JPS6319329B2 - - Google Patents

Info

Publication number
JPS6319329B2
JPS6319329B2 JP57115623A JP11562382A JPS6319329B2 JP S6319329 B2 JPS6319329 B2 JP S6319329B2 JP 57115623 A JP57115623 A JP 57115623A JP 11562382 A JP11562382 A JP 11562382A JP S6319329 B2 JPS6319329 B2 JP S6319329B2
Authority
JP
Japan
Prior art keywords
die
polymer
rotating
laminate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57115623A
Other languages
Japanese (ja)
Other versions
JPS5878730A (en
Inventor
Bento Rasumutsusen Oore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB29807/74A external-priority patent/GB1526722A/en
Priority claimed from AU48965/79A external-priority patent/AU530134B2/en
Application filed by Individual filed Critical Individual
Publication of JPS5878730A publication Critical patent/JPS5878730A/en
Publication of JPS6319329B2 publication Critical patent/JPS6319329B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/19Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/20Articles comprising two or more components, e.g. co-extruded layers the components being layers one of the layers being a strip, e.g. a partially embedded strip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/22Articles comprising two or more components, e.g. co-extruded layers the components being layers with means connecting the layers, e.g. tie layers or undercuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/33Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles with parts rotatable relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、積層ポリマーシートの押出し方法に
関するものである。 結晶性ポリマーの一軸配向フイルムの交差積層
品は、種々の強度特性の、一般には著しく利点で
あるところの組合せを与えることが知られてい
る。そのうち最も驚くべきものは、特に、切込み
からの引裂きの間に層がノツチ(notch)の周り
で剥離できるほど十分に、層間の接着が弱い時の
引裂伝達強度である(米国特許第3322613号参
照)。その結果として積層品は種々の方向に引裂
かれ即ち流れ、そしてノツチの効果が失われてし
まう。このことは“フオーク効果”と呼ばれる。
この種のシートは各種の頑丈な物、例えばタール
塗付防水布の代替品、カバーシート、丈夫なバツ
グ、丈夫な包装用フイルムのために特に有用であ
る。 上記のようなシートを製造する最も適当な方法
は英国特許第816607号明細書に記載されており、
これは、筒状のフイルムの分子をその長手方向に
強く配向すること、それを螺旋状に切断すること
及びそれを広げてはすの方向の(例えば45゜の)
配向をもつ平らなフイルムとすること、及び次い
でこのフイルムを、同様にして製造した平らなフ
イルムと、それぞれの配向の方向が十字交差する
ようにして連続的に積層することによりなる。 三つの異なる方向の配向をもつ三層、例えば長
手方向に配向された一つの層を上述のはすの方向
に配向された二つの層で積層して得られるものを
用いることにより、所与の厚さで引裂伝達抵抗が
著しく増加することが知られている。 上記方法(及び得られる製品)の欠点の一つは
本当に薄いフイルムを作ることが実際に不可能で
あることである。そのため高強度だが低重量のフ
イルムを作ることの経済的有利性が十分に達成さ
れない。実際に、螺旋切断と積層を行ないうる各
層の最低重量は約30g/m2である。即ち2層積層
品の場合、下限は約60g/m2であり、3層積層品
の場合(これは前述のものであり、引裂停止効果
をうまく用いるために必要である)、それは約90
g/m2である。 第二の欠点は螺旋切断に関係する重い機械部品
とボビンの回転に起因する幅の実際上の制限であ
る。一般には幅は約1.5〜2mに制限される。 第三の欠点は交差積層品の或る種のエネルギー
吸収値に関係がある。高速度引裂(エルメンドル
フ引裂試験)及び低速と高速の引張試験(TEA
強度及びエルメンドルフ衝撃強さ)に関しては比
較的低いエネルギー吸収が観察された。層のきわ
めて異方性の性質は不利のようである。例えばこ
の種の2プライ交差積層品を一つの層の配向の方
向に平行に引張ると、降伏点と破断点での伸度は
本質的にその層により決まる。 前述の欠点を克服し、かつ同じ又は似た特性を
もつ製品の安価な製造方法を提供するための初期
の研究は、本件発明者の英国特許第1261397号明
細書に記載されている。この明細書には、回転す
る部分を有するダイ(die)により交差構造体を
製造し、同時に同じダイ中で柔軟でかつ弱い中間
ゾーンを、共押出しすることにより形成する方法
が開示されている。この方法は、比較的柔軟なポ
リマー層と一つおきに、結晶性ポリマーの同心又
は殆ど同心ないくつかの層を共押出し
(coextruding)すること、及び列をなして配置
されかつ凹壁面から内方へ向けてまた凸壁面から
外方へ向けて円筒状ダイ壁に固定された歯により
該層をダイの中で分割することを包含する。該ダ
イ部品は反対方向に回転され、それにより層はシ
ートの面近傍で左回り螺旋状にそしてシートの他
方の面近傍で右回り螺旋状に分割される。コーミ
ング(combing)はフイルムの中ほどまで行う或
いは表面近傍の部分に限ることもできる。コーミ
ング工程前のポリマーの共押出しは柔軟かつ弱い
中間ゾーンを与えるように適応される。 この方法により押出されたフイルムはわずかし
か分子配向されてない物質からなる。しかし、一
つおきの“第一ポリマーの”堅い層と歯により直
線状パターンでフイラメントに分割された“第二
ポリマーの”柔かい層は、シートの各半分に一方
向に裂ける即ち流れる性向を与える。そして両面
における直線状のパターンが互に交差し、かつは
く離する性向が与えられているので真正の交差積
層品における“フオーク”効果に類似した引裂停
止効果が得られる。 上記明細書は更に、二軸に配向された層を与え
る代りに、分子配向が各層においてほぼ一軸であ
り異つた層の配向の方向が互に交差するような条
件下で積層品を二軸方向に延伸することを提案し
ている。そのような一軸配向を得るために、第二
の物質は非常に降伏(yield)しやすくなければ
ならない。例えば第一の物質が固体であるときに
第二の材料はまだ溶融または半溶融状態にある。
そして第一の物質のフイラメントは二軸の引張り
により真直に保たれなければならない。 上述の方法は交差積層品において比較的薄い厚
みと比較的広い幅を得るという問題を原理的には
解決するけれど、後の技術的開発においていくつ
かの本質的な困難な問題が見い出された。その押
出し方法は、高い引裂伝達強度を有し、しかし配
向がないため低い衝撃強度を有する非配向フイル
ムを製造するために商業的に実行可能であること
が確認された。しかしながら、本質的な欠点が、
引続く二軸延伸との関連で見い出された。 上記の明細書でも指摘したように、延伸のため
に必要であるフアイバーの細さを得るために、押
出しダイ中で比較的多数の歯を列を用いなければ
ならない。 しかしこのことはダイの保守を困難にし、また
歯の間にポリマーの塊の“ぶらさがり”を頻繁に
ひき起す。更に、ダイの一方の半部の歯と他方の
半部の歯との間の相互作用のため、過剰量の柔軟
な中間層物質を使用するか或いはシートの両面の
比較的浅い表面領域にコーミングを制限すること
が必要であつた。更に、前述したほぼ一軸の分子
配向を得るために必要な二軸延伸条件を確立しか
つ維持することは非常に困難であつた。 上記の十字形交差−コーミング方法により作ら
れる積層品では、先細なダイ壁により生じる長手
方向延伸と前記壁の逆回転により生じる横方向延
伸を組合わせた結果として部分的な溶融延伸が行
われる。しかし、層が繊維質構造に分割される、
層のコーミングは、溶融延伸の主方向と異なる方
向に行われる。この差異は積層品の中央で特に著
しい。まさに積層品の中央では溶融延伸の主方向
が押出し方向に平行であるのに対し、コーミング
は押出し方向に対し或る角度を形成する方向に行
われる。 溶融延伸の主方向とコーミグ方向の間の差異に
より繊維質構造に一定のノツチ効果が生じ、この
ため最終製品の強度が減少する。 本発明に従う、少くとも二つの層の積層品を製
造する方法は、一つの出口スロツトをもつ環状の
押出しダイで二つの溶融ポリマー物質を互いに相
対的に回転する少なくとも二つのほぼ同心の管状
流れで押し出し、前記押出し中管状流れの各々
を、溶融延伸方向が相互に十字形に交差するよう
に実質的に一方向に溶融延伸し、層剥離の助長の
ために選択された第三層のポリマー物質を、十字
形に交差する溶融配向を達成した前記二つの管状
流れの間に共押し出しし、ダイ中で別々の延伸さ
れた管状流れを第三層のポリマー物質を間に挟ん
で結合して一つの共通の流れにし、次いでポリマ
ーが溶融状態に留まつている間に共通の流れを前
記ダイから、ほぼ同心の隔置された二つの円筒壁
により区画された出口スロツトを通して、前記円
筒壁をほぼ対向する相対方向に回転させながら排
出し、それにより前記円筒壁に隣接する共通の押
し出された流れの対向面を、前記出口スロツトを
通過する間に前記の回転する壁のこすり作用にさ
らして、延伸されたポリマー分散物を共通の流れ
の厚さを通じて周方向に剪断し、共通の押し出さ
れた流れを前記出口スロツトからの出現後固化
し、その際固化した積層品の結合は、積層品を引
き裂いたときにフイルムの局部的剥離を許すほど
充分弱くなつており、そして最後にこのように固
化した管状シートを収集する段階からなる。 好ましくは積層品がそこを通つて押出される出
口スロツトの向い合うサイドは互に相対的に回転
される。何故ならそれは押出しの間に積層品に剪
断を受けさせることになるからである。 筒状の層は好ましくは、原特許出願特願昭50−
82361(特公昭59−32307号公報参照)に詳細に記
載した様に、溶融延伸により、溶融延伸の方向に
沿つたポリマーのグレーン(grain:筋目)を作
るために、重合体母組織中の一つのポリマーの分
散物から形成される。即ちそこに説明されるよう
に、積層品を固化しフイルムとした後に引裂きの
おこる主方向を持つフアイバー状のグレーン構造
を得ることができる。 二層は本発明の方法により、異つた方向に、し
かし実質的に同じ角速度をもつて回転されうる。 高い引裂き強さが望ましい場合には、積層品の
二層間の接着は、積層品が引裂きを受けたときに
積層品の局部的剥離を許すほど十分弱くなければ
なならない。 望ましい弱い接着を作る一つの方法は、互に弱
く粘着するポリマーの層を形成することを包含す
る。別の方法は粘着強度を調整するために層の間
にポリマーを共押出しすることを含む。粘着力調
整ポリマーは、ポリマー物質即ち筒状層を形成す
る物質に対し弱い粘着力をもつエラストマーであ
ることができる。粘着力調整ポリマーは、しま状
に押出すか、または他の方法で断続させることが
できる。 局部的剥離を許すことが所望されようとされま
いと、層間に共押出しされるポリマーはエラスト
マーか、または通常軟質のポリマーであるのが有
利である。 各層は流れの配列であることができ、これは勿
論層を形成するために合流する。 溶融延伸は、例えば、押出し中、溶融状態の筒
状層の厚さを減らすことにより行うか、あるいは
物質の流れまたは溶融物質の流れの配列を、例え
ば第1図について後述するような、高い流れ抵抗
を引起こす一列の仕切りを通過させることにより
行うことができる。 延伸の方向を互に交差させて層を合体させるに
先立ち、各層はそれ自体二又はそれ以上の別々の
層から形成されていてもよい。即ち、異なるポリ
マーの二又はそれ以上に筒状層を共通の回転する
ダイ部分に一緒に通すこと、及びそれらを同じ回
転するダイ部分の共通室中に共押し出しするこ
と、それにより混成の回転される筒状層を形成す
ることができる。そのような方法は添付の第2図
に図示され、そこでは共通の回転ダイ部分内の共
押出しは環状のエツジ上で超こる。回転する配置
と関連してエツジの上を共押出しすることは特に
有利であることが見い出された。 好ましくは固化後の積層品は固体状態で、少く
とも二つの分離された段階で二軸延伸され、各段
階は本質的に一方向的である。この延伸は実質的
に室温において実施されうる。一般にそれは、例
えば機械方向に平行な又は小さな角度をもつ溝を
有する溝付ローラの間に一回通すことにより、実
質的にシートの長手方向に伸びる線にそつて圧力
をかけることによつて、一時的に均等に分布され
る、実質的に長手方向のひだの形状をなすようシ
ートを延伸することを包含する。押出し物を延伸
するこの方法はこれと同時に分割された出願に記
載され、かつ特許請求されている。そして、この
方法はそこに記載されるように横方向の延伸を与
える。横方向の延伸が完了したあと、長手方向の
延伸を行なうことができ、好ましくは、相当な横
方向の収縮が長手方向の延伸の間に行われる。 筒状の流れのためのポリマー物質は主としてポ
リオレフインからなることができる。好ましく
は、少くとも一つの筒状流れが、主として結晶化
しうるポリプロピレン又は高密度ポリエチレンよ
りなる、接着強度を調整するためのポリマーが筒
状流れの間に共押出しされる場合、このための適
当な物質はエチレン・プロピレンゴムである。 二軸延伸を行う方法の詳細、層物質のために用
いられうるポリマー物質及び本発明の方法により
得られる製品の特性については、上記の共に係属
中の出願に、より詳しく記載されている。 本発明の方法を実施するための装置は、出口ス
ロツトをもつ環状の共押出しダイと、各層が溶融
ポリマー物質の一つの流れ或いは流れの配列より
構成される、少くとも二つの同心の筒状層をスロ
ツトの方に供給するための手段と、ダイ中で層を
互に相対的に回転させ、かつ同時に各層を実質的
に一方向に溶融延伸するための手段と、層が出口
スロツトを通過する直前に、溶融延伸の方向が互
に交差するようにして、ダイ中で層を接着するた
めの手段とを包含する。好ましくは、ダイ中で層
を相対的に回転させる手段は、出口スロツトの反
対側を相対的に回転させる手段を包含する。 前記の装置は、また層間の接着を調整するため
のポリマーを筒状層の間に共押出しするための手
段も含むのが望ましい。 本発明を、添付図面を引用してより詳細に記載
する。 第1図は本発明に従う押出しダイの断面図であ
る。 第2図は、二つの反対方向に回転する出口スロ
ツト及び各スロツトを通過して二つの層を押出す
手段を備える、本発明に従うもう一つの押出しダ
イの原理を種々の断面で透視図的に示すものであ
る。 第3図は好ましい冷間延伸方法の工程図であ
る。 第4図は、すじ(striation)と呼ばれるでこぼ
したゾーンで横方向の延伸を行う、みぞを刻んだ
ローラの細部である。 第5図は、第3図の工程に従う交差延伸された
フイルムのすじのパターンとその中の配向を拡大
スケールで概略スケツチしたものである。 第6図は、実際に顕微鏡で観察された、第5図
のフイルムの拡大断面図である。但し、判りやす
くするために、厚みは巾の倍のスケールで示され
ている。 第1図に示される押出しダイは使用できるもの
の一例であり、その中で二つのポリマー/ポリマ
ー分散物が、反対方向に回転する二列の仕切りを
通過し、共通収集室内に押出される。二つの分散
物流1と2は、ダイの下部にある入口チヤネルを
通つて、環状路6中の二つの壁の中の環状チヤネ
ル4と5に各々供給される。環状路6の中では二
つのリング7と8が駆動手段例えば歯車と歯(図
示されていない)により反対方向に動かされる。
二つのリング7と8は各々、仕切り9と10の列
を備え、それに二列の開口部11と12が形成さ
れ、そこを通過して二つの分散物は、二つの部分
13と14から成り出口スロツト16で終る収集
室15中に押出される。単純化のために仕切り9
と10は半径方向に拡大して示されているが、実
際には、それらは押出されたシートにおけるダイ
による線条の形成を阻止するように半径方向に対
しある角度で配置される。二つの回転リング7と
8を通して押出すことにより、二つの分散物は
各々延伸され(attenuated)、そしてそれにより
フイブリル状の形態及び即ち先に述べたような引
裂きの方向性を獲得する。その後、延伸された流
れの二列は収集室15で合体し、交差するフアイ
バー状の組織を有する積層品を形成する。この積
層品の厚さは出口スロツト16を通過することに
より及び更に通常のブローダウン及びブロー工程
により減少される。この後、フイルムは比較的低
温で長手方向と横方向に延伸される。二つの異な
るフアイバーの方向のため、フイルムの各半部は
引裂きのときに異なる方向に裂ける傾向を示す。
二つの各半部を形成する物質は、それらが互に弱
く接着するように選択しても良い。それによつ
て、引裂きが起こる切込みの周りの小範囲で物質
ははく離し、これがノツチ効果を失わしめるであ
ろう。 第2図に示したダイは四つの主要部、即ち後に
説明するようにポリマーの環状分配のための固定
入口部17、固定支承部18、及び一つの出口オ
リフイス21を形成する二つの回転部19と20
からなる。ポリマーブレンドAとBは入口部17
に供給され、そこで同心の環状流に分配される。
Aは環状路22と23を通つて押出される。この
ために一つ又は二つの押出機を用いることができ
る。Bは環状路24を通つて押出される。一様な
分配のために、22,23及び24は分配じやま
板又は他の分配手段(図示省略)を備える。 平明化のために、支承部18、回転部19及び
回転部20の間の軸受や密封体は図示してない。
19と20のための駆動部も図示してない。 ポリマー流は、三つの環状路22,23及び2
4から三つの環状チヤネル列を通つて支承部18
を通過する。各チヤネルは各々環状室28,29
及び30と連通している。 二つの回転部19と20は好ましくは、殆ど等
角速度で但し矢印31と32により示したように
異なる方向に回転される。各々の回転部自体は、
一層がAから成り、他の一層がBからなるところ
の二層のための共押出しダイである。平明化のた
めに、流れの説明のための引用数字は部分20に
ついてのみ示すが部分19を通る流れも同様であ
る。ポリマーブレンドAは室29からチヤネル3
3を通つて回転部に入り、一方ポリマーブレンド
Bは室30からチヤネル34を通つて回転部に入
る。回転部の内部には、それぞれチヤネル33と
34に連通していてかつ互に薄い環状壁37によ
り分離される二つの環状路35と36がある。 壁37の縁を通過して、AとBは出口オリフイ
ス21で終る環状収集室38中で合体する。環状
路35と収集室38を通過することにより流体シ
ートの厚さは非常に減少され、それにより該物質
は延伸される。 チヤネル33と34の隣接するチヤネルの間の
仕切はそれぞれ図示のように流線型にすべきであ
る。明瞭化のために、図ではこれらを半径方向に
拡大してあるが、実際には、ダイによる線条を生
ずる傾向を減少するために、半径方向とある角度
を持つて構成されねばならない。 “ポリマーA”は好ましくは、二つの非混和性
の又は半混和性のポリマーのブレンドである。一
方、“ポリマーB”はシートに適当なはく離する
性向を与えるように適応されるのが望ましい。そ
れ故、ポリマーBは二つの層Aに対し弱い接着剤
であるエラストマーからなることができ、すじ状
に押出すことができる。しかし、チヤネル22と
23に異なる二つのポリマーブレンドを供給する
場合には、ポリマーBは二つのポリマーブレンド
に対し比較的強力な接着力をもつ接着剤でもよ
く、そしてその場合にはそれをすじ状に押出すか
或いは断続的に押出さねばならない。 好ましい冷間延伸方法は第3図の工程に示され
ており、そこで区域“Q”は横方向延伸ラインで
あり、区域“R”は長手方向延伸ラインである。
区域“Q”中のローラ系は被駆動ニツプローラ7
1、被駆動溝付ローラ72、遊びローラ73及び
バナナに似た長手方向断面をもつローラ74から
なる。バナナローラ74は各段階のあとで横方向
延伸により生じた波形の輪かくを部分的に引き伸
すのに役立つ。フイルム79は、遊びローラ75
を越えて、長手方向延伸ラインである区域“R”
に入る。そこでフイルムは、延伸により発生した
熱を除去し、かつ適当な延伸温度例えば20゜〜40゜
に維持するのに役立つ水浴76を通過して引張ら
れる。最後にボビン77に巻かれる。 矢印78は機械方向を示す。 第4図では、一対の被駆動ローラ72を、ロー
ラ72の歯80の間で押圧され、延伸されている
フイルム70と共に詳細に示す。第5図におい
て、フイルム79のすじと中の矢印の相対的
長さは第3図と第4図に示される二軸延伸方法に
より達成される配向の相対的な量を示す。 第5図並びに第6図において、数字とは
各々、上で述べたすじAとBを示す。これは一般
に色々な巾を持ち、一様でない特性を有する。さ
らに、フイルム79の外側層81と82は、薄い
中間層83に対して必ずしも対称でないことに留
意すべきである。この非対称性が引裂フオークを
作るのにさらに役立つ。 以下は本発明の実施例である。 ポリオレフインブレンドに基づく一連のシート
を第2図に示した押出しダイにより製造した。ダ
イの出口スロツト21の直径は130mm、巾は1mm
である。収集室38の最大幅は4mmであり、これ
は収集室を通つて出口スロツトへの経過の間の延
伸の量が好適値よりも小さかつたことを意味す
る。押出し温度は240℃である。 筒状フイルムの長手方向に沿つた切断のあと、
延伸は4〜8段階を用いてまず横方向に行われ、
その次2〜4段階を用いて長手方向に実施され
る。組成、平らな筒の幅(ブローレシオの尺度)、
延伸温度、延伸比及び効果を下記の表に示す。
“Nov”はNovolene即ちアタクチツク変態を比較
的多く含む気相重合ポリプロピレンを表わし、
“PE”は低密度ポリエチレンを表わし、“EPR”
はエチレン−プロピレンゴムを表わし“SA872”
“7823”及び“8623”は少含量の重合エチレンを
有するポリプロピレンの種々のタイプである。
EPR/PEはエチレン−プロピレンゴムと低密度
ポリエチレンの50:50ブレンドを意味する。
The present invention relates to a method for extruding laminated polymer sheets. Cross-laminates of uniaxially oriented films of crystalline polymers are known to provide a generally highly advantageous combination of various strength properties. The most surprising of these is the tear transfer strength, especially when the adhesion between the layers is weak enough that the layers can peel around the notch during tearing from the notch (see U.S. Pat. No. 3,322,613). ). As a result, the laminate tears or flows in various directions and the notches lose their effectiveness. This is called the "folk effect."
Sheets of this type are particularly useful for a variety of heavy-duty objects, such as tarpaulin replacements, cover sheets, heavy-duty bags, and heavy-duty packaging films. The most suitable method for manufacturing such sheets is described in British Patent No. 816607,
This involves strongly orienting the molecules of a cylindrical film in its longitudinal direction, cutting it into a spiral shape, and spreading it in a helical direction (e.g. 45°).
This is accomplished by forming an oriented flat film, and then successively laminating this film with similarly produced flat films such that the directions of their respective orientations cross each other. By using three layers with orientation in three different directions, such as those obtained by laminating one layer oriented in the longitudinal direction with the two layers oriented in the helical direction described above, It is known that tear propagation resistance increases significantly with thickness. One of the drawbacks of the above method (and the resulting product) is that it is practically impossible to make really thin films. As a result, the economic advantages of making high strength but low weight films are not fully realized. In practice, the minimum weight of each layer that can be spiral cut and laminated is about 30 g/m 2 . That is, for two-layer laminates the lower limit is about 60 g/m 2 and for three-layer laminates (which is what was mentioned above and is necessary for successful use of the tear arrest effect) it is about 90 g/m 2
g/ m2 . A second drawback is the practical limitations on width due to the heavy mechanical parts involved in helical cutting and the rotation of the bobbin. Generally the width is limited to about 1.5-2 m. A third drawback is related to certain energy absorption values of cross-laminates. High speed tear (Elmendorf tear test) and low and high speed tensile test (TEA
A relatively low energy absorption was observed in terms of strength and Elmendorf impact strength). The highly anisotropic nature of the layer appears to be a disadvantage. For example, when a two-ply cross-laminate of this type is pulled parallel to the direction of orientation of one layer, the yield point and elongation at break are essentially determined by that layer. Initial efforts to overcome the aforementioned drawbacks and to provide a cheaper method of manufacturing products with the same or similar properties are described in the inventor's British Patent No. 1,261,397. This document discloses a method of manufacturing a cross structure in a die with rotating parts and simultaneously forming a flexible and weak intermediate zone in the same die by coextrusion. This method involves coextruding several concentric or nearly concentric layers of crystalline polymer, with every other layer of relatively flexible polymer, and infiltration from concave wall surfaces arranged in rows. and dividing the layer within the die by teeth fixed to the cylindrical die wall in the direction and outwardly from the convex wall surface. The die parts are rotated in opposite directions, thereby dividing the layers in a left-handed spiral near the face of the sheet and in a right-handed spiral near the other face of the sheet. Combing can be carried out halfway through the film or can be limited to areas near the surface. Coextrusion of the polymer before the combing step is adapted to provide a flexible and weak intermediate zone. Films extruded by this method consist of material with little molecular orientation. However, every other hard layer of "first polymer" and a soft layer of "second polymer" divided into filaments in a linear pattern by teeth give each half of the sheet a tendency to tear or flow in one direction. . The linear patterns on both sides intersect with each other and have a tendency to delaminate, resulting in a tear arrest effect similar to the "fork" effect in true cross-laminates. The above specification further provides that, instead of providing biaxially oriented layers, the laminate is biaxially oriented under conditions such that the molecular orientation is approximately uniaxial in each layer and the directions of orientation of the different layers cross each other. It is proposed that it be extended to In order to obtain such a uniaxial orientation, the second material must be very susceptible to yield. For example, when the first substance is solid, the second material is still in a molten or semi-molten state.
The filament of the first material must then be held straight by biaxial tension. Although the above-mentioned method solves in principle the problem of obtaining relatively small thicknesses and relatively wide widths in cross-laminated products, some fundamental difficulties were found in later technical developments. The extrusion method was determined to be commercially viable for producing non-oriented films with high tear transfer strength, but low impact strength due to the lack of orientation. However, the essential drawback is that
It was found in connection with subsequent biaxial stretching. As also pointed out in the above specification, a relatively large number of rows of teeth must be used in the extrusion die in order to obtain the necessary fiber thinness for drawing. However, this makes maintenance of the die difficult and frequently causes polymer chunks to "hang" between the teeth. Furthermore, due to the interaction between the teeth on one half of the die and the teeth on the other half, it is necessary to use an excessive amount of flexible interlayer material or to comb a relatively shallow surface area on both sides of the sheet. It was necessary to limit the Furthermore, it has been very difficult to establish and maintain the biaxial stretching conditions necessary to obtain the nearly uniaxial molecular orientation described above. In laminates made by the cruciate cross-combing method described above, partial melt stretching results from a combination of longitudinal stretching caused by the tapered die wall and transverse stretching caused by counter-rotation of said walls. However, the layers are divided into fibrous structures,
Combing of the layers is carried out in a direction different from the main direction of melt drawing. This difference is particularly noticeable in the center of the laminate. Just in the middle of the laminate, the main direction of melt drawing is parallel to the extrusion direction, whereas the combing takes place in a direction forming an angle to the extrusion direction. The difference between the main direction of melt drawing and the Komig direction creates a certain notch effect in the fibrous structure, which reduces the strength of the final product. A method of manufacturing a laminate of at least two layers according to the present invention comprises at least two substantially concentric tubular streams rotating two molten polymeric materials relative to each other in an annular extrusion die having one exit slot. extrusion, melt-stretching each of the tubular streams during said extrusion in substantially one direction such that the melt-stretching directions crisscross each other; and a third layer of polymeric material selected to facilitate delamination; is coextruded between the two tubular streams achieving criss-crossing melt orientation, and the separate elongated tubular streams are combined in a die with a third layer of polymeric material in between. two common streams and then, while the polymer remains in the molten state, pass the common streams from the die through an exit slot defined by two generally concentric spaced apart cylindrical walls. discharging while rotating in opposite relative directions, thereby exposing opposing surfaces of a common extruded flow adjacent to said cylindrical wall to the rubbing action of said rotating wall during passage through said outlet slot; The stretched polymer dispersion is sheared circumferentially through the thickness of a common stream, and the common extruded stream is solidified after emerging from said exit slot, with the bonding of the solidified laminates forming a laminate. It is sufficiently weakened to allow localized delamination of the film when torn, and finally consists of collecting the thus solidified tubular sheet. Preferably, opposite sides of the exit slot through which the laminate is extruded are rotated relative to each other. This is because it will subject the laminate to shear during extrusion. The cylindrical layer is preferably
82361 (see Japanese Patent Publication No. 59-32307), in order to create polymer grains along the melt-stretching direction by melt-stretching, a portion of the polymer matrix structure is formed from a dispersion of two polymers. Thus, as explained therein, after solidification of the laminate into a film, a fibrous grain structure with the main direction of tearing can be obtained. The two layers can be rotated in different directions but with substantially the same angular velocity by the method of the invention. If high tear strength is desired, the adhesion between the two layers of the laminate must be weak enough to allow localized delamination of the laminate when the laminate is subjected to tearing. One method of creating the desired weak adhesion involves forming layers of polymers that weakly adhere to each other. Another method involves coextruding polymers between layers to adjust adhesive strength. The adhesion-modifying polymer can be an elastomer that has low adhesion to the polymeric material, ie, the material forming the tubular layer. The tack-modifying polymer can be extruded in stripes or otherwise interrupted. Whether or not it is desired to permit localized exfoliation, the polymer coextruded between the layers is advantageously an elastomer or a normally soft polymer. Each layer can be an array of streams, which of course merge to form a layer. Melt drawing can be carried out, for example, by reducing the thickness of a molten tubular layer during extrusion, or by changing the flow of material or the arrangement of the flow of molten material to a high flow rate, e.g., as described below with respect to FIG. This can be done by passing through a row of partitions that create resistance. Each layer may itself be formed from two or more separate layers prior to intersecting the directions of stretch and combining the layers. That is, passing two or more tubular layers of different polymers together through a common rotating die section and coextruding them into a common chamber of the same rotating die section, thereby forming a composite rotating die section. A cylindrical layer can be formed. Such a method is illustrated in the accompanying FIG. 2, in which coextrusion within a common rotating die portion occurs over an annular edge. It has been found that coextrusion over the edges in conjunction with a rotating arrangement is particularly advantageous. Preferably, the laminate after solidification is biaxially stretched in the solid state in at least two separate stages, each stage being essentially unidirectional. This stretching can be carried out at substantially room temperature. Generally, it is applied by applying pressure along a line extending substantially in the longitudinal direction of the sheet, for example by a single pass between grooved rollers having grooves parallel to the machine direction or at a small angle. It involves stretching the sheet into the shape of temporally evenly distributed, substantially longitudinal pleats. This method of drawing extrudates is described and claimed in a concurrently filed application. This method then provides lateral stretching as described therein. After the transverse stretching is completed, longitudinal stretching can be carried out, and preferably significant transverse contraction occurs during the longitudinal stretching. The polymeric material for the tubular flow can consist primarily of polyolefins. Preferably, at least one tube stream consists primarily of crystallizable polypropylene or high-density polyethylene, if a polymer for adjusting the adhesive strength is coextruded between the tube streams, suitable for this purpose. The material is ethylene propylene rubber. Details of the method for carrying out biaxial stretching, the polymeric materials that can be used for the layer materials and the properties of the products obtained by the method of the invention are described in more detail in the co-pending applications mentioned above. The apparatus for carrying out the method of the invention comprises an annular coextrusion die having an exit slot and at least two concentric cylindrical layers, each layer consisting of a stream or array of streams of molten polymeric material. means for feeding the layers toward the slot, means for rotating the layers relative to each other in the die and simultaneously melt-drawing each layer substantially in one direction, the layers passing through the exit slot. and means for adhering the layers in the die so that the directions of melt-stretching intersect each other immediately before. Preferably, the means for relatively rotating the layers in the die includes means for relatively rotating opposite sides of the exit slot. Preferably, the apparatus also includes means for coextruding a polymer between the tubular layers to adjust the adhesion between the layers. The invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of an extrusion die according to the invention. FIG. 2 shows, in various cross-sections, the principle of another extrusion die according to the invention, comprising two counter-rotating exit slots and means for extruding two layers through each slot; It shows. FIG. 3 is a process diagram of a preferred cold stretching method. FIG. 4 is a detail of a grooved roller that provides transverse stretching in uneven zones called striations. FIG. 5 is a schematic sketch on an enlarged scale of the striation pattern and orientation therein of a cross-stretched film according to the process of FIG. FIG. 6 is an enlarged cross-sectional view of the film shown in FIG. 5, which was actually observed under a microscope. However, for ease of understanding, the thickness is shown on a scale twice the width. The extrusion die shown in Figure 1 is one example of one that can be used, in which two polymers/polymer dispersions are extruded through two rows of partitions rotating in opposite directions and into a common collection chamber. The two dispersed streams 1 and 2 are fed through inlet channels in the lower part of the die into annular channels 4 and 5 in the two walls of the annular channel 6, respectively. Within the annular channel 6, the two rings 7 and 8 are moved in opposite directions by drive means, such as gears and teeth (not shown).
The two rings 7 and 8 are each provided with a row of partitions 9 and 10, in which two rows of openings 11 and 12 are formed, through which the two dispersions are formed, consisting of two parts 13 and 14. It is extruded into a collection chamber 15 terminating in an outlet slot 16 . Divider 9 for simplicity
and 10 are shown radially enlarged, but in reality they are positioned at an angle to the radial direction to prevent the formation of striations by the die in the extruded sheet. By extruding through the two rotating rings 7 and 8, the two dispersions are each attenuated and thereby acquire a fibrillar morphology and thus a tear direction as mentioned above. The two lines of elongated streams then combine in the collection chamber 15 to form a laminate with an intersecting fiber-like structure. The thickness of this laminate is reduced by passing through the exit slot 16 and further by conventional blowdown and blowing steps. After this, the film is stretched longitudinally and transversely at relatively low temperatures. Because of the two different fiber orientations, each half of the film exhibits a tendency to tear in different directions upon tearing.
The materials forming each of the two halves may be selected such that they weakly adhere to each other. Thereby, the material will flake off in a small area around the notch where tearing occurs, which will cause the notch effect to be lost. The die shown in FIG. 2 has four main parts: a fixed inlet part 17 for annular distribution of the polymer, a fixed bearing part 18, and two rotating parts 19 forming one outlet orifice 21, as will be explained later. and 20
Consisting of Polymer blends A and B are inlet 17
where it is distributed into concentric annular streams.
A is forced through the annular channels 22 and 23. One or two extruders can be used for this purpose. B is forced through the annular passage 24. For uniform distribution, 22, 23 and 24 are equipped with distribution boards or other distribution means (not shown). For reasons of clarity, bearings and seals between the bearing part 18, the rotating part 19 and the rotating part 20 are not shown.
The drives for 19 and 20 are also not shown. The polymer flow passes through three annular passages 22, 23 and 2
4 to 3 annular channel rows through the bearing part 18
pass through. Each channel has an annular chamber 28, 29, respectively.
and 30. The two rotating parts 19 and 20 are preferably rotated with almost constant angular velocity but in different directions as indicated by arrows 31 and 32. Each rotating part itself is
A coextrusion die for two layers, one layer consisting of A and the other layer consisting of B. For the sake of clarity, the reference numbers for the flow description are shown only for section 20, but the flow through section 19 is similar. Polymer blend A flows from chamber 29 to channel 3.
3 into the rotating section, while polymer blend B enters the rotating section from chamber 30 through channel 34. Inside the rotating part there are two annular passages 35 and 36, which communicate with channels 33 and 34, respectively, and are separated from each other by a thin annular wall 37. Passing through the edge of wall 37, A and B merge in an annular collection chamber 38 terminating in exit orifice 21. By passing through the annular channel 35 and the collection chamber 38, the thickness of the fluid sheet is greatly reduced, thereby stretching the material. The partitions between adjacent channels 33 and 34 should each be streamlined as shown. Although these are shown enlarged radially in the figures for clarity, in reality they must be configured at an angle to the radial direction to reduce the tendency for die striations. "Polymer A" is preferably a blend of two immiscible or semi-miscible polymers. On the other hand, "Polymer B" is preferably adapted to provide the sheet with suitable release properties. Polymer B can therefore consist of an elastomer that is a weak adhesive to the two layers A and can be extruded into strips. However, if channels 22 and 23 are provided with two different polymer blends, polymer B may be an adhesive that has relatively strong adhesion to the two polymer blends, and in that case it It must be extruded continuously or extruded intermittently. A preferred cold stretching method is illustrated in the step of FIG. 3, where zone "Q" is the transverse stretch line and zone "R" is the longitudinal stretch line.
The roller system in area “Q” is the driven nip roller 7.
1. It consists of a driven grooved roller 72, an idler roller 73, and a roller 74 with a longitudinal cross section resembling a banana. Banana rollers 74 serve to partially stretch out the corrugated hoops produced by the transverse stretching after each step. The film 79 is attached to the play roller 75
Beyond, the area “R” is a longitudinal extension line.
to go into. The film is then drawn through a water bath 76 which serves to remove the heat generated by stretching and to maintain a suitable stretching temperature, such as 20 DEG to 40 DEG. Finally, it is wound onto a bobbin 77. Arrow 78 indicates the machine direction. In FIG. 4, a pair of driven rollers 72 are shown in detail with the film 70 being pressed and stretched between the teeth 80 of the rollers 72. In FIG. 5, the relative lengths of the streaks of film 79 and the arrows therein indicate the relative amounts of orientation achieved by the biaxial stretching method shown in FIGS. 3 and 4. In FIGS. 5 and 6, the numbers indicate the above-mentioned lines A and B, respectively. It generally has varying widths and non-uniform properties. Additionally, it should be noted that the outer layers 81 and 82 of the film 79 are not necessarily symmetrical with respect to the thin middle layer 83. This asymmetry further helps in creating a tear fork. Below are examples of the invention. A series of sheets based on polyolefin blends were produced using the extrusion die shown in FIG. The diameter of the die exit slot 21 is 130 mm and the width is 1 mm.
It is. The maximum width of the collection chamber 38 was 4 mm, meaning that the amount of stretching during passage through the collection chamber to the exit slot was less than preferred. The extrusion temperature is 240°C. After cutting the cylindrical film along its length,
Stretching is first carried out in the transverse direction using 4 to 8 steps;
It is then carried out in the longitudinal direction using 2 to 4 steps. composition, width of the flat tube (a measure of blow ratio),
The stretching temperature, stretching ratio and effect are shown in the table below.
“Nov” stands for Novolene, a gas-phase polymerized polypropylene containing a relatively high amount of atactic modification;
“PE” stands for low density polyethylene, “EPR”
stands for ethylene-propylene rubber “SA872”
"7823" and "8623" are various types of polypropylene with a small content of polymerized ethylene.
EPR/PE means a 50:50 blend of ethylene-propylene rubber and low density polyethylene.

【表】【table】

【表】 * 最終製品の寸法でみた両方向の延伸%
[Table] * Stretching percentage in both directions based on final product dimensions

【表】【table】

【表】 ** 最終製品
本発明は特許請求範囲に記載した通りのもので
あるが、以下の実施態様を包含するものである。 (1) 固化された積層品における接着が、積層品の
引裂に際してフイルムの局所的はく離を許す程
度に十分弱いものである特許請求の範囲第1項
記載の方法。 (2) 積層品が押出される出口スロツトの向い合う
サイドが、相対的に回転させられ、それにより
積層品が押出しの間に剪断力にさらされる特許
請求の範囲第1項記載の方法。 (3) 各筒状層が、溶融延伸により溶融延伸の方向
に沿つたポリマーのグレーンを作るように、ポ
リマー/ポリマーの分散物からなる特許請求の
範囲第1項または上記(2)に記載の方法。 (4) 二つの層が、異なる方向にかつ実質的に同じ
角速度をもつて回転される特許請求の範囲第1
項又は上記(1)、(2)、(3)に記載の方法。 (5) 互に弱く粘着するポリマーの層を形成するこ
とにより概して弱い接着を行なう特許請求の範
囲第1項又は上記(1)〜(4)に記載の方法。 (6) 粘着強度を調整するためのポリマーを、該層
の間に共押出しすることにより概して弱い接着
を行なう特許請求の範囲第1項又は上記(1)〜(4)
に記載の方法。 (7) 粘着力調整ポリマーがひも状に押出される或
いは断続される上記(6)に記載の方法。 (8) 粘着力調整ポリマーがポリマー物質或いは筒
状層を形成する物質に対し弱い粘着力をもつエ
ラストマーである上記(6)又は(7)に記載の方法。 (9) 各層が流れの配列からなり、かつ溶融延伸が
物質を一列の仕切りを通過させることにより行
われる特許請求の範囲第1項又は上記(1)〜(8)に
記載の方法。 (10) 溶融延伸が、溶融状態の筒状層の厚みを減少
させることにより行われる特許請求の範囲第1
項又は上記(1)〜(8)に記載の方法。 (11) 相互に交差する延伸の方向をもつ層を合体さ
せるに先立ち、各層が、異なつたポリマー物質
の二又はそれ以上の筒状層を共通の回転するダ
イ部分に一緒に通すこと及びそれらを同じ回転
するダイ部分の共通の室中に共押出しして混成
の、回転する筒状層を形成することにより形成
される特許請求の範囲第1項又は上記(1)〜(11)に
記載の方法。 (12) 共通の回転するダイ部分中での共押出しが環
状エツジ上で起こる上記(11)に記載の方法。 (13) 固化した積層品が、各々は本質的に一方向
的である少くとも二つの分離された段階で、固
体状態で二軸延伸される特許請求の範囲第1項
又は上記(1)〜(12)に記載の方法。 (14) 固体状態での延伸が実質的に室温で行われ
る上記(13)に記載の方法。 (15) 機械方向に平行な又は小さな角度をもつ溝
を有する溝付ローラの間にはさみ、実質的に横
方向の延伸を行ういくつかの段階を包含する上
記(14)に記載の方法。 (16) 横方向延伸のあとで積層品を長手方向に延
伸することを包含する上記(15)に記載の方
法。 (17) 実質的に横方向の収縮が長手方向延伸の間
に行われる上記(16)に記載の方法。 (18) 筒状流のためのポリマー物質が主としてポ
リオレフインよりなる特許請求の範囲第1項又
は上記(1)〜(17)に記載の方法。 (19) 筒状流の少くとも一つのためのポリマー物
質が主として結晶化しうるポリプロピレンより
なる上記(18)に記載の方法。 (20) 筒状流の少くとも一つのためのポリマー物
質が高密度ポリエチレンよりなる上記(18)に
記載の方法。 (21) 接着強度の調整のためにエチレン−プロピ
レンゴムが筒状層の間に共押出しされる上記
(19)に記載の方法。 (22) ダイ中で層を相対的に回転するための手段
が出口スロツトの反対側を相対的に回転させる
手段を包含する特許請求の範囲第2項記載の装
置。 (23) 各層を形成するための手段が、異なるポリ
マー物質の二又はそれ以上の筒状層を共通の回
転ダイ部分に一緒に通過させる手段及びそれら
を同じダイ部分の共通の室中に共押出しするた
めの手段を包含する特許請求の範囲第2項又は
上記(22)に記載の装置。
[Table] **Final product The present invention is as described in the claims, but includes the following embodiments. (1) The method of claim 1, wherein the adhesion in the solidified laminate is sufficiently weak to permit localized delamination of the film upon tearing of the laminate. 2. The method of claim 1, wherein opposite sides of the exit slot through which the laminate is extruded are rotated relative to each other so that the laminate is subjected to shear forces during extrusion. (3) The method according to claim 1 or (2) above, wherein each cylindrical layer is made of a polymer/polymer dispersion such that the melt drawing creates grains of polymer along the direction of melt drawing. Method. (4) Claim 1 in which the two layers are rotated in different directions and with substantially the same angular velocity.
or the method described in (1), (2), or (3) above. (5) A method according to claim 1 or any one of (1) to (4) above, wherein generally weak adhesion is achieved by forming layers of polymers that weakly adhere to each other. (6) Claim 1 or (1) to (4) above, wherein generally weak adhesion is achieved by coextruding a polymer between the layers to adjust the adhesive strength.
The method described in. (7) The method according to (6) above, wherein the adhesive strength adjusting polymer is extruded or interrupted in the form of a string. (8) The method according to (6) or (7) above, wherein the adhesion-adjusting polymer is a polymer material or an elastomer that has weak adhesion to the substance forming the cylindrical layer. (9) A method according to claim 1 or any one of (1) to (8) above, wherein each layer consists of an array of flows and the melt drawing is carried out by passing the material through a row of partitions. (10) Claim 1, wherein the melt drawing is performed by reducing the thickness of the molten cylindrical layer.
or the method described in (1) to (8) above. (11) Prior to combining the layers with mutually intersecting directions of stretch, each layer consists of passing two or more cylindrical layers of different polymeric materials together through a common rotating die section and passing them together. Claim 1 or any one of claims 1 to 11 above formed by coextrusion into a common chamber of the same rotating die section to form a hybrid, rotating cylindrical layer. Method. (12) The method according to (11) above, wherein the coextrusion in a common rotating die section occurs on an annular edge. (13) The solidified laminate is biaxially stretched in the solid state in at least two separate stages, each essentially unidirectional. The method described in (12). (14) The method according to (13) above, wherein the stretching in the solid state is performed substantially at room temperature. (15) The method according to (14) above, comprising several steps of substantially transverse stretching by sandwiching between grooved rollers having grooves parallel to the machine direction or at a small angle. (16) The method according to (15) above, which includes stretching the laminate in the longitudinal direction after the lateral stretching. (17) The method according to (16) above, wherein substantially transverse contraction occurs during longitudinal stretching. (18) The method according to claim 1 or any of (1) to (17) above, wherein the polymer material for the tubular flow mainly comprises polyolefin. (19) The method according to (18) above, wherein the polymer material for at least one of the tubular streams consists primarily of crystallizable polypropylene. (20) The method according to (18) above, wherein the polymer material for at least one of the tubular flows is made of high-density polyethylene. (21) The method according to (19) above, wherein ethylene-propylene rubber is coextruded between the cylindrical layers in order to adjust adhesive strength. 22. The apparatus of claim 2, wherein the means for relatively rotating the layers in the die includes means for relatively rotating opposite sides of the exit slot. (23) Means for forming each layer includes means for passing two or more tubular layers of different polymeric materials together through a common rotating die section and coextruding them into a common chamber of the same die section. The device according to claim 2 or (22) above, which includes means for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従うダイの一例の断面図であ
る、第2図は別のダイの透視図である、第3図は
冷間延伸の工程図、第4図は溝付ローラの部分拡
大断面図である。第5図は延伸されたフイルムの
すじのパターンと配向を示すスケツチである、第
6図はフイルムの拡大断面図である。 各図中の数字、符号は以下のものを意味する:
第1図、1及び2……分散物流、4及び5……環
状チヤネル、6……環状路、7及び8……リン
グ、9及び10……仕切り、11及び12……開
口部、13及び14……収集室構成部分、15…
…収集室、16……出口スロツト、第2図、17
……固定入口部、18……固定支承部、19及び
20……回転部、21……出口オリフイス、22
及び23……環状路、24……環状路、28,2
9及び30……環状室、31,32……回転方向
を示す矢印、33及び34……チヤネル、35…
…環状路、37……環状壁、第3図、Q……横方
向延伸ライン、R……長手方向延伸ライン、71
……被駆動ニツプローラ、72……溝付ローラ、
73……遊びローラ、74……バナナローラ、7
5……遊びローラ、76……水浴、77……ボビ
ン、78……機械方向を示す矢印、79……フイ
ルム、第4図、70……フイルム、72……被駆
動ローラ、80……歯、第5図、及び……す
じ、79……フイルム、第6図、及び……す
じ、79……フイルム、81及び82……外側
層、83……中間層。
Fig. 1 is a cross-sectional view of an example of a die according to the present invention, Fig. 2 is a perspective view of another die, Fig. 3 is a process diagram of cold stretching, and Fig. 4 is a partial enlargement of a grooved roller. FIG. FIG. 5 is a sketch showing the striation pattern and orientation of the stretched film, and FIG. 6 is an enlarged cross-sectional view of the film. The numbers and symbols in each figure mean the following:
Figure 1, 1 and 2... Dispersed flow, 4 and 5... Annular channel, 6... Annular path, 7 and 8... Ring, 9 and 10... Partition, 11 and 12... Opening, 13 and 14... Collection room component, 15...
...Collection chamber, 16...Exit slot, Fig. 2, 17
...Fixed inlet part, 18...Fixed support part, 19 and 20...Rotating part, 21...Exit orifice, 22
and 23... ring road, 24... ring road, 28,2
9 and 30... annular chamber, 31, 32... arrow indicating rotation direction, 33 and 34... channel, 35...
...Annular path, 37...Annular wall, Fig. 3, Q...Transverse extension line, R...Longitudinal extension line, 71
... Driven nip roller, 72 ... Grooved roller,
73...play roller, 74...banana roller, 7
5... Idle roller, 76... Water bath, 77... Bobbin, 78... Arrow indicating machine direction, 79... Film, Figure 4, 70... Film, 72... Driven roller, 80... Teeth , FIG. 5, and...streak, 79...film, FIG. 6, and...streak, 79...film, 81 and 82...outer layer, 83...intermediate layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの出口スロツトをもつ環状の押出しダイ
で二つの溶融ポリマー物質を互いに相対的に回転
する少なくとも二つのほぼ同心の管状流れで押し
出し、前記押出し中管状流れの各々を、溶融延伸
方向が相互に十字形に交差するように実質的に一
方向に溶融延伸し、層剥離の助長のために選択さ
れた第三層のポリマー物質を、十字形に交差する
溶融配向を達成した前記二つの管状流れの間に共
押し出しし、ダイ中で別々の延伸された管状流れ
を第三層のポリマー物質を間に挟んで結合して一
つの共通の流れにし、次いでポリマーが溶融状態
に留まつている間に共通の流れを前記ダイから、
ほぼ同心の隔置された二つの円筒壁により区画さ
れた出口スロツトを通して、前記円筒壁をほぼ対
向する相対方向に回転させながら排出し、それに
より前記円筒壁に隣接する共通の押し出された流
れの対向面を、前記出口スロツトを通過する間に
前記の回転する壁のこすり作用にさらして、延伸
されたポリマー分散物を共通の流れの厚さを通じ
て周方向に剪断し、共通の押し出された流れを前
記出口スロツトからの出現後固化し、その際固化
した積層品の結合は、積層品を引き裂いたときに
フイルムの局部的剥離を許すほど充分弱くなつて
おり、そして最後にこのように固化した管状シー
トを収集する段階からなる、改良された特性の積
層ポリマーシートの押出し方法。
1. Extruding two molten polymeric materials in at least two substantially concentric tubular streams rotating relative to each other in an annular extrusion die having one exit slot, each of the tubular streams during extrusion having a melt-drawing direction relative to the other. said two tubular streams substantially unidirectionally melt-stretched in a criss-cross manner to achieve a criss-cross melt orientation of the third layer polymeric material selected to facilitate delamination; coextruding the separate elongated tubular streams in a die into one common stream with a third layer of polymer material in between, and then coextruding the separate elongated tubular streams in a die while the polymer remains in the molten state. A common flow from the die to
discharge through an exit slot defined by two generally concentric spaced apart cylindrical walls while rotating said cylindrical walls in generally opposite relative directions, thereby discharging a common extruded flow adjacent said cylindrical walls. The opposing surfaces are subjected to the rubbing action of said rotating wall during passage through said exit slot to shear the stretched polymer dispersion circumferentially through the thickness of a common stream and to form a common extruded stream. is solidified after emerging from said exit slot, the bond of the solidified laminate being sufficiently weak to allow localized delamination of the film when the laminate is torn, and finally the solidified laminate is A method for extruding laminated polymer sheets with improved properties comprising the steps of collecting tubular sheets.
JP57115623A 1974-07-05 1982-07-05 Method and device for manufacturing laminate sheet Granted JPS5878730A (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GB29807/74 1974-07-05
GB29807/74A GB1526722A (en) 1974-07-05 1974-07-05 Method for producing a laminated high strength sheet
GB53644/74 1974-12-11
GB5364474 1974-12-11
GB5972/75 1975-02-12
GB597175 1975-02-12
GB5971/75 1975-02-12
AU48964/79A AU527905B2 (en) 1974-07-05 1979-07-16 Method and apparatus for forming a laminate
AU48965/79A AU530134B2 (en) 1974-07-05 1979-07-16 Methods and apparatus for producing a laminate

Publications (2)

Publication Number Publication Date
JPS5878730A JPS5878730A (en) 1983-05-12
JPS6319329B2 true JPS6319329B2 (en) 1988-04-22

Family

ID=27506970

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57115624A Granted JPS5878731A (en) 1974-07-05 1982-07-05 Method and device for forming laminate
JP57115623A Granted JPS5878730A (en) 1974-07-05 1982-07-05 Method and device for manufacturing laminate sheet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57115624A Granted JPS5878731A (en) 1974-07-05 1982-07-05 Method and device for forming laminate

Country Status (2)

Country Link
JP (2) JPS5878731A (en)
AU (1) AU527905B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035872A1 (en) * 1990-11-12 1992-05-14 Hoechst Ag DEVICE AND METHOD FOR PRODUCING A MULTILAYER FILM COMPOSITE
DE4035873A1 (en) * 1990-11-12 1992-05-14 Hoechst Ag DEVICE AND METHOD FOR PRODUCING A MULTILAYER FILM COMPOSITE
DE4136679A1 (en) * 1991-11-07 1993-05-13 Hoechst Ag DEVICE AND METHOD FOR PRODUCING A MULTILAYER FILM COMPOSITE
DE4136706A1 (en) * 1991-11-07 1993-05-13 Hoechst Ag DEVICE AND METHOD FOR PRODUCING A NUMBER OF TWO OR MULTILAYER SINGLE COMPOUNDS
WO2003074264A1 (en) * 2002-03-04 2003-09-12 Ole-Bendt Rasmussen Crosslaminate of oriented films, method of manufacturing same, and coextrusion die suitable in the process
GB0721410D0 (en) * 2007-10-31 2007-12-12 Rasmussen O B Method and apparatus for longitudinal orientation of thermoplastic film material
TWI499497B (en) * 2008-01-17 2015-09-11 Ole-Bendt Rasmussen Film material exhibiting textile properties, and method and apparatus for its manufacture
GB0907755D0 (en) * 2009-05-06 2009-06-24 Rasmussen O B Method for longitudinal stretching a film in solid state and apparatus to carry out the method

Also Published As

Publication number Publication date
JPS5878731A (en) 1983-05-12
AU4896479A (en) 1979-11-29
JPS5878730A (en) 1983-05-12
AU527905B2 (en) 1983-03-31
JPS6134973B2 (en) 1986-08-11

Similar Documents

Publication Publication Date Title
SE428190B (en) PROCEDURE AND DEVICE FOR PREPARING A LAMINATE OF AT LEAST TWO LAYERS
US4420451A (en) Method for film extrusion comprising rotary die parts
US4407877A (en) High-strength laminate
US4436568A (en) In situ precipitated fibrous laminate and method of producing same
TWI572472B (en) Method of manufacturing an oriented film from alloyed thermoplastic polymers, apparatus for such manufacture and resulting products
US4793885A (en) Method of laminating and stretching film material and apparatus for said method
AU616397B2 (en) Process and apparatus for compressive transverse stretching of polymeric sheet material
US6054086A (en) Process of making high-strength yarns
US4732723A (en) Method of producing a net
FI84035B (en) Method and arrangement for the manufacture of especially hard film material
US3712847A (en) Laminated lamellar laminate
JP2006501078A5 (en)
CA2477460A1 (en) Crosslaminate of oriented films, method of manufacturing same, and coextrusion die suitable in the process
BRPI0714160A2 (en) Method and apparatus for making oriented film, film, cross laminate, use of film, and article made from laminate
JPS6319329B2 (en)
US3565744A (en) Extruded polymeric sheet material
US3547761A (en) Extruded sheet material
NO157447B (en) PROCEDURE FOR THE PREPARATION OF A LAMINATE OF AT LEAST TWO LAYERS, AND DEVICE FOR USE IN EXERCISE OF THE PROCEDURE.
IE43333B1 (en) Coextruded sheet with properties resembling a cross-laminate and method of producing said sheet
FI72286B (en) SAETTING OVER ANORDING FOR ATTEMPT AND LAMINATE AV MINST TVAO FLEXIBLE FOLIEBANOR AV ORIENTERBART POLYMERMATERIAL
JPH08260331A (en) High-strength warp and weft laminate and its production
IL31976A (en) Process and apparatus for producing a synthetic sheet material
IE43334B1 (en) A method of forming a laminate
RU2004129329A (en) LAMINATE WITH LONGITUDINAL-TRANSVERSE ORIENTATION OF LAYERS FROM ORIENTED FILMS, METHOD FOR ITS MANUFACTURE AND HEAD FOR JOINT EXTRUSION FOR IMPLEMENTATION OF THIS METHOD
BE886135A (en) CO-EXTRUDED SHEET WITH PROPERTIES LIKE A CROSS-LAMINATE, AND METHOD FOR THE PRODUCTION THEREOF