JPS63191629A - Heat-insulating structure - Google Patents

Heat-insulating structure

Info

Publication number
JPS63191629A
JPS63191629A JP62023582A JP2358287A JPS63191629A JP S63191629 A JPS63191629 A JP S63191629A JP 62023582 A JP62023582 A JP 62023582A JP 2358287 A JP2358287 A JP 2358287A JP S63191629 A JPS63191629 A JP S63191629A
Authority
JP
Japan
Prior art keywords
insulating structure
heat
heat insulating
rocket motor
structural material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62023582A
Other languages
Japanese (ja)
Inventor
元康 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62023582A priority Critical patent/JPS63191629A/en
Publication of JPS63191629A publication Critical patent/JPS63191629A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱構造体に関し、特にロケットモータチャツ
バに有利に適用される同構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating structure, and particularly to the same structure advantageously applied to a rocket motor chatuba.

〔従来の技術」 従来、ロケットモータチャツバは、推進薬燃焼ガスに暴
露されることから、内面に断熱構造が必須で、これまで
に実用化されたものとしては、下記のようなものかある
[Conventional technology] Conventionally, rocket motor chatubas are exposed to propellant combustion gas, so it is essential to have an insulating structure on the inside, and the ones that have been put into practical use so far include the following: .

(1)第2図に示すように、ニトリルゴム、エチレン侮
プロピレノ・ジエン−モノマーゴム(ZPDMゴム)、
シリコーンゴム等のエラストマ1にアスベスト繊維2等
を混線、カレンダ加工によって分散しシート状とし友も
の3を加硫しt後接着剤で、ま几は該シート状のもの5
を加硫前接着剤を塗布しt構造物に貼りつけて同時に加
硫して構造物4に接N5した断熱構造物 (2)第3図に示すように、フェノール樹脂6と耐熱無
機繊維織布7からなるa層成形品8を構造材4に接着剤
によシ接95した断熱構造物 (5)第4図に示すように、エポキシ樹脂9、セラミッ
ク粉末10及び耐熱無機繊維11を適量配合しスラリ状
とじ几もの12全ロケツトモ一タチヤンバ七回転させな
がら構造材4に一定卑さに接着硬化5させた断熱講造材
(4)  第5図に示すように、シリコーンエラストマ
ー13にスチール製のリボン14金入れ該リボン14を
構造材4に溶接によシ接着5し九断熱構造材(米国ラム
ロケットモータで開発中〕 〔発明か解決しようとする問題点〕 従来の断熱構造のうち、前記(す、(2)、(3)のも
のは断熱構造中の無機繊維のほとんどが面方向に配向し
ている几め、表層部の炭化層の強度が低くなり、高温ガ
ス流によって飛散するため浸食か大きくなる。
(1) As shown in Figure 2, nitrile rubber, ethylene-propylene diene monomer rubber (ZPDM rubber),
Asbestos fibers 2, etc. are mixed into an elastomer 1 such as silicone rubber, dispersed by calendering, made into a sheet, vulcanized the friend 3, and then glued with an adhesive.
A heat insulating structure (2), which was applied with pre-vulcanization adhesive and attached to the structure, and simultaneously vulcanized and connected to the structure 4 (2) As shown in Fig. 3, phenolic resin 6 and heat-resistant inorganic fiber woven A heat insulating structure (5) in which an A-layer molded product 8 made of cloth 7 is bonded 95 to a structural material 4 with an adhesive (5) As shown in FIG. Insulating material (4) made of slurry-like binding material 12, which is bonded to structural material 4 and hardened to a certain degree while rotating the entire rocket seven times. As shown in Figure 5, silicone elastomer 13 is made of steel Ribbon 14 gold insert The ribbon 14 is welded to the structural material 4 and bonded 5 and 9. Insulating structural material (currently being developed by Ramrocket Motor in the United States) [Problems to be solved by the invention] Of the conventional heat insulating structures, In the case of (2) and (3) above, most of the inorganic fibers in the insulation structure are oriented in the plane direction, and the strength of the carbonized layer on the surface layer is low, causing it to be scattered by the high-temperature gas flow. This will cause erosion and increase.

また前記(4)のものは、スチールリボンで炭化したシ
リコーンエラストマの飛散防止か可能であるか、スチー
ルの融点から使用温度制限かあシ、かつ飛散防止効果を
上げるにはスチールリボン密度を高めることが必要で、
加工性にも難点がある。
In addition, regarding the item (4) above, is it possible to prevent the carbonized silicone elastomer from scattering with a steel ribbon?Is it possible to limit the usage temperature due to the melting point of steel?And to increase the scattering prevention effect, it is necessary to increase the density of the steel ribbon. is necessary,
There are also difficulties in processability.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来断熱構造体の有する工具合金解消しう
る同構造体を提供しようとするものである。
The present invention aims to provide a structure capable of eliminating the tool alloys of the conventional heat insulating structure.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明は、構造材に、高度のニードル加工によって面に
直角方向に多数の繊維が配向した耐熱無機繊維に熱硬化
性樹脂及び/又はエラストマを含浸させ友材料を接着さ
せてなることを特徴とする断熱構造体である。
The present invention is characterized in that the structural material is made of heat-resistant inorganic fibers in which a large number of fibers are oriented in a direction perpendicular to the surface by advanced needle processing, impregnated with a thermosetting resin and/or elastomer, and bonded with a supporting material. It is a heat insulating structure.

すなわち、本発明は断熱効果の大きなアブレーション(
ablation :融除)材料で高温ガス流による炭
化層の飛散防止の友め、面に直角方図に耐熱無機繊維を
配回させるよう、中間素材として高密度にニードル加工
し九耐熱無機繊維よりなるフェルト材に、熱硬化性樹脂
又はエラストマ會含浸したものを準備して、構造材、例
えばロケットモータチャツバの内面に内張すしたもので
ある。
In other words, the present invention provides ablation (
This material is made of nine heat-resistant inorganic fibers that are needle-processed to a high density as an intermediate material so that the heat-resistant inorganic fibers are arranged at right angles to the surface. A felt material impregnated with a thermosetting resin or an elastomer is prepared and lined on the inner surface of a structural material, such as a rocket motor chatter.

〔作用〕[Effect]

ニードル加工で表面直角方向に配回させた耐熱無機繊維
によって、ロケットモータ推進系の燃焼ガスの暴露によ
って、表層部が炭化しても飛散を起さないため炭化浸食
が極めて小さくなる。
Heat-resistant inorganic fibers arranged perpendicular to the surface by needle processing do not cause scattering even if the surface layer is carbonized by exposure to the combustion gas of the rocket motor propulsion system, so carbonization corrosion is extremely small.

〔実施例〕〔Example〕

以下、本発明断熱構造体の一実施例を第1図によって説
明する。第1図の(〜はロケットモータチャンバの全体
図、(B)はそのム−ム断面図管示す。
Hereinafter, one embodiment of the heat insulating structure of the present invention will be described with reference to FIG. In FIG. 1, (-) is an overall view of the rocket motor chamber, and (B) is a cross-sectional view of the rocket motor chamber.

第1図に示す如く、ロケットモータチャンバ1の構造材
2にフェノール樹脂糸グライマ3を塗布した後、断熱構
造体4としてニードル加ニジ友アルミノシリケート稙維
製フェルト5に7エノール樹脂6を官浸しBステージ状
としたプリプレグを真空又はオート7レープ成形によっ
て、硬化・接着させたものである。
As shown in FIG. 1, after coating the structural material 2 of the rocket motor chamber 1 with phenolic resin thread glitter 3, a felt 5 made of needle-cured aluminosilicate fiber is impregnated with 7-enol resin 6 as a heat insulating structure 4. B-stage prepreg is cured and bonded by vacuum or auto-7 rape molding.

断熱構造体40庫さはフェルトの密度、厚さ、ニードル
加工密度、硬化時の圧力に依存するが、一般に1〜10
5m庫のものが推進薬燃焼ガスの熱特性と暴露時間に対
応し九厚さで用いられる。
The strength of the insulation structure 40 depends on the density and thickness of the felt, the needle processing density, and the pressure at the time of curing, but is generally 1 to 10.
The 5m chamber is used in nine thicknesses depending on the thermal characteristics and exposure time of the propellant combustion gas.

耐熱無機繊維は、アルミノシリケート以外にカーボン、
シリカ、アルミナ、アルミノボロシリケート等、ニード
ル加工できるものであれば適用可能でibシ、マトリッ
クス(バインダ)としてはフェノール樹脂以外に、フラ
ンm脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹
脂や’yリコーンエラストマー等フェス状で繊維間に含
なでき、加熱、加圧又は触媒添加により硬化するもので
あれば通用可能である。
In addition to aluminosilicate, heat-resistant inorganic fibers include carbon,
Silica, alumina, aluminoborosilicate, etc., which can be processed by needles, can be used.In addition to phenol resin, the matrix (binder) can be thermosetting resins such as furan resin, epoxy resin, polyimide resin, etc. Any material, such as silicone elastomer, which is in the form of a face and can be contained between fibers and can be cured by heating, pressure, or addition of a catalyst, can be used.

〔発明の効果」 本発明による断熱構造体、特にロケットモータチャンバ
内部断熱構造体は推進薬燃焼ガスに暴露され表層か炭化
しても、高密度にニードル加ニレ′fc#熱無機繊維が
面に■角万同に配回しているtめ飛散を防止できる優れ
7′c耐食性をもち、かつ、チャンバ内面への内張υが
、マトリックス(バインダ)金言浸し友ものを真空底形
又はオート7レープ底形等によって容易に達成できるの
で製作も容易である。
[Effects of the Invention] Even if the heat insulating structure according to the present invention, especially the rocket motor chamber internal heat insulating structure, is exposed to propellant combustion gas and the surface layer is carbonized, the needle-burned elm'fc# thermal inorganic fibers remain on the surface at a high density. ■ It has excellent 7'c corrosion resistance that can prevent scattering, and the lining υ on the inner surface of the chamber allows the matrix (binder) to be immersed in a vacuum bottom type or auto 7 rape. Since this can be easily achieved by changing the bottom shape, etc., it is easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明断熱構造体の一実施例會祝明するための
図で、(勾はロケットモータチャンバ全体図、(B)は
そのA−A断面を示す。 第2図〜第5図は従来の断熱構造体の構成を説明する几
めの図である。 第1図 第2図 第3図 第4図 第5図
Fig. 1 is a diagram for explaining one embodiment of the heat insulating structure of the present invention (the slope shows the overall view of the rocket motor chamber, and (B) shows its A-A cross section. Figs. 2 to 5 are FIG. 1 is a schematic diagram illustrating the configuration of a conventional heat insulating structure.

Claims (1)

【特許請求の範囲】[Claims] 構造材に、高度のニードル加工によつて面に直角方向に
多数の繊維が配向した耐熱無機繊維に熱硬化性樹脂及び
/又はエラストマを含浸させた材料を接着させてなるこ
とを特徴とする断熱構造体。
A thermal insulation characterized by adhering to a structural material a material made by impregnating a heat-resistant inorganic fiber with a thermosetting resin and/or an elastomer, in which a large number of fibers are oriented perpendicular to the plane through advanced needle processing. Structure.
JP62023582A 1987-02-05 1987-02-05 Heat-insulating structure Pending JPS63191629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023582A JPS63191629A (en) 1987-02-05 1987-02-05 Heat-insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023582A JPS63191629A (en) 1987-02-05 1987-02-05 Heat-insulating structure

Publications (1)

Publication Number Publication Date
JPS63191629A true JPS63191629A (en) 1988-08-09

Family

ID=12114569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023582A Pending JPS63191629A (en) 1987-02-05 1987-02-05 Heat-insulating structure

Country Status (1)

Country Link
JP (1) JPS63191629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101678A3 (en) * 2007-02-21 2009-07-16 Johns Manville Europe Gmbh New composite materials, method for their manufacture and their use
JP2013029100A (en) * 2011-06-24 2013-02-07 Ihi Aerospace Co Ltd Pulse rocket motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101678A3 (en) * 2007-02-21 2009-07-16 Johns Manville Europe Gmbh New composite materials, method for their manufacture and their use
JP2013029100A (en) * 2011-06-24 2013-02-07 Ihi Aerospace Co Ltd Pulse rocket motor

Similar Documents

Publication Publication Date Title
US4279952A (en) Multilayer insulating material and process for production thereof
US3936535A (en) Method of producing fiber-reinforced composite members
US3393117A (en) Copper-clad glass reinforced thermoset resin panel
JPS60108375A (en) Manufacture of reusable carbon composite material friction disk
GB908494A (en) High temperature resistant materials and method of manufacture thereof
GB1492712A (en) Brake disc containing a soft carbon layer
JPS63191629A (en) Heat-insulating structure
US3250070A (en) Rocket motor
JPS61139433A (en) Heat-insulating pipe body and manufacture thereof
JP2605451B2 (en) Surface reinforcement method for concrete mold
US4769196A (en) Method of manufacture of a non metallic laminate
JPS5712136A (en) Manufacture of disk brake pad
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
JPS5935069A (en) Manufacture of carbon-containing refractories
JPS6145962Y2 (en)
JPH03109266A (en) Carbon fiber reinforced carbon composite material
GB1198491A (en) Unitary Bodies an Method of Making the Same
JPH04216893A (en) Friction material
JPS6353327A (en) Fixing method for carbonaceous friction material
CN117594168A (en) Carrier rocket heat-proof plate and parameter determination method
JPH0549625B2 (en)
JPH05331297A (en) Produciton of friction material
JPS6127325A (en) Frictional disc made from carbon
JPS6322888A (en) Porous wet friction material
JP2019504262A5 (en)