JPH01115044A - Fine beam length measuring device - Google Patents

Fine beam length measuring device

Info

Publication number
JPH01115044A
JPH01115044A JP27014987A JP27014987A JPH01115044A JP H01115044 A JPH01115044 A JP H01115044A JP 27014987 A JP27014987 A JP 27014987A JP 27014987 A JP27014987 A JP 27014987A JP H01115044 A JPH01115044 A JP H01115044A
Authority
JP
Japan
Prior art keywords
sample
detectors
detector
signals
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27014987A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Tetsuo Yokoyama
哲夫 横山
Juntaro Arima
純太郎 有馬
Hisahiro Furuya
寿宏 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27014987A priority Critical patent/JPH01115044A/en
Publication of JPH01115044A publication Critical patent/JPH01115044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent detectors from having an effect of their position on measurement by mounting a plurality of detectors on a scanning electronic microscope and combining signals obtained from the respective detectors or by using signals single according to materials or shapes of an object te be measured. CONSTITUTION:Electron beams 103 emitted from an electron gun 102 are detected by an electronic lens system 104 and made incident to a sample 106. Secondary electrons 107 emitted from the sample 106 are detected from a right detector 108 and a left detector 109. These signals are processed by a computer 111 to display their scanning wave forms and images on a display 112. In the case of measuring a surface shape, detectors to be used are selected on the basis of knowledge obtained from theoretical considerations on a positional relation between the detectors and the sample or knowledge about the desirable positional relation obtained in advance by experiments. A signal which always reflects a fine shape even on observing any portion of the sample can be thus obtained to enable high precision measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体表面の線11I測定装置に係り、特に
高精度な測定結果を与える微小線幅測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring line 11I on a semiconductor surface, and more particularly to a minute line width measuring device that provides highly accurate measurement results.

〔従来の技術〕[Conventional technology]

半導体の微細化に伴い、その製造工程の管理のための線
11M測定には、高分解能の走査電子類v11鏡が用い
られるようになってきている。従来の装置は、特開昭5
9−112217号公報に記載のように、基本的には生
物試料Min等に用いられてきた通常の走査電子顕微鏡
に画像信号記憶部や演算制御部を付加した構成となって
いる。電子レンズ系、電子銃等につき、半導体Ii!!
察に適した改良を施しであるものが多いが、2次電子等
の検出器については特開昭59−112217号公報の
ように、通常の走査電子顕微鏡と同じく一個だけ用いて
いた。しかし、検出器と測定する試料の位置関係につい
ての特別の考慮はなされていなかった。
With the miniaturization of semiconductors, high-resolution scanning electronics V11 mirrors have come to be used for line 11M measurements for controlling the manufacturing process. The conventional device is
As described in Japanese Patent No. 9-112217, it basically has a configuration in which an image signal storage section and an arithmetic control section are added to a normal scanning electron microscope that has been used for biological samples Min. For electronic lens systems, electron guns, etc., semiconductor Ii! !
Many of them have been improved to be suitable for scanning, but only one detector for detecting secondary electrons was used, as in the case of JP-A-59-112217, which is the same as in ordinary scanning electron microscopes. However, no special consideration was given to the positional relationship between the detector and the sample to be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、半導体の表面形状のような微細な形状
を走査電子顕**をlii察する場合、得られる画像が
検出器の向きに依存するという点に対して考慮されてお
らず、半導体表面の線幅等の測定値が、検出器の向きに
より異なるという問題があった。すなわち1通常用いら
れている走査電子顕微鏡には、検出器を取りつけられる
場所が4か所程度設けてあり、それぞれ、検出器に向い
た而が明るい画像が得られ、この効果は照明効果として
知られている。同様に、検出器から影になっている部分
は、暗(なることも知られている。
The above conventional technology does not take into consideration the fact that when observing minute shapes such as the surface shape of a semiconductor using a scanning electron microscope**, the obtained image depends on the orientation of the detector. There was a problem in that measured values such as line width differed depending on the orientation of the detector. In other words, 1. A commonly used scanning electron microscope has about four locations where the detector can be attached, and the one facing the detector produces a brighter image. This effect is known as the illumination effect. It is being Similarly, areas that are shaded from the detector are also known to be dark.

本発明の目的は、上記検出器の位置による影響を受けな
い微小線幅測定装置を得ることにある。
An object of the present invention is to obtain a minute line width measuring device that is not affected by the position of the detector.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、走査電子顕微鏡に複数の検出器をつけ、そ
れぞれの検出器より得られる信号を、組合わせて、ある
いは、単独に測定対象の材質や形状に応じて用いること
により、達成される。
The above object is achieved by attaching a plurality of detectors to a scanning electron microscope and using signals obtained from each detector in combination or singly depending on the material and shape of the object to be measured.

〔作用〕[Effect]

複数の検出器のそれぞれの位置と試料表面形状との相対
関係により、ある部分の微細な特徴をよく反映する検出
器の信号と、微細な特徴を反映しない検出器の信号があ
る。従って、ある表面形状を測定する際には、検出器と
試料の位置関係に関する理論的考察により得られた知識
、または、予め実験を行っておき、その際得られた望ま
しい検出器と試料の位置関係に関する知識に基づき、用
いる検出器を選択する。これにより、試料のどの部分を
wt察しても、常に微細な形状を反映する信号が得られ
、高精度な測定を行うことができる。
Depending on the relative relationship between the positions of each of the plurality of detectors and the sample surface shape, there are detector signals that well reflect the minute features of a certain part and detector signals that do not reflect the minute features. Therefore, when measuring a certain surface shape, it is necessary to use knowledge obtained from theoretical considerations regarding the positional relationship between the detector and the sample, or to conduct experiments in advance and determine the desired position of the detector and sample. Select the detector to use based on knowledge of the relationship. As a result, no matter which part of the sample is inspected, a signal reflecting the minute shape can always be obtained, making it possible to perform highly accurate measurements.

〔実施例〕〔Example〕

以下1本発明の一実施例を、第1図〜第4図を用いて説
明する。第1図は1本発明による走査電子顕*nm長シ
ステムの一実施例のハードウェア構成図であり、通常の
走査電子顕微鏡に、検出器を2つ取り付け、コンピュー
タにより演算制御を行う構成である。鏡体101中の電
子銃102より放出された電子線103は、電子レンズ
系104により偏向され、試料台105上の試料106
へ入射する。それに対応し、試料106より放出される
2次電子107は、それぞれ、右方検出器108及び左
方検出器109により検知される。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a hardware configuration diagram of an embodiment of the scanning electron microscope*nm length system according to the present invention, in which two detectors are attached to an ordinary scanning electron microscope, and arithmetic control is performed by a computer. . An electron beam 103 emitted from an electron gun 102 in a mirror body 101 is deflected by an electron lens system 104 and is directed toward a sample 106 on a sample stage 105.
incident on the Correspondingly, secondary electrons 107 emitted from the sample 106 are detected by the right detector 108 and the left detector 109, respectively.

それらの信号は、キーボード1.10により制御される
コンピュータ111により処理され、その走査波形や画
像は、単独で、あるいは、演算を施されて、デイスプレ
ィ112に表示される。
These signals are processed by a computer 111 controlled by a keyboard 1.10, and the scanning waveforms and images are displayed on a display 112 either alone or after being subjected to calculations.

第2図(a)は、典型的な半導体表面パターンの断面図
、同図(b)は上記表面を、上記ハードウェア構成にお
いて走査した際得られる、各検出器の走査信号波形及び
その和信号の波形を表す。
FIG. 2(a) is a cross-sectional view of a typical semiconductor surface pattern, and FIG. 2(b) is the scanning signal waveform of each detector and its sum signal obtained when the surface is scanned with the above hardware configuration. represents the waveform of

測定の対象となるのは、第2図(a)の試料断面201
の下端エツジ202と、下端エツジ203の間隔や、上
端エツジ204と、上端エツジ205の間隔である。こ
の上を走査すると、右方検出器108による右方信号波
形207.左方検出器109による左方信号波形208
、及び両者の和である和信号波形206が得られる。こ
れらの波形上の各特徴点で、下端エツジ202には、右
方信号波形特徴点209が、下端エツジ203には、左
方信号波形特徴点211が、上端エツジ204には、左
方(1号波形特徴点212が、上端エツジ205には、
右方信号波形特徴点210がよく対応している3以上よ
り、 PAg定に際して、上記特徴点を各エツジ位置と
すれば高精度な測定を行うことができる。
The object of measurement is the sample cross section 201 in Fig. 2(a).
The distance between the lower edge 202 and the lower edge 203, and the interval between the upper edge 204 and the upper edge 205. When this is scanned, the right side signal waveform 207 . Left side signal waveform 208 by left side detector 109
, and a sum signal waveform 206 which is the sum of both. Among the feature points on these waveforms, the right signal waveform feature point 209 is located at the lower edge 202, the left signal waveform feature point 211 is located at the lower edge 203, and the left signal waveform feature point 209 is located at the upper edge 204. The signal waveform feature point 212 is at the upper edge 205,
Since three or more right signal waveform feature points 210 correspond well to each other, highly accurate measurement can be performed by using the above feature points as each edge position when determining PAg.

以下、本実施例の測定の手順を、第3図のフローチャー
トと第4図を用いて説明する。ブロック301において
は、和信号画像を表示し、ブロック302では、測定す
べ部分の指定を行う、その際、どちらの検出器の信号を
使うか、また測定するのは、上端エツジか、下端エツジ
かを指定する。
The measurement procedure of this example will be explained below using the flowchart of FIG. 3 and FIG. 4. In block 301, the sum signal image is displayed, and in block 302, the part to be measured is specified. At this time, which detector's signal is to be used, and whether to measure the upper edge or the lower edge. Specify.

ブロック303からブロック306までの操作は、両端
のエツジにつき、2度行う、ブロック30:3では、ブ
ロック302の指定により、エツジ決定アルゴリズムを
選択する。この具体的アルゴリズムは、第4図において
、右方信号波形207について説明する。第4図(a)
は右方信号波形特徴点210を求めるアルゴリズムを説
明する図である。右方信号波形207を斜め近似直線4
01及び水平近似直線402で近似し、その交点を以っ
て右方信号波形特徴点210とする。第4図(b)は右
方信号波形特徴点209を求めるアルゴリズムを説明す
る図である。右方信号波形207を斜め近似直線403
及び水平近似直線404で近似し、その交点を以って右
方信号波形特徴点209とする。左方信号波形より、そ
の特徴点を求める場合には、第4図の左右を反転させ、
同様の操作を行えばよい、ブロック304では測定に使
用する信号を入力する。すなわち、上記選択されたアル
ゴリズムに従い、右方信号波形207か左方信号波形2
08のどちらかを入力する。ブロック305では、第4
図で説明したアルゴリズムに従い、入力波形を直線近似
する。ブロック306では近似直線の交点を求め、この
水平方向の座標値を以ってエツジ位置とする。ブロック
307においては両端のエツジにおいて決定された座標
値の差をとり、これと顕微鏡の倍率とを考慮し、エツジ
間の距離を計算する。ブロック308においては、計算
結果を表示する。
The operations from block 303 to block 306 are performed twice for the edges at both ends. In block 30:3, an edge determination algorithm is selected according to the specification in block 302. This specific algorithm will be explained with respect to the right signal waveform 207 in FIG. Figure 4(a)
2 is a diagram illustrating an algorithm for finding right signal waveform feature points 210. FIG. Oblique approximation straight line 4 of right side signal waveform 207
01 and a horizontal approximation straight line 402, and the intersection thereof is defined as the right signal waveform feature point 210. FIG. 4(b) is a diagram illustrating an algorithm for determining the right signal waveform feature point 209. Right side signal waveform 207 is obliquely approximated straight line 403
and a horizontal approximation straight line 404, and the intersection thereof is defined as the right signal waveform feature point 209. To find the feature points from the left signal waveform, reverse the left and right sides of Fig. 4,
A similar operation may be performed, and in block 304, a signal to be used for measurement is input. That is, according to the algorithm selected above, the right signal waveform 207 or the left signal waveform 2
Enter either 08. In block 305, the fourth
The input waveform is linearly approximated according to the algorithm explained in the figure. In block 306, the intersection of the approximate straight lines is found, and the horizontal coordinate value is used as the edge position. In block 307, the difference between the coordinate values determined at both edges is taken, and the distance between the edges is calculated by taking this and the magnification of the microscope into account. At block 308, the calculation results are displayed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、検出器と試料の位置関係に影響されな
い波形を用いて測定できるので、高精度の微小線幅測定
ができる効果がある。
According to the present invention, since measurement can be performed using a waveform that is not affected by the positional relationship between the detector and the sample, there is an effect that highly accurate minute line width measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明−実施例のハードウェア構成図、第2
図は1本発明の一実施例に用いられる試料の断面図と、
対応する走査波形図、第3図は、本発明の一実施例の処
理のフローチャート、第4図は、本発明の一実施例に用
いられるアルゴリズム / 図 紙f+/θ6 第 2 凹 (b) 躬 3 図 第 47
Figure 1 is a hardware configuration diagram of the present invention-embodiment;
Figure 1 shows a cross-sectional view of a sample used in an embodiment of the present invention;
The corresponding scanning waveform diagram, FIG. 3 is a flowchart of processing of an embodiment of the present invention, and FIG. 4 is an algorithm used in an embodiment of the present invention. 3 Figure No. 47

Claims (1)

【特許請求の範囲】[Claims] 1、測定試料に電子線を照射し、該試料より放出される
電子を検出して、画像、走査波形等の表面情報を得る走
査電子顕微鏡において、上記放出される電子の検出器を
複数個設け、上述試料上の局所的形状、材質等に応じて
、これら複数の検出器からの情報に基づき、試料表面の
微小形状を測定することを特徴とする微小線幅測定装置
1. In a scanning electron microscope that irradiates a measurement sample with an electron beam and detects electrons emitted from the sample to obtain surface information such as images and scanning waveforms, a plurality of detectors for the emitted electrons are provided. , a minute linewidth measurement device that measures minute shapes on the surface of a sample based on information from the plurality of detectors according to the local shape, material, etc. on the sample.
JP27014987A 1987-10-28 1987-10-28 Fine beam length measuring device Pending JPH01115044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27014987A JPH01115044A (en) 1987-10-28 1987-10-28 Fine beam length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27014987A JPH01115044A (en) 1987-10-28 1987-10-28 Fine beam length measuring device

Publications (1)

Publication Number Publication Date
JPH01115044A true JPH01115044A (en) 1989-05-08

Family

ID=17482226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27014987A Pending JPH01115044A (en) 1987-10-28 1987-10-28 Fine beam length measuring device

Country Status (1)

Country Link
JP (1) JPH01115044A (en)

Similar Documents

Publication Publication Date Title
US5029250A (en) Pattern configuration measuring apparatus
EP0641021B1 (en) Particle analysis of notched wafers
US5159643A (en) Method and apparatus for measuring pattern dimension
US4906097A (en) Imaging and inspection apparatus and method
JP2005195361A (en) Measuring method for line-and-space pattern using scanning electron microscope
KR100288330B1 (en) How to Search for the Center of Band Area
JPH11132748A (en) Multi-focal point concurrent detecting device, stereoscopic shape detecting device, external appearance inspecting device, and its method
US4557602A (en) Edge detector in optical measuring instrument
EP0374977A1 (en) Method and device for the detection and classification of the crimpling of a surface treatment
JPH01115044A (en) Fine beam length measuring device
JPH11167893A (en) Scanning electron microscope
US4856902A (en) Imaging and inspection apparatus and method
JPH0658221B2 (en) Scanning electron microscope
JPS631910A (en) Dimension measuring apparatus
JP2644257B2 (en) Beam detection target
JPH07270125A (en) Detection apparatus of sheet width and meandering amount of sheet material
KR20240053958A (en) Image generator of scanning electron microscope and method of generating image for the same
JP3040013B2 (en) Foreign object detection method using floating threshold
JPH03291842A (en) Sample image display device
JPH05248822A (en) Method for measuring width of minute line
JPH04274711A (en) Measuring method of size of pattern using charged beam
JPH01129113A (en) Measuring method of surface roughness
JPH07286842A (en) Method and device for inspecting dimension
EP0407625B1 (en) Method and apparatus for determining line centers in a microminiature element
JPH0658730A (en) Measuring method of precision of superposition