JPS63191852A - Flame-retardant resin composition - Google Patents

Flame-retardant resin composition

Info

Publication number
JPS63191852A
JPS63191852A JP2422087A JP2422087A JPS63191852A JP S63191852 A JPS63191852 A JP S63191852A JP 2422087 A JP2422087 A JP 2422087A JP 2422087 A JP2422087 A JP 2422087A JP S63191852 A JPS63191852 A JP S63191852A
Authority
JP
Japan
Prior art keywords
resin
weight
parts
vinyl
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2422087A
Other languages
Japanese (ja)
Inventor
Yasuyuki Hiromoto
廣本 恭之
Koichi Matsuda
幸一 松田
Hideo Goto
後藤 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Cycon Ltd
Original Assignee
Ube Cycon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Cycon Ltd filed Critical Ube Cycon Ltd
Priority to JP2422087A priority Critical patent/JPS63191852A/en
Publication of JPS63191852A publication Critical patent/JPS63191852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flame-retardant resin compsn. which has excellent processability, impact resistance and resin replaceability in molding machines and is excellent in general physical properties, consisting of a vinyl chloride resin and a specified ABS resin. CONSTITUTION:A flame-retardant resin compsn. consists of 30-80pts. (by weight; the same applies hereinbelow) vinyl chloride resin (A) having an average degree of polymn. of 300-1,000 and 70-20pts. ABS resin (B). 100pts. ABS resin of the component B is composed of 50-80pts. styrene copolymer (a) and 50-20pts. graft copolymer (b) wherein the component (a) is mainly composed of a styrene compd. monomer and a vinyl cyanide compd. monomer and has a number-average MW of 20,000-40,000 and the component (b) is obtd. by copolymerizing at least 50% conjugated diene rubber with not more than 50% vinyl monomer selected from the group consisting of a vinyl cyanide compd. and an arom. vinyl compd. By using the resins A and B having a relatively low MW, a resin compsn. which has excellent processability, impact resistance and resin replaceability in molding machines, is excellent in general physical properties and causes neither scorching nor discoloration can be obtd.

Description

【発明の詳細な説明】 皮呈上立札尻光互 本発明は、難燃性樹脂組成物に関し、詳しくは、塩化ビ
ニル系樹脂とABS樹脂とからなり、加工性、耐衝撃性
及び成形機内における樹脂置換性にすぐれる難燃性樹脂
組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant resin composition, and more specifically, it is composed of a vinyl chloride resin and an ABS resin, and has excellent processability, impact resistance, and resistance in a molding machine. The present invention relates to a flame-retardant resin composition with excellent resin substitution properties.

従来■茨責 ABS樹脂のようなゴム質重合体は、耐衝撃性、耐熱性
及び加工性にすぐれ、更に、これら以外の性質において
もバランスがとれているために、電気機器部品、自動車
部品、建材等に広く用いられている。しかしながら、近
年、これら用途における火災時の安全性を確保するため
に、高い難燃性が要求されるに至っている。
Conventional Rubber polymers such as ABS resin have excellent impact resistance, heat resistance, and processability, and are also well-balanced in other properties, so they are used for electrical equipment parts, automobile parts, Widely used for building materials, etc. However, in recent years, high flame retardancy has been required to ensure safety in the event of fire in these applications.

一般に、ABS樹脂を難燃化するには、ABS樹脂に二
酸化アンチモン、含ハロゲン化合物或いは含リン化合物
等の難燃剤を添加混合する方法と、ABS樹′脂に自己
消火性樹脂を混合して、所謂樹脂アロイとする方法とが
知られている。しかし、前者の方法は、多量の難燃剤の
添加を必要とし、そのために樹脂の機械的性質や耐熱性
、耐候性等が低下するほか、安全衛生及び経済性にも問
題がある。後者の方法は、ABS樹脂と塩化ビニル系樹
脂とをバンバリーミキサ−等で混練した後、射出成形等
の方法によって、アロイ成形品を得るものである。この
方法によるときは、ABS樹脂の粘度が高いので、加工
温度を塩化ビニル系樹脂の分解温度にほぼ近い温度とす
る必要があり、その結果、塩化ビニル系樹脂の熱安定性
に問題が生じる。特に、アロイ成形品を射出成形機によ
って得る場合は、成形機のシリンダー、スクリュー、ノ
ズル等の金属面への溶融樹脂の粘着による部分的滞留が
起こり、成形品に樹脂やけや熱変色等が生じ、ここに、
樹脂やけは、成形品の商品価値を著しく損なう。
Generally, in order to make ABS resin flame retardant, there are two methods: adding and mixing flame retardants such as antimony dioxide, halogen-containing compounds, or phosphorus-containing compounds to ABS resin, and mixing a self-extinguishing resin with ABS resin. A method of making a so-called resin alloy is known. However, the former method requires the addition of a large amount of flame retardant, which deteriorates the mechanical properties, heat resistance, weather resistance, etc. of the resin, and also poses problems in safety, health, and economy. In the latter method, an alloy molded article is obtained by kneading ABS resin and vinyl chloride resin using a Banbury mixer or the like, and then using a method such as injection molding. When using this method, since the viscosity of ABS resin is high, it is necessary to set the processing temperature to a temperature almost close to the decomposition temperature of the vinyl chloride resin, resulting in a problem with the thermal stability of the vinyl chloride resin. In particular, when alloy molded products are obtained using an injection molding machine, the molten resin sticks to the metal surfaces of the molding machine's cylinder, screw, nozzle, etc., causing partial retention, resulting in resin burns and thermal discoloration of the molded product. ,Here,
Resin burns significantly impair the commercial value of molded products.

そこで、従来、ABS樹脂と塩化ビニル系樹脂とからな
る難燃性樹脂組成物の製造における上記した問題を解決
するために、既に種々の方法が提案されている。例えば
、分子量の小さい塩化ビニル系樹脂を用いる方法が提案
されているが、しかし、この方法によるときは、実用的
な機械強度や熱安定性を得ることが困難であり、また、
用いる塩化ビニル系樹脂の分子量にも自ずから限界があ
る。樹脂混合物に多量の可塑剤や滑剤を添加する方法も
知られているが、この方法によるときは、これら添加剤
が成形品の表面にブリードしたり、或いは成形品に剥離
現象が生じたりする。
Therefore, various methods have been proposed to solve the above-mentioned problems in the production of flame-retardant resin compositions made of ABS resin and vinyl chloride resin. For example, a method using a vinyl chloride resin with a small molecular weight has been proposed, but when using this method, it is difficult to obtain practical mechanical strength and thermal stability.
There is a natural limit to the molecular weight of the vinyl chloride resin used. A method of adding a large amount of plasticizer or lubricant to a resin mixture is also known, but when this method is used, these additives may bleed onto the surface of the molded product or a peeling phenomenon may occur in the molded product.

特開昭57−14638号公報には、ABS樹脂の製造
時にアルキルアクリレート又はアルキルメタクリレート
を主成分として含む重合体をラテックスとして共存させ
ることによって、得られるABS樹脂の溶融粘度を低下
させ、耐熱性を改善する方法が提案されているが、この
方法によれば、工程数が増加すると共に、原料費用が増
加するので、工業的なABS樹脂の製造方法としては、
経済性の点で難点がある。
JP-A-57-14638 discloses that by coexisting as a latex a polymer containing alkyl acrylate or alkyl methacrylate as a main component during the production of ABS resin, the melt viscosity of the resulting ABS resin is lowered and the heat resistance is improved. An improvement method has been proposed, but this method increases the number of steps and raw material costs, so as an industrial method for manufacturing ABS resin,
There are disadvantages in terms of economy.

また、特開昭53−39346号公報には、比較的低分
子量のスチレン系樹脂を比較的低分子量の塩化ビニル系
樹脂とエチレン−酢酸ビニル共重合体樹脂と共に混合し
てなり、熱流動性を高めた組成物が提案されている。し
かし、低分子量のスチレン系樹脂は、他方において樹脂
組成物の機械強度や耐熱性を低下させるために、その配
合量には自ずから限界があり、従って、得られる樹脂組
成物の熱流動性の改善にも限界がある。
Furthermore, JP-A No. 53-39346 discloses a product in which a relatively low molecular weight styrene resin is mixed with a relatively low molecular weight vinyl chloride resin and an ethylene-vinyl acetate copolymer resin to improve thermal fluidity. Enriched compositions have been proposed. However, low-molecular-weight styrene resins also reduce the mechanical strength and heat resistance of the resin composition, so there is a natural limit to the amount of styrene resins that can be blended. There are also limits.

■が”しようとする。 占 そこで、本発明者らは、難燃性ABS樹脂組成物におけ
る上記した問題を解決するために鋭意研究した結果、特
に、塩化ビニル系樹脂を配合してなる難燃性ABS樹脂
組成物の射出成形時に、樹脂組成物の部分的滞留に基づ
いて生じる樹脂やけ及び樹脂変色等の熱劣化は、塩化ビ
ニル系樹脂の構造と共に、樹脂組成物におけるABS樹
脂の配合量や分子量によって著しく影響を受け、これら
を最適化することによって、耐熱性をはじめとする一般
物性の低下なしに、成形可能な温度範囲を拡大して、樹
脂やけ及び樹脂変色を防止することができることを見出
して、本発明に至ったものである。
The inventors of the present invention have conducted intensive research to solve the above-mentioned problems in flame-retardant ABS resin compositions. During injection molding of ABS resin compositions, thermal deterioration such as resin burning and resin discoloration that occurs due to partial retention of the resin composition is caused by the structure of the vinyl chloride resin as well as the amount of ABS resin blended in the resin composition. It is significantly affected by molecular weight, and by optimizing these, it is possible to expand the moldable temperature range and prevent resin burn and discoloration without deteriorating general physical properties such as heat resistance. This discovery led to the present invention.

従って、本発明は、特に、樹脂やけ及び樹脂変色がなく
、しかも、−膜物性にすぐれる難燃性ABS樹脂組成物
を提供することを目的とする。
Therefore, an object of the present invention is to provide a flame-retardant ABS resin composition that is free from resin burning and resin discoloration and has excellent film properties.

シ 占を解゛するための 本発明による難燃性樹脂組成物は、平均重合度300〜
1000の塩化ビニル系樹脂(a) 30〜80重量部
とABS樹脂(b)70〜20重量部とからなることを
特徴とする。
The flame retardant resin composition according to the present invention for solving the problem of
It is characterized by comprising 30 to 80 parts by weight of 1000 vinyl chloride resin (a) and 70 to 20 parts by weight of ABS resin (b).

本発明において、塩化ビニル系樹脂(a)とは、ポリ塩
化ビニル、及び塩化ビニル90重量%以上とこれに共重
合性を有するエチレン性不飽和結合を有する単量体の1
0重量%以下、好ましくは5重量%以下との共重合体を
いう。上記エチレン性不飽和結合を有する単量体として
は、例えば、エチレン、プロピレン等のα−オレフィン
、酢酸ビニル等のアルキルビニルエステル、塩化ビニリ
デン等のハロゲン化ビニリデン、アクリロニトリル等の
シアン化ビニル、メチルアクリレート、メチルメタクリ
レート等のアクリル酸及びメタクリル酸アルキルエステ
ル、メチルビニルエーテル等のアルキルビニルエーテル
等を挙げることができるが、これらに限定されるもので
はない。
In the present invention, the vinyl chloride resin (a) refers to polyvinyl chloride and a monomer having an ethylenically unsaturated bond that is copolymerizable with 90% by weight or more of vinyl chloride.
0% by weight or less, preferably 5% by weight or less. Examples of the monomer having an ethylenically unsaturated bond include α-olefins such as ethylene and propylene, alkyl vinyl esters such as vinyl acetate, vinylidene halides such as vinylidene chloride, vinyl cyanides such as acrylonitrile, and methyl acrylate. , acrylic acid and methacrylic acid alkyl esters such as methyl methacrylate, and alkyl vinyl ethers such as methyl vinyl ether, but are not limited thereto.

本発明において、かかる塩化ビニル系樹脂は、目的とす
る樹脂組成物が熱安定性、加工性共にすぐれるためには
、平均重合度が300〜1000の範囲にあることが必
要である。このような塩化ビニル系樹脂は、本発明によ
る樹脂組成物において、後述するABS樹脂70〜20
重量部に対して、30〜80重量部の範囲で配合される
。塩化ビニル系樹脂の配合量が30重量部よりも少ない
ときは、目的とする難燃性を得ることができず、80重
量部を越えるときは、耐衝撃性や熱安定性の低下が著し
い。
In the present invention, the vinyl chloride resin needs to have an average degree of polymerization in the range of 300 to 1000 in order for the desired resin composition to have excellent thermal stability and processability. In the resin composition according to the present invention, such a vinyl chloride resin is used as ABS resin 70 to 20, which will be described later.
It is blended in a range of 30 to 80 parts by weight. When the amount of vinyl chloride resin is less than 30 parts by weight, the desired flame retardance cannot be obtained, and when it exceeds 80 parts by weight, the impact resistance and thermal stability are significantly reduced.

本発明において用いる塩化ビニル系樹脂は、常法に従っ
て、懸濁重合、乳化重合、塊状重合等のいずれによって
、製造されたものでもよい。
The vinyl chloride resin used in the present invention may be produced by any of conventional methods such as suspension polymerization, emulsion polymerization, and bulk polymerization.

本発明において、ABS樹脂(b)はスチレン系共重合
体(c)とグラフト共重合体(d)とからなる。
In the present invention, the ABS resin (b) consists of a styrene copolymer (c) and a graft copolymer (d).

上記スチレン系共重合体(c1とは、主たる単量体成分
としてスチレン系化合物とシアン化ビニル化合物とを有
する共重合体をいい、スチレン系化合物としては、例え
ば、スチレン、α−メチルスチレン等が用いられ、また
、シアン化ビニル化合物としては、例えば、アクリロニ
トリルが好適に用いられる。この共重合体(c)におい
ては、スチレン系化合物が60〜90重量%、シアン化
ビニル化合物が40〜10重量%を占めるのが好ましい
が、必要に応じて、更に、メチルアクリレート、エチル
アクリレート、ブチルアクリレート等のアルキルアクリ
レートや、メチルメタクリレート、エチルメタクリレー
ト、ブチルメタクリレート等のアルキルメタクリレート
等も単量体成分として、30重量%以下の範囲で共重合
体(c1に含まれてもよい。得られる樹脂組成物が特に
耐衝撃性及び熱安定性にすぐれるためには、上記スチレ
ン系共重合体(c)は、スチレン系化合物としてのα−
メチルスチレン65〜80重量%とシアン化ビニル化合
物としてのアクリロニトリル35〜20重量%とからな
ることが好ましい。
The above-mentioned styrene-based copolymer (c1 refers to a copolymer having a styrene-based compound and a vinyl cyanide compound as the main monomer components; examples of the styrene-based compound include styrene, α-methylstyrene, etc.) Also, as the vinyl cyanide compound, for example, acrylonitrile is suitably used.In this copolymer (c), the styrene compound is 60 to 90% by weight, and the vinyl cyanide compound is 40 to 10% by weight. %, but if necessary, alkyl acrylates such as methyl acrylate, ethyl acrylate, and butyl acrylate, and alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate may also be used as monomer components. The styrenic copolymer (c) may be included in the copolymer (c1) within a range of % by weight or less. α- as a styrenic compound
Preferably, it consists of 65-80% by weight of methylstyrene and 35-20% by weight of acrylonitrile as a vinyl cyanide compound.

更に、本発明においては、スチレン系共重合体(c1は
、数平均分子量が20000〜40000の範囲にある
ことが必要である。数平均分子量が20000よりも小
さい場合は、得られる樹脂組成物の耐熱性が十分でなく
、他方、40000を越える場合は、成形に際して、樹
脂やけや熱変色が生じて、すぐれた品質を有する射出成
形品を得ることができない。
Furthermore, in the present invention, the number average molecular weight of the styrenic copolymer (c1) must be in the range of 20,000 to 40,000. If the number average molecular weight is less than 20,000, the resulting resin composition If the heat resistance is insufficient and on the other hand exceeds 40,000, resin burn and thermal discoloration occur during molding, making it impossible to obtain injection molded products of excellent quality.

本発明による樹脂組成物において、ABS樹脂100重
量部は、上記スチレン系共重合体(c150〜80重量
部と後述するグラフト共重合体(d) 50〜20重量
部とからなることが好ましい。ABS樹脂100重量部
において、スチレン系共重合体が50重量部よりも少な
いときは、得られる樹脂組成物に樹脂やけや樹脂着色が
発生し、耐熱性も低下するので好ましくなく、他方、8
0重量部を越えるときは、得られる樹脂組成物が耐衝撃
性において著しく劣ることとなる。
In the resin composition according to the present invention, 100 parts by weight of the ABS resin preferably comprises 150 to 80 parts by weight of the above styrene copolymer (c) and 50 to 20 parts by weight of the graft copolymer (d) described below.ABS When the amount of the styrene copolymer is less than 50 parts by weight in 100 parts by weight of the resin, resin burning and resin coloring occur in the resulting resin composition, and the heat resistance also decreases, which is undesirable.
If the amount exceeds 0 parts by weight, the resulting resin composition will have significantly poor impact resistance.

上記スチレン系共重合体(c)は、通常の乳化重合、懸
濁重合、溶液重合、塊状重合のいずれによって製造され
てもよく、分子量調整剤として、例えば、t−ドデシル
メルカプタンやα−メチルスチレンダイマー等を適宜量
用いることによって、所要の分子量を有するものを製造
することができる。
The above styrenic copolymer (c) may be produced by any of ordinary emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization, and may be produced by any of ordinary emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization. By using an appropriate amount of dimer etc., it is possible to produce a product having a desired molecular weight.

本発明において、グラフト共重合体(d)は、ポリブタ
ジェンやポリイソプレン、又はこれらの混合物からなる
共役ジエン系ゴム50重量%以上にシアン化ビニル化合
物と芳香族ビニル化合物とから選ばれる少なくとも1種
のビニル単量体50重量%以下を共重合させてなるグラ
フト共重合体である。
In the present invention, the graft copolymer (d) contains 50% by weight or more of a conjugated diene rubber made of polybutadiene, polyisoprene, or a mixture thereof, and at least one kind selected from vinyl cyanide compounds and aromatic vinyl compounds. It is a graft copolymer made by copolymerizing 50% by weight or less of a vinyl monomer.

このグラフト共重合体において、上記ビニル単量体成分
が50重量%を越えるときは、共役ジエン系ゴム成分の
量が不足し、得られる樹脂組成物が満足すべき耐衝撃性
をもたない。
In this graft copolymer, when the vinyl monomer component exceeds 50% by weight, the amount of the conjugated diene rubber component is insufficient and the resulting resin composition does not have satisfactory impact resistance.

上記共役ジエン系ゴムとしては、特に、ポリブタジェン
が好ましく用いられ、シアン化ビニル化合物としては、
特に、アクリロニトリルが好適に用いられ、芳香族ビニ
ル化合物としては、例えば、スチレン、α−メチルスチ
レン等が好適に用いられる。必要に応じて、更に、メチ
ルアクリレート、エチルアクリレート、ブチルアクリレ
ート等のアルキルアクリレートや、メチルメタクリレー
ト、エチルメタクリレート、ブチルメタクリレート等の
アルキルメタクリレート等も単量体成分として、30重
量%以下の範囲で共重合体に含まれてもよい。このグラ
フト共重合体(d)は、ABS樹脂100重量部におい
て、20〜50重量部の範囲で配合される。
As the conjugated diene rubber, polybutadiene is particularly preferably used, and as the vinyl cyanide compound,
In particular, acrylonitrile is preferably used, and as the aromatic vinyl compound, for example, styrene, α-methylstyrene, etc. are preferably used. If necessary, alkyl acrylates such as methyl acrylate, ethyl acrylate, and butyl acrylate, and alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate may also be copolymerized as monomer components in an amount of 30% by weight or less. May be included in the combination. This graft copolymer (d) is blended in an amount of 20 to 50 parts by weight in 100 parts by weight of the ABS resin.

このグラフト共重合体も、通常の乳化重合、懸濁重合、
塊状重合のいずれによって製造されてもよい。
This graft copolymer can also be produced by ordinary emulsion polymerization, suspension polymerization,
It may be produced by either bulk polymerization.

本発明による樹脂組成物は、難燃性ABS樹脂組成物の
製造において従来より知られている通常の方法よって製
造することができる。従って、例えば、上述した塩化ビ
ニル系樹脂、スチレン系共重合体及び共役ジエン系ゴム
グラフト共重合体のそれぞれの所定量を必要に応じて安
定剤、滑剤、加工助剤、顔料、充填剤等と共に混合し、
例えば、押出機、バンバリーミキサ−1混練ロール等に
て混練し、ベレットに成形することによって得ることが
できる。尚、安定剤としては、スズ系や鉛系のものが好
ましい。
The resin composition according to the present invention can be produced by conventional methods known in the art for producing flame-retardant ABS resin compositions. Therefore, for example, predetermined amounts of each of the above-mentioned vinyl chloride resin, styrene copolymer, and conjugated diene rubber graft copolymer are added together with stabilizers, lubricants, processing aids, pigments, fillers, etc. as necessary. mix,
For example, it can be obtained by kneading with an extruder, Banbury mixer 1 kneading roll, etc., and forming it into pellets. Incidentally, as the stabilizer, a tin-based stabilizer or a lead-based stabilizer is preferable.

又夙皇須来 以上のように、本発明の難燃性ABS樹脂組成物は、比
較的低分子量の塩化ビニル系樹脂と共に、比較的低分子
量のスチレン系共重合体を含有するので、加工性、耐衝
撃性及び成形機内における樹脂置換性にすぐれると共に
、−膜物性にもすぐれる。特に、従来、A B’ S樹
脂における所謂リジッド成分、即ち、スチレン系共重合
体の分子量を4oooo以下とするとき、得られる樹脂
組成物の一般物性が大幅に低下することが知られている
が、本発明に従って、塩化ビニル系樹脂と共にポリマー
アロイとすることによって、−膜物性がバランスよく保
持されるうえに、特に、樹脂やけ及び樹脂変色が発生し
ない。
Furthermore, as mentioned above, the flame-retardant ABS resin composition of the present invention contains a relatively low-molecular-weight styrene-based copolymer as well as a relatively low-molecular-weight vinyl chloride-based resin, and therefore has good processability. , has excellent impact resistance and resin replacement property in the molding machine, and also has excellent film properties. In particular, it has been known that when the molecular weight of the so-called rigid component, that is, the styrene copolymer, in AB'S resin is set to 4000 or less, the general physical properties of the resulting resin composition are significantly reduced. According to the present invention, by forming a polymer alloy together with a vinyl chloride resin, the physical properties of the film are maintained in a well-balanced manner, and in particular, resin burning and resin discoloration do not occur.

車庫M 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
Garage M The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 攪拌機付き反応容器に蒸留水170重量部、不均化ロジ
ン酸塩2.5重量部、過硫酸カリウム0.3重量部、t
−ドデシルメルカプタン2.0重量部、アクリロニトリ
ル26重量部及びα−メチルスチレン74重量部を仕込
み、70℃で4時間重合させた。得られたラテックスを
凝固、洗浄、乾燥して、数平均分子量21000のスチ
レン系共重合体(c1−1を得た。重合転化率は93%
であった。
Example 1 170 parts by weight of distilled water, 2.5 parts by weight of disproportionated rosinate, 0.3 parts by weight of potassium persulfate, t
-2.0 parts by weight of dodecyl mercaptan, 26 parts by weight of acrylonitrile, and 74 parts by weight of α-methylstyrene were charged and polymerized at 70°C for 4 hours. The obtained latex was coagulated, washed, and dried to obtain a styrenic copolymer (c1-1) with a number average molecular weight of 21,000. The polymerization conversion rate was 93%.
Met.

別に、攪拌機付き反応容器に蒸留水200重量部、不均
化ロジン酸塩1.3重量部、過硫酸カリウム0.3重量
部、ポリブタジェン65重量部、アクリロニトリル10
.5重量部及びスチレン24.5重量部を仕込み、70
℃で3時間重合させた。得られたラテックスを凝固、洗
浄、乾燥して、ポリブタジェングラフト共重合体(d)
−1を得た0重合転化率は95%であった。
Separately, in a reaction vessel equipped with a stirrer, 200 parts by weight of distilled water, 1.3 parts by weight of disproportionated rosinate, 0.3 parts by weight of potassium persulfate, 65 parts by weight of polybutadiene, and 10 parts by weight of acrylonitrile.
.. 5 parts by weight and 24.5 parts by weight of styrene, 70
Polymerization was carried out at ℃ for 3 hours. The obtained latex is coagulated, washed, and dried to form a polybutadiene graft copolymer (d).
The zero polymerization conversion rate at which -1 was obtained was 95%.

上記スチレン系共重合体30重量部、ポリブタジェング
ラフト共重合体20重量部及び平均重合度450である
ポリ塩化ビニル(住人化学工業側製スミリット5X−4
G)50重量部をジブチルスズマレエート3.7重量部
、有機スズメルカプチド1.0重量部及びステアリン酸
カルシウム1.0重量部と共に粉末混合し、バンバリー
ミキサ−にて混練した後、ベレット化した。このベレッ
トをシリンダ一温度230℃の2オンス射出成形機にて
成形した。
30 parts by weight of the above styrene copolymer, 20 parts by weight of the polybutadiene graft copolymer, and polyvinyl chloride with an average degree of polymerization of 450 (Sumilit 5X-4 manufactured by Juju Chemical Industry Co., Ltd.)
G) 50 parts by weight were powder-mixed with 3.7 parts by weight of dibutyltin maleate, 1.0 parts by weight of organic tin mercaptide and 1.0 parts by weight of calcium stearate, kneaded in a Banbury mixer, and pelletized. This pellet was molded using a 2-ounce injection molding machine with a cylinder temperature of 230°C.

実施例2 実施例1のスチレン系共重合体の製造において、用いた
t−ドデシルメルカプタンの量を第1表に示すように変
量した重合条件を用いた以外は、実施例1と同様にして
、数平均分子量37000のスチレン系共重合体(c1
−2を製造し、これを用いて、実施例1と同様にしてベ
レットを製造し、射出成形機にて成形した。
Example 2 In the production of the styrenic copolymer of Example 1, polymerization conditions were used in which the amount of t-dodecyl mercaptan used was varied as shown in Table 1, but in the same manner as in Example 1. Styrenic copolymer with a number average molecular weight of 37,000 (c1
-2 was produced, and using this, a pellet was produced in the same manner as in Example 1, and molded using an injection molding machine.

比較例1及び2 実施例1のスチレン系共重合体の製造において、用いた
t−ドデシルメルカプタンの量を第1表に示すように変
量した重合条件を用いた以外は、実施例1と同様にして
、それぞれ数平均分子量16000及び65000のス
チレン系共重合体(c)−3及び(c)−4を製造し、
これを用いて、実施例1と同様にしてペレットを製造し
、射出成形機にて成形した。
Comparative Examples 1 and 2 In the production of the styrenic copolymer of Example 1, the same procedure as Example 1 was used except that the amount of t-dodecyl mercaptan used was varied as shown in Table 1. to produce styrenic copolymers (c)-3 and (c)-4 with number average molecular weights of 16,000 and 65,000, respectively,
Using this, pellets were produced in the same manner as in Example 1, and molded using an injection molding machine.

比較例3及び4 実施例2において、グラフト共重合体(d)−1と、ス
チレン系共重合体(0)−2及び塩化ビニル系樹脂の配
合量を第2表に示すように変量した以外は、実施例2と
同様にしてペレットを製造し、射出成形機にて成形した
Comparative Examples 3 and 4 Example 2 except that the blending amounts of graft copolymer (d)-1, styrene copolymer (0)-2, and vinyl chloride resin were varied as shown in Table 2. Pellets were produced in the same manner as in Example 2, and molded using an injection molding machine.

比較例5及び6 実施例2において、グラフト共重合体(d+−1とスチ
レン系共重合体(e)−2の配合量を第2表に示すよう
に変量した以外は、実施例2と同様にしてペレットを製
造し、射出成形機にて成形した。
Comparative Examples 5 and 6 Same as Example 2 except that the blending amounts of the graft copolymer (d+-1 and styrene copolymer (e)-2) were varied as shown in Table 2. Pellets were produced and molded using an injection molding machine.

比較例7 実施例1において、グラフト共重合体(d)−1の製造
において、用いたポリブタジェンの量を第1表に示すよ
うに変量した以外は、実施例1と同様にしてポリブタジ
ェングラフト共重合体td) −2を製造した。重合転
化率は94%であった。
Comparative Example 7 A polybutadiene graft was produced in the same manner as in Example 1, except that the amount of polybutadiene used was varied as shown in Table 1 in the production of graft copolymer (d)-1. Copolymer td)-2 was produced. The polymerization conversion rate was 94%.

これを用いて、実施例2と同様にして、ペレットを製造
し、射出成形機にて成形した。
Using this, pellets were produced in the same manner as in Example 2, and molded using an injection molding machine.

以上のようにして得た本発明による樹脂組成物及び比較
例としての樹脂組成物についての物性を測定した。結果
を第2表に示す。
The physical properties of the resin composition according to the present invention and the resin composition as a comparative example obtained as described above were measured. The results are shown in Table 2.

物性の測定方法は以下による。The method for measuring physical properties is as follows.

スチレン系共重合体の数平均分子量 C,PC(東洋曹達工業■製HLC−802A)を用い
て、標準ポリスチレンによる検量線から計算によって求
めた。
The number average molecular weight of the styrene copolymer was determined by calculation from a standard polystyrene calibration curve using C, PC (HLC-802A manufactured by Toyo Soda Kogyo ■).

ノツチ付きアイゾツト衝撃値 八STM D 256に準じた。Notched Izot impact value According to 8STM D 256.

熱変形温度 ASTM D 648−56に準じた。heat distortion temperature According to ASTM D 648-56.

引張強さ ASTM D638に準じた。Tensile strength According to ASTM D638.

曲げ強さ ASTM 0790に準じた。bending strength According to ASTM 0790.

ブラ味ンダー分解時間 ブラベンダープラストグラフに樹脂50gを充填し、2
30℃、70回転の条件にてトルクを記録し、トルクが
立ち上がるまでの時間(分)を求めた。
Braminder decomposition time Fill the Brabender Plastograph with 50g of resin,
The torque was recorded under the conditions of 30° C. and 70 rotations, and the time (minutes) required for the torque to rise was determined.

樹脂やけ及び樹脂変色 シリンダ一温度230℃の2オンス射出成形機にて幅2
5m1、厚さ3fl及び長さ80mの成形体を成形し、
目視にて評価した。評価基準は、Oが樹脂やけ、樹脂変
色共になし、×が樹脂やけ、樹脂変色の少なくともいず
れかがある、××が樹脂やけ及び樹脂変色共に著しいこ
とを示す。
Resin burn and resin discoloration A cylinder with a width of 2 in a 2 oz injection molding machine at a temperature of 230°C.
Molding a molded body of 5 m1, thickness 3 fl, and length 80 m,
Evaluation was made visually. As for the evaluation criteria, O indicates that there is no resin burning or resin discoloration, × indicates that there is resin burning or resin discoloration, and XX indicates that both resin burning and resin discoloration are significant.

難燃性 厚さ1/8インチの試料を用い、UL−94法に準じた
A flame retardant sample with a thickness of 1/8 inch was used and UL-94 method was followed.

本発明による樹脂組成物によれば、樹脂やけ及び樹脂変
色のいずれもなく、−膜物性もバランスがとれている。
According to the resin composition of the present invention, there is no resin burning or resin discoloration, and the physical properties of the film are well balanced.

特に、ノツチ付きアイゾツト衝撃値及び熱変形温度にす
ぐれている。
In particular, it has excellent notched isot impact value and heat distortion temperature.

これに対して、比較例1による樹脂組成物は、スチレン
系重合体が数平均分子量において小さいために、−穀物
性が劣るほか、特に、ノツチ付きアイゾツト衝撃値及び
熱変形温度が著しく劣る。
On the other hand, the resin composition according to Comparative Example 1 has a low graininess due to the small number average molecular weight of the styrene polymer, and is particularly poor in notched Izot impact value and heat distortion temperature.

他方、比較例2による樹脂組成物は、スチレン系共重合
体が数平均分子量において高いために、−穀物性にはす
ぐれるものの、樹脂やけ及び樹脂変色が生じており、商
品価値がない。
On the other hand, the resin composition according to Comparative Example 2 has a high number average molecular weight of the styrene copolymer, so although it has excellent -grain properties, it suffers from resin burn and resin discoloration, and has no commercial value.

更に、ABS樹脂と塩化ビニル系樹脂の配合比を変動さ
せた場合、塩化ビニル系樹脂が30重量部よりも少ない
ときは、比較例3に示すように、得られる樹脂組成物が
目的とする難燃性を確保すことができず、他方、80重
量部を越えるときは、比較例4に示すように、得られる
樹脂組成物が耐衝撃性、耐熱性及び熱安定性において著
しく劣る。
Furthermore, when the blending ratio of ABS resin and vinyl chloride resin is varied, when the vinyl chloride resin is less than 30 parts by weight, as shown in Comparative Example 3, the resulting resin composition does not meet the target difficulty. Flammability cannot be ensured, and on the other hand, when the amount exceeds 80 parts by weight, as shown in Comparative Example 4, the resulting resin composition is significantly inferior in impact resistance, heat resistance, and thermal stability.

グラフト共重合体とスチレン系共重合体の配合比を変動
させた場合、グラフト共重合体(d)−1がABS樹脂
100重量部のうち、50重量部を越えるときは、比較
例5に示すように、得られる樹脂組成物が耐熱性及び熱
安定性に劣り、20重量部よりも少ないときは、比較例
6に示すように、得られる樹脂組成物が満足すべき耐衝
撃性をもたない。
When the blending ratio of the graft copolymer and the styrene copolymer is varied, when the graft copolymer (d)-1 exceeds 50 parts by weight out of 100 parts by weight of the ABS resin, the results are shown in Comparative Example 5. As shown in Comparative Example 6, when the resulting resin composition has poor heat resistance and thermal stability and is less than 20 parts by weight, the resulting resin composition may not have satisfactory impact resistance. do not have.

また、グラフト共重合体におけるポリブタジェン含有量
が5゛0重量%よりも少ないポリブタジェングラフト共
重合体(dl−2を用いるときは、比較例7に示すよう
に、得られる樹脂組成物は、満足すべき耐衝撃性をもた
ない。
In addition, when using a polybutadiene graft copolymer (dl-2) in which the polybutadiene content in the graft copolymer is less than 50% by weight, as shown in Comparative Example 7, the resulting resin composition is Does not have satisfactory impact resistance.

Claims (4)

【特許請求の範囲】[Claims] (1)平均重合度300〜1000の塩化ビニル系樹脂
(a)30〜80重量部とABS樹脂(b)70〜20
重量部とからなることを特徴とする難燃性樹脂組成物。
(1) 30 to 80 parts by weight of vinyl chloride resin (a) with an average degree of polymerization of 300 to 1000 and 70 to 20 parts by weight of ABS resin (b)
A flame-retardant resin composition comprising parts by weight.
(2)ABS樹脂(b)100重量部がスチレン系共重
合体(c)50〜80重量部とグラフト共重合体(d)
50〜20重量部とからなることを特徴とする特許請求
の範囲第1項記載の難燃性樹脂組成物。
(2) 100 parts by weight of ABS resin (b) is 50 to 80 parts by weight of styrenic copolymer (c) and graft copolymer (d)
50 to 20 parts by weight of the flame-retardant resin composition according to claim 1.
(3)スチレン系共重合体(c)がスチレン系化合物及
びシアン化ビニル化合物とを主たる単量体成分として有
し、数平均分子量が20000〜40000の範囲であ
ることを特徴とする特許請求の範囲第2項記載の難燃性
樹脂組成物。
(3) The styrenic copolymer (c) has a styrene compound and a vinyl cyanide compound as main monomer components, and has a number average molecular weight in the range of 20,000 to 40,000. The flame-retardant resin composition according to scope 2.
(4)グラフト共重合体(d)が共役ジエン系ゴム50
重量%以上と、シアン化ビニル化合物及び芳香族ビニル
化合物から選ばれる少なくとも1種のビニル単量体50
重量%以下とを共重合させてなることを特徴とする特許
請求の範囲第2項記載の難燃性樹脂組成物。
(4) Graft copolymer (d) is conjugated diene rubber 50
50% by weight or more, and at least one vinyl monomer selected from vinyl cyanide compounds and aromatic vinyl compounds.
The flame-retardant resin composition according to claim 2, characterized in that it is copolymerized with % by weight or less.
JP2422087A 1987-02-04 1987-02-04 Flame-retardant resin composition Pending JPS63191852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2422087A JPS63191852A (en) 1987-02-04 1987-02-04 Flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2422087A JPS63191852A (en) 1987-02-04 1987-02-04 Flame-retardant resin composition

Publications (1)

Publication Number Publication Date
JPS63191852A true JPS63191852A (en) 1988-08-09

Family

ID=12132201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2422087A Pending JPS63191852A (en) 1987-02-04 1987-02-04 Flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JPS63191852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191851A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
JPS63191853A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
US5990240A (en) * 1996-07-12 1999-11-23 Kaneka Corporation Rubber-containing resin composition and styrene resin composition containing the same
CN109438909A (en) * 2018-11-12 2019-03-08 刘景典 A kind of anti-flaming ABS material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123558A (en) * 1974-07-22 1976-02-25 Sumitomo Bakelite Co NETSUKASOSEIJUSHISOSEIBUTSU
JPS543863A (en) * 1977-06-10 1979-01-12 Mitsubishi Monsanto Chem Co Flame-retardant resin composition
JPS5443255A (en) * 1977-09-13 1979-04-05 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS5813650A (en) * 1981-07-17 1983-01-26 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS6197345A (en) * 1984-10-19 1986-05-15 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS6239650A (en) * 1985-08-15 1987-02-20 Denki Kagaku Kogyo Kk Flame-retardant resin composition
JPS6259655A (en) * 1985-09-11 1987-03-16 Denki Kagaku Kogyo Kk Production of flame-retardant resin composition
JPS63191853A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
JPS63191851A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123558A (en) * 1974-07-22 1976-02-25 Sumitomo Bakelite Co NETSUKASOSEIJUSHISOSEIBUTSU
JPS543863A (en) * 1977-06-10 1979-01-12 Mitsubishi Monsanto Chem Co Flame-retardant resin composition
JPS5443255A (en) * 1977-09-13 1979-04-05 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS5813650A (en) * 1981-07-17 1983-01-26 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS6197345A (en) * 1984-10-19 1986-05-15 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS6239650A (en) * 1985-08-15 1987-02-20 Denki Kagaku Kogyo Kk Flame-retardant resin composition
JPS6259655A (en) * 1985-09-11 1987-03-16 Denki Kagaku Kogyo Kk Production of flame-retardant resin composition
JPS63191853A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
JPS63191851A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191851A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
JPS63191853A (en) * 1987-02-04 1988-08-09 Ube Saikon Kk Flame-retardant resin composition
US5990240A (en) * 1996-07-12 1999-11-23 Kaneka Corporation Rubber-containing resin composition and styrene resin composition containing the same
CN109438909A (en) * 2018-11-12 2019-03-08 刘景典 A kind of anti-flaming ABS material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0953009A (en) Thermoplastic resin composition excellent in flame retardancy
JP2008501849A (en) Flame retardant styrenic resin composition having high impact resistance
KR100832518B1 (en) Flameproof phosphorous-containing copolymer and flameproof thermoplastic resin composition using the same
CA1313719C (en) Fire retardant impact modified carbonate polymer composition
US4150066A (en) Flame-retarding resin composition
JPS60192754A (en) Thermoplastic resin composition
KR20120069865A (en) Polycarbonate resin composition and molded article thereof
KR101154413B1 (en) Method of Preparing Processing aid and Thermoplastic resin
JPS63191852A (en) Flame-retardant resin composition
US3883615A (en) Flame-retardant impact-resistant resin composition
JP3936806B2 (en) Thermoplastic resin composition
JP2008530351A (en) Rubber-modified styrene flame retardant resin composition
US4144287A (en) Impact-resistant resin composition
JPS63191853A (en) Flame-retardant resin composition
KR100221923B1 (en) Retardented styrene resin composition
JPS6250504B2 (en)
KR0182357B1 (en) Styrenic antiflammable resin composition having high impact strength and flowability
JPS6026150B2 (en) thermoplastic resin composition
KR100506858B1 (en) Flame Retardant Thermoplastic Resin Composition having Good Weatherproof Property
JPS63191851A (en) Flame-retardant resin composition
JP6942235B1 (en) Styrene-based resin composition
JPH08225709A (en) Flame-retardant thermoplastic resin composition
JPS6128696B2 (en)
JPS5946270B2 (en) Flame retardant resin composition
JPH044245A (en) Modified flame-retardant resin composition