JPS631910A - Dimension measuring apparatus - Google Patents

Dimension measuring apparatus

Info

Publication number
JPS631910A
JPS631910A JP14484386A JP14484386A JPS631910A JP S631910 A JPS631910 A JP S631910A JP 14484386 A JP14484386 A JP 14484386A JP 14484386 A JP14484386 A JP 14484386A JP S631910 A JPS631910 A JP S631910A
Authority
JP
Japan
Prior art keywords
pattern
dimension
signal
section
trapezoidal cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484386A
Other languages
Japanese (ja)
Inventor
Kenichi Yamamoto
健一 山本
Genya Matsuoka
玄也 松岡
Mikio Ichihashi
幹雄 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14484386A priority Critical patent/JPS631910A/en
Publication of JPS631910A publication Critical patent/JPS631910A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the dimension of the edge lower part of a pattern having a trapezoidal cross-section, by detecting the secondary electron from a specimen scanned by charged particle beam and applying predetermined operational processing to the detection signal being obtained. CONSTITUTION:A specimen stand 10 moves by the command of a control computer 5 so that the pattern 24 to be measured on a wafer reaches directly under beam. The pattern 24 is scanned by electron beam by a deflection control circuit 12 to generate a secondary electron which is, in turn, detected by signal detectors 11a, 11b. The detection signals thereof are sent to a signal processing circuit 22 to calculate the dimension between the lower parts (f), (g) of a line pattern (a) and a space pattern (b) comprising the substance A having a trapezoidal cross-section on a substrate substance B. In this case, the interval between the differentiated max. point and min. point of the detection signals is calculated to obtain the lower part dimension of the trapezoidal pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子線を用いた寸法測定装置に係シ、ウ
ェハー上の台形断面形状のパターンのエツジ下部の寸法
を正確に求める寸法測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dimension measuring device using a charged particle beam, and relates to a dimension measuring device that accurately determines the dimension of the lower edge of a pattern having a trapezoidal cross section on a wafer. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−112217号に記載のよ
うに、パターンエツジ部間の寸法を自動的に求める方法
はあったが、算出された寸法が一定の幅をもつエツジ部
のどこに対応しているかについて実験的層づけがされて
いなかった。また半導体プロセスにおいては台形断面形
状のパターンが多く、このパターン・エツジ下部の寸法
を正確に求める方法が必要とされていた。
As described in JP-A-59-112217, conventional devices have a method of automatically determining the dimensions between pattern edge parts, but it is difficult to determine which part of the edge part with a certain width the calculated dimension corresponds to. There was no experimental stratification as to whether the Further, in semiconductor processes, there are many patterns having a trapezoidal cross-section, and a method for accurately determining the dimensions of the lower part of the pattern edge has been needed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、算出された寸法がパターン断面エツジ
部のどこに対応しているかについて考慮がされておらず
、サブミクロンパターンの寸法評価には、正確さが不十
分でおるという問題があった。
The above-mentioned conventional technology does not take into account where the calculated dimensions correspond to the edge portions of the pattern cross section, and there is a problem in that the accuracy is insufficient for dimension evaluation of submicron patterns.

本発明の目的は、台形断面のパターンのエツジ下部の寸
法を正確に求めることの可能な寸法測定装置を提供する
ことにある。
An object of the present invention is to provide a dimension measuring device capable of accurately determining the dimension of the lower edge of a pattern having a trapezoidal cross section.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、台形断面のパターンのエツジ下部に対応す
る二次電子信号波形の微分の最大及び最小に対応する点
を見い出す演算処理手段を設けるによシ達成される。
The above object is achieved by providing an arithmetic processing means for finding points corresponding to the maximum and minimum differentials of the secondary electron signal waveform corresponding to the lower edge of the pattern having a trapezoidal cross section.

〔作用〕[Effect]

二次電子信号波形微分の最大点及び最小点は、台形断面
のパターンエツジ下部に対応する。従ってこの点を自動
的に求めれば、パターンエツジの下部の寸法が個人差魁
なく正確に求まる。
The maximum and minimum points of the secondary electron signal waveform differentiation correspond to the lower part of the pattern edge of the trapezoidal cross section. Therefore, if this point is automatically determined, the dimension of the lower part of the pattern edge can be determined accurately regardless of individual differences.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図は本実施例の電子ビーム測長装置の概略構成図で
ある。本体部3と電気回路部4と制御計算機5とから構
成されている。本体部3は、電子ビームを発生させる電
子銃と、この電子ビームを試料ウェハー9上に集束させ
るレンズ系8と、電子ビームを試料ウエノ・−上の被測
定ノ(ターン上でx、y方向に走査する偏向器7と、試
料ウエノ・−を載せるX、y方向に可動な試料台10と
、電子ビームの中心軸に対称な位置X方向の正負位置に
配置されたX−及びXゝ信号検出器11a、bとから成
る。電気回路部4は、偏向器7に偏向信号を供給する偏
向制御回路12とレンズ系を制御するレンズ系制御回路
13と、信号検出器11a。
FIG. 1 is a schematic configuration diagram of the electron beam length measuring device of this embodiment. It is composed of a main body part 3, an electric circuit part 4, and a control computer 5. The main body 3 includes an electron gun that generates an electron beam, a lens system 8 that focuses the electron beam onto a sample wafer 9, and a lens system 8 that focuses the electron beam on the sample wafer 9. a deflector 7 for scanning, a sample stage 10 movable in the X and y directions on which the sample Ueno-- is placed, and X- and The electric circuit unit 4 includes a deflection control circuit 12 that supplies a deflection signal to the deflector 7, a lens system control circuit 13 that controls a lens system, and a signal detector 11a.

bからの信号を処理して記憶する信号処理回路14と、
試料台10をx、  y方向に移動させる試料台制御回
路15と、走査型電子顕微鏡(SEM)像を表示するS
EM像表示装置16と、信号処理回路14から転送され
た信号波形を表示する信号波形表示装置17から成る。
a signal processing circuit 14 that processes and stores the signal from b;
A sample stand control circuit 15 that moves the sample stand 10 in the x and y directions, and an S that displays a scanning electron microscope (SEM) image.
It consists of an EM image display device 16 and a signal waveform display device 17 that displays the signal waveform transferred from the signal processing circuit 14.

またSEM像表示装置16には電子ビームの走査位置・
範囲を示すマーカーがSEM像に重畳表示され、信号波
形表示装置17には2本のカーソルが重畳される。制御
計算機5はインターフェース18を介して上記電気回路
部4を制御し、信号処理演算し、結果を ゛” CRT
に表示する。
The SEM image display device 16 also displays the scanning position and position of the electron beam.
A marker indicating the range is displayed superimposed on the SEM image, and two cursors are superimposed on the signal waveform display device 17. The control computer 5 controls the electric circuit section 4 through the interface 18, performs signal processing operations, and outputs the results to the CRT.
to be displayed.

次に信号処理回路14の詳細を第2図に従って説明する
。第2図において、X″′、X+の2つの信号検出器1
1a、bからの信号は、加算回路19によってX−+X
+の和信号となり、X−1X”i和の3信号がそれぞれ
、制御計算機5から設定された偏向走査回数(1〜10
24回)に従って加算平均回路20で加算平均され、A
/D変換回路21でl 2 X l 2 bitにアナ
ログ・デジタル(A/D)変換され、12X12bit
メモリ2′2に記憶される。上記メモリ22に記憶され
た、和信号は微分回路23で微分され微分信号としてメ
モリ22に記憶されるとともに、波形表示装置17に表
示される。
Next, details of the signal processing circuit 14 will be explained with reference to FIG. In Figure 2, there are two signal detectors 1, X''' and X+.
The signals from 1a and 1b are converted to X−+X by the adder circuit 19.
+, and the three signals of the sum of X-1
24 times) in the averaging circuit 20, and A
/D conversion circuit 21 performs analog-to-digital (A/D) conversion to 12 x 12 bits.
It is stored in memory 2'2. The sum signal stored in the memory 22 is differentiated by a differentiating circuit 23 and stored as a differential signal in the memory 22, and is also displayed on the waveform display device 17.

次に上記構成装置の動作について説明する。Next, the operation of the above-mentioned component device will be explained.

まず制御計算機5の命令によって試料台10を、′ウェ
ハー上の被測定パターンがビーム直下に来るよう移動す
る。このとき第3図に示すように、SEM像表示装置1
6には被測定パターン24のSEM像が表示され、これ
を横切るように電子ビーム走査位置・範囲を示すマーカ
ー25を合わせる。偏向制御回路12によって電子ビー
ムでマーカー25の範囲を2048デジタル走査し、と
のとき試料から発生する2次電子を信号検出器11 a
First, according to a command from the control computer 5, the sample stage 10 is moved so that the pattern to be measured on the wafer is directly under the beam. At this time, as shown in FIG.
6 displays an SEM image of the pattern to be measured 24, and a marker 25 indicating the electron beam scanning position and range is aligned across this. The deflection control circuit 12 digitally scans the range of the marker 25 with the electron beam 2048 times, and the secondary electrons generated from the sample are detected by the signal detector 11a.
.

bで検出し、信号波形をメモリ22に記憶、和信号波形
を波形表示装置16に表示するとともに、X−、X+お
よび微分信号波形をメモリ22から制御計算機に転送す
る。
b, the signal waveform is stored in the memory 22, the sum signal waveform is displayed on the waveform display device 16, and the X-, X+ and differential signal waveforms are transferred from the memory 22 to the control computer.

第4図に示すような下地物質B上の台形断面の物質Aか
ら成るラインパターン(a)及びスペースパターンΦ)
の下部128間の寸法(パターン下部寸法)を求めるこ
とが、半導体プロセスにおいて要求される。このような
パターン上を電子ビームで走査したとき第5図(a)に
示すような和信号波形1が波形表示装置17に表示され
る。これに重畳表示された2本のカーソル2を調節して
信号波形処理領域を決め、このカーソル位置のアドレス
Xt。
Line pattern (a) and space pattern Φ) consisting of material A with a trapezoidal cross section on base material B as shown in FIG.
It is required in the semiconductor process to determine the dimension between the lower portions 128 of the pattern (pattern lower dimension). When such a pattern is scanned with an electron beam, a sum signal waveform 1 as shown in FIG. 5(a) is displayed on the waveform display device 17. The two cursors 2 superimposed on this are adjusted to determine the signal waveform processing area, and the address Xt of this cursor position is determined.

Xiを制御計算機に読み込む。次に第5図(b)、 (
C)に示すX″及びX9信号波形の領域X t 、  
X r内における最大値に対応する。アドレスx1’ 
+  X2’を求める。X1′とx 、/の大小を比較
しxl′の方が小さい場合はラインパターンであシ、逆
の場合はスペースパターンである。ラインパターンの場
合は第5図(d)に示すように、X 1’ r  X 
2’  の外側すなわちXt≦X≦xl/ l x2/
≦xくxrの領域Xで微分信号の最大値及び最小値に対
応するアドレスXI+”2を求める。スペースパターン
の場合は第1図(e)に示すように、X11.X21 
 の内側すなわちX+’ <X<xz’の領域Xで微分
信号の最大値及び最小値に対応するアドレスX1#X2
を求める。
Load Xi into the control computer. Next, Fig. 5(b), (
The area X t of the X″ and X9 signal waveforms shown in C),
Corresponds to the maximum value within X r. Address x1'
+ Find X2'. Compare the magnitudes of X1' and x, /, and if xl' is smaller, it is a line pattern, and if the opposite is the case, it is a space pattern. In the case of a line pattern, as shown in FIG. 5(d),
2', that is, Xt≦X≦xl/l x2/
Find the address XI+"2 corresponding to the maximum value and minimum value of the differential signal in the region X of ≦x x xr. In the case of a space pattern,
Addresses X1#X2 corresponding to the maximum and minimum values of the differential signal in the area X where X+'< X <xz'
seek.

これらよl) パターン下部寸法t=l Xl −X3
 1が求まる。
From these l) Pattern bottom dimension t=l Xl -X3
1 is found.

また第4図(a)に示すような台形断面のラインパター
ンを電子ビームで走査した場合に得られる二次電子信号
波形は二次電子放出比の物質への入射角及び物質依存性
によって決まる。物質への入射角依存性の方が主になる
場合は、第5図に示したようなパターン・エツジ部にピ
ークの現れる波形となる。−方物質依存性の方が強い場
合には、第6図に示すようにエツジ部にコントラスト差
をもつ和信号波形1となる。このような場合には、xt
、x、領域で微分信号の最大値に対応するアドレスXI
z  x2 を求め、パターン下部寸法1=l Xl 
−x21を得る。
Further, the secondary electron signal waveform obtained when scanning a line pattern with a trapezoidal cross section as shown in FIG. 4(a) with an electron beam is determined by the incident angle of the secondary electron emission ratio into the material and the dependence of the material. If the dependence on the angle of incidence on the substance is the main one, the waveform will have a peak appearing at the edge of the pattern as shown in FIG. - If the substance dependence is stronger, the sum signal waveform 1 will have a contrast difference at the edges, as shown in FIG. In such a case, xt
, x, the address XI corresponding to the maximum value of the differential signal in the region
Find z x2 and find pattern bottom dimension 1=l Xl
−x21 is obtained.

次に、実際に台形断面の試料としてRe5tst/5j
3N4 を用いた場合に、上記方法によって得た寸法と
パターンを長手方向と直角に割ってパターン断面のSE
M像から得たパターン下部寸法を比較した結果を示す。
Next, as an actual sample with a trapezoidal cross section, Re5tst/5j
When using 3N4, the dimensions and pattern obtained by the above method are divided perpendicular to the longitudinal direction to calculate the SE of the pattern cross section.
The results of comparing the lower pattern dimensions obtained from the M images are shown.

ラインパターンの線幅設計値はそれぞれ0゜6. 0.
8. 1.0. 1.2. 1.5. 2.0μmであ
シ、エツジの傾斜角は80°上5°であった。第7図に
おいて、横軸は断面SEM像から得たパターン下部寸法
、縦軸はこの寸法と上記処理によって得た寸法との差で
あり、0が測定点でるる。このように両者の差は〜±0
,05μm以内とよく一致していた。
The line width design value of each line pattern is 0°6. 0.
8. 1.0. 1.2. 1.5. The thickness was 2.0 μm, and the inclination angle of the edge was 5° above 80°. In FIG. 7, the horizontal axis is the dimension of the lower part of the pattern obtained from the cross-sectional SEM image, and the vertical axis is the difference between this dimension and the dimension obtained by the above processing, where 0 is the measurement point. In this way, the difference between the two is ~±0
, 05 μm or less.

以上のように本実施例によれば、台形断面の形状をもつ
パターンのエツジ下部の寸法をライン又はスペースに応
じて正確に自動的に求められるという効果がめる。
As described above, according to this embodiment, the advantage is that the dimension of the lower edge of a pattern having a trapezoidal cross section can be accurately and automatically determined according to the line or space.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微分信号波形の処理により寸法を算出
するので、台形断面形状のパターンのエツジ下部の寸法
を±0.05μm以内の正確さで自動的に求めることが
できる。
According to the present invention, since the dimensions are calculated by processing the differential signal waveform, the dimensions of the lower edge of a pattern having a trapezoidal cross section can be automatically determined with an accuracy of within ±0.05 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す寸法測定装置の概略構
成図、第2図は第1図の信号処理回路の詳細図、第3図
は被測定パターンのSEMg1表示の説明図、第4図は
台形断面形状のパターンの断面図、第5図は本発明の一
実施例の信号処理の手順の説明図、第6図は二次電子信
号波形の主要因が物質差である場合の信号波形図、第7
図はパターン下部寸法と本発明の処理から得た寸法との
差を示すグラフである。 1・・・和信号成形、2・・・カーソル、3・・・本体
部、4・・・電気回路図、5・・・制御計算機、6・・
・電子銃、7・・・偏向器、8・・・レンズ系、9・・
・試料ウエノ・−110・・・試料台、lla・・・X
−信号検出器、llb・・・入“信号検出器、12・・
・偏向制御回路、13・・・レンズ系制御回路、14・
・・信号処理回路、15・・・試料台制御回路、16・
・・SEM像表示装置、17・・・波形表示装置、18
・・・インターフェース、19・・・加算回路、20・
・・加算平均回路、21・・・A/D変換回路(12X
12bit)、22・・・メモリ(12X12bit)
、23・・・微分囲路、24・・・被測定パターン、2
5・・・マーカー、26・・・微分信号波形。 代理人 弁理士 小川勝男7/爪ゝ (lO) 第 2 図 第 、3 目 第 4 囚 第、6 目 第70  、 l\・ターン下紳丁法(A気)
FIG. 1 is a schematic configuration diagram of a dimension measuring device showing an embodiment of the present invention, FIG. 2 is a detailed diagram of the signal processing circuit in FIG. 1, FIG. Fig. 4 is a cross-sectional view of a pattern with a trapezoidal cross-sectional shape, Fig. 5 is an explanatory diagram of the signal processing procedure of an embodiment of the present invention, and Fig. 6 is a diagram showing the case where the main factor of the secondary electron signal waveform is material difference. Signal waveform diagram, 7th
The figure is a graph showing the difference between the pattern bottom dimensions and the dimensions obtained from the process of the present invention. 1... Sum signal forming, 2... Cursor, 3... Main body, 4... Electric circuit diagram, 5... Control computer, 6...
・Electron gun, 7... Deflector, 8... Lens system, 9...
・Sample Ueno・-110...Sample stand, lla...X
- Signal detector, llb...in "Signal detector, 12..."
- Deflection control circuit, 13... Lens system control circuit, 14.
...Signal processing circuit, 15...Sample stage control circuit, 16.
... SEM image display device, 17... Waveform display device, 18
...Interface, 19...Addition circuit, 20.
...Averaging circuit, 21...A/D conversion circuit (12X
12bit), 22...Memory (12X12bit)
, 23... Differential circuit, 24... Pattern to be measured, 2
5... Marker, 26... Differential signal waveform. Agent Patent Attorney Katsuo Ogawa 7/Tsumeゝ(lO) Figure 2, Figure 3, Figure 4, Figure 6, Figure 70, l\・Turn Shimo Genchoho (Aki)

Claims (1)

【特許請求の範囲】[Claims] 1、荷電粒子線を測定試料上で微小プローズに集束する
集束手段と、この荷電粒子線を前記試料面に走査する偏
向手段と、試料から放出される二次電子などの信号を検
出する2個以上の信号検出手段と、上記検出手段からの
信号を演算処理する手段を具備する寸法測定装置におい
て、上記演算処理する手段は上記検出信号の微分の最大
点と最小点を見つけ、これらの点の間隔をもつて台形断
面を有する試料の縁部下部の寸法とするように構成され
たことを特徴とする寸法測定装置。
1. A focusing device that focuses the charged particle beam onto a microprose on the measurement sample, a deflection device that scans the charged particle beam on the sample surface, and two devices that detect signals such as secondary electrons emitted from the sample. In a dimension measuring device comprising the above-mentioned signal detection means and means for arithmetic processing of the signal from the detection means, the arithmetic processing means finds the maximum and minimum points of the differential of the detection signal, and calculates the difference between these points. A dimension measuring device characterized in that it is configured to measure the dimensions of the lower edge of a sample having a trapezoidal cross section at intervals.
JP14484386A 1986-06-23 1986-06-23 Dimension measuring apparatus Pending JPS631910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484386A JPS631910A (en) 1986-06-23 1986-06-23 Dimension measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484386A JPS631910A (en) 1986-06-23 1986-06-23 Dimension measuring apparatus

Publications (1)

Publication Number Publication Date
JPS631910A true JPS631910A (en) 1988-01-06

Family

ID=15371714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484386A Pending JPS631910A (en) 1986-06-23 1986-06-23 Dimension measuring apparatus

Country Status (1)

Country Link
JP (1) JPS631910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102032A (en) * 1992-03-30 1994-04-12 Seiko Instr Inc Fluorescent x-rays film thickness measuring method
WO2019194304A1 (en) * 2018-04-06 2019-10-10 株式会社日立ハイテクノロジーズ Electron microscope device, inspection system using electron microscope device, and inspection method using electron microscope device
US11276554B2 (en) 2019-08-07 2022-03-15 Hitachi High-Tech Corporation Scanning electron microscope and method for measuring pattern
US11545336B2 (en) 2018-04-06 2023-01-03 Hitachi High-Tech Corporation Scanning electron microscopy system and pattern depth measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102032A (en) * 1992-03-30 1994-04-12 Seiko Instr Inc Fluorescent x-rays film thickness measuring method
WO2019194304A1 (en) * 2018-04-06 2019-10-10 株式会社日立ハイテクノロジーズ Electron microscope device, inspection system using electron microscope device, and inspection method using electron microscope device
KR20200106199A (en) * 2018-04-06 2020-09-11 주식회사 히타치하이테크 Electron microscope device, inspection system using electron microscope device, and inspection method using electron microscope device
US11302513B2 (en) 2018-04-06 2022-04-12 Hitachi High-Tech Corporation Electron microscope apparatus, inspection system using electron microscope apparatus, and inspection method using electron microscope apparatus
US11545336B2 (en) 2018-04-06 2023-01-03 Hitachi High-Tech Corporation Scanning electron microscopy system and pattern depth measurement method
US11276554B2 (en) 2019-08-07 2022-03-15 Hitachi High-Tech Corporation Scanning electron microscope and method for measuring pattern

Similar Documents

Publication Publication Date Title
EP0345772B1 (en) Pattern configuration measuring apparatus
EP2706555B1 (en) Particle beam microscope for generating material data and method of operating such a microscope
EP0186851B1 (en) Apparatus and method for composite image formation by scanning electron beam
JPS59163506A (en) Electronic beam measuring device
JP3602646B2 (en) Sample size measuring device
JPS631910A (en) Dimension measuring apparatus
US20130120551A1 (en) Pattern Dimension Measurement Method, Pattern Dimension Measurement Device, Program for Causing Computer to Execute Pattern Dimension Measurement Method, and Recording Medium Having Same Recorded Thereon
JP3265724B2 (en) Charged particle beam equipment
JP3156694B2 (en) Scanning electron microscope
JP2716997B2 (en) Cross-sectional shape measurement method, cross-sectional shape comparison inspection method and their devices
JPH0349363B2 (en)
JPH11167893A (en) Scanning electron microscope
JPH04105010A (en) Method and device for shape and dimension measurement
JPS63266747A (en) Sample image display device
JP2539530B2 (en) Sample image display
JPH0658221B2 (en) Scanning electron microscope
JPH03179208A (en) Size measuring and processing apparatus
JPH0372923B2 (en)
JPS63200448A (en) Positioning device for scanning type electron microscope
JPH06138196A (en) Electromagnetic field distribution measuring device using convergence electron rays
JPS631911A (en) Electron beam apparatus
JPH0219682Y2 (en)
JPH07286842A (en) Method and device for inspecting dimension
JPH0587764B2 (en)
JPH01115044A (en) Fine beam length measuring device