンドカッタで
容易に素子分離ができ、さらに接地用電極と裏面電極間
の電気的な接続も完全に達成できる。これにより、接地
インダクタンスが小さく、高周波特性に優れたMMIC
を高歩留で再現性良く製造することができる顕著な利点
がある。
According to this invention, since the thickness of the back electrode can be reduced as described above, elements can be easily separated using a commonly used diamond cutter, and the electrical connection between the grounding electrode and the back electrode can also be completely established. It can be achieved. This results in an MMIC with low grounding inductance and excellent high frequency characteristics.
It has the remarkable advantage that it can be manufactured with high yield and good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図g −y gはこの発明にかかるMMICの製造
工程を示すいずれも断面図、第2図a−eは従来のMM
ICの製造工程を示すいずれも断面図、第3図はバイア
ホール内のAJ5の厚さを変えた場合のソース電極と裏
面電極の導通歩留を示す線図である。 11、101・・・動作層 12、102・・・抵抗層 13、103・・・オーム性接触層 14s、 104s・・・ソース電極 14d、 104d・・・ドレイン電極14g、104
g・・・ゲート電極 15a、 15b、 105a、 105b”・抵抗層
電極16a、 106a・・・キャパシタ下地電極16
b、 106b・・・キャパシタ上面電極17、107
・・絶縁層 18・・・バイアホールマスク層 19・・・バイアホール 20a、 20b・・・第1の金属層 21・・・第2の金属層 100・・・GaAs半導体基板 代理人 弁理士  井 上 −男 (αン 第1図ζ璽υl) 第1図(層ψ2) /Q2  103  tot  103第  2  因
  (ンの1ン
Fig. 1 g - y g are cross-sectional views showing the manufacturing process of the MMIC according to the present invention, and Fig. 2 a - e are cross-sectional views showing the manufacturing process of the MMIC according to the present invention.
Both are cross-sectional views showing the manufacturing process of the IC, and FIG. 3 is a diagram showing the conduction yield between the source electrode and the back electrode when the thickness of AJ5 in the via hole is changed. 11, 101... Operating layer 12, 102... Resistance layer 13, 103... Ohmic contact layer 14s, 104s... Source electrode 14d, 104d... Drain electrode 14g, 104
g...Gate electrodes 15a, 15b, 105a, 105b''/resistance layer electrodes 16a, 106a...Capacitor base electrode 16
b, 106b... Capacitor top electrode 17, 107
...Insulating layer 18...Via hole mask layer 19...Via holes 20a, 20b...First metal layer 21...Second metal layer 100...GaAs semiconductor substrate agent Patent attorney I Top - Man (αn 1st figure ζ璽υl) Figure 1 (layer ψ2) /Q2 103 tot 103 2nd cause (N's 1st

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の1主面に接地用電極を形成する工程、前記
半導体基板を所望厚さに薄層化する工程、前記半導体基
板の他主面の一部に開口を有するマスク層を形成する工
程、前記開口を通して前記半導体基板にエッチングを施
し前記接地用電極に到達する貫通孔を形成する工程、前
記半導体基板の他主面上とこれと非接続に貫通孔底に第
1の金属層を被着する工程、前記マスク層上の第1の金
属層をマスク層とともにリフトオフにより除去する工程
、前記半導体基板を前記第1の金属層が露出するように
薄層化する工程、前記半導体基板の他主面に第2の金属
層を形成しこれを前記貫通孔底の第1の金属層と接続さ
せる工程を含む半導体集積回路の製造方法。
a step of forming a grounding electrode on one main surface of the semiconductor substrate, a step of thinning the semiconductor substrate to a desired thickness, a step of forming a mask layer having an opening on a part of the other main surface of the semiconductor substrate, etching the semiconductor substrate through the opening to form a through hole that reaches the grounding electrode; depositing a first metal layer on the other main surface of the semiconductor substrate and at the bottom of the through hole without connection thereto; a step of removing the first metal layer on the mask layer together with the mask layer by lift-off, a step of thinning the semiconductor substrate so that the first metal layer is exposed; A method for manufacturing a semiconductor integrated circuit, including the step of forming a second metal layer on a surface and connecting the second metal layer to the first metal layer at the bottom of the through hole.
JP2461687A 1987-02-06 1987-02-06 Manufacture of semiconductor integrated circuit Pending JPS63193545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2461687A JPS63193545A (en) 1987-02-06 1987-02-06 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2461687A JPS63193545A (en) 1987-02-06 1987-02-06 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63193545A true JPS63193545A (en) 1988-08-10

Family

ID=12143082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2461687A Pending JPS63193545A (en) 1987-02-06 1987-02-06 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63193545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602054A (en) * 1990-01-24 1997-02-11 Harris Corporation Method for formation of a well in a dielectrically isolated island
US6756304B1 (en) * 1999-07-30 2004-06-29 Thales Avionics S.A. Method for producing via-connections in a substrate and substrate equipped with same
JP2009094540A (en) * 2001-08-24 2009-04-30 Schott Ag Process for producing contact and printed circuit package
JP2010141149A (en) * 2008-12-12 2010-06-24 Panasonic Corp Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602054A (en) * 1990-01-24 1997-02-11 Harris Corporation Method for formation of a well in a dielectrically isolated island
US6756304B1 (en) * 1999-07-30 2004-06-29 Thales Avionics S.A. Method for producing via-connections in a substrate and substrate equipped with same
JP2009094540A (en) * 2001-08-24 2009-04-30 Schott Ag Process for producing contact and printed circuit package
JP2010141149A (en) * 2008-12-12 2010-06-24 Panasonic Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5343071A (en) Semiconductor structures having dual surface via holes
US6013926A (en) Semiconductor device with refractory metal element
JP2596962B2 (en) Semiconductor device and manufacturing method thereof
WO1989006444A2 (en) Vertical power transistor and fabrication methods
JPH0640591B2 (en) Monolithic semiconductor structure and its manufacturing method.
JPS63193545A (en) Manufacture of semiconductor integrated circuit
JPH0732257B2 (en) Monolithic semiconductor structure
JP2522159B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63276276A (en) Manufacture of semiconductor device
US5726468A (en) Compound semiconductor bipolar transistor
JPH11214405A (en) Sic semiconductor device and its manufacture
JPS62237763A (en) Manufacture of semiconductor device
JP2712340B2 (en) Method for manufacturing semiconductor device
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPH0352239A (en) Manufacture of semiconductor device
JPH03225861A (en) Manufacture of semiconductor integrated circuit
JP2001189322A (en) High-frequency semiconductor device and manufacturing method therefor
JPH11150113A (en) Manufacture of semiconductor device
JP3488833B2 (en) Method for forming field effect transistor
JP3353767B2 (en) Method for manufacturing semiconductor device
JP2863216B2 (en) Method for manufacturing semiconductor device
JPH0320063B2 (en)
JPH079980B2 (en) Method for manufacturing semiconductor device
JP3393797B2 (en) Field effect transistor
JPS63133680A (en) Manufacture of field effect transistor