JPS63190759A - Manufacture of silicon nitride sintered body - Google Patents
Manufacture of silicon nitride sintered bodyInfo
- Publication number
- JPS63190759A JPS63190759A JP62020771A JP2077187A JPS63190759A JP S63190759 A JPS63190759 A JP S63190759A JP 62020771 A JP62020771 A JP 62020771A JP 2077187 A JP2077187 A JP 2077187A JP S63190759 A JPS63190759 A JP S63190759A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- silicon nitride
- sio
- firing
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 37
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 45
- 238000010304 firing Methods 0.000 claims description 43
- 238000000354 decomposition reaction Methods 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 23
- 239000012298 atmosphere Substances 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 238000000280 densification Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は窒化珪素質焼結体の製造方法に関し、より詳細
には低圧で高温焼成が可能な製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a silicon nitride sintered body, and more particularly to a method for producing a silicon nitride sintered body, which allows firing at low pressure and high temperature.
窒化珪素を主体とする焼結体は原子の結合様式が共有結
合を主として成り、強度、硬度、熱的化学的安定性にお
いて優れた特性を有することからエンジニアセラミック
ス、特に熱機関として例えばガスタービン等への応力が
進められているが、熱機関はその効率化に伴い、熱機関
の作動温度が1400℃以上となることもあり、この条
件下での使用が可能な材料が望まれている。Sintered bodies mainly made of silicon nitride have atoms that are mainly covalently bonded, and have excellent properties in terms of strength, hardness, and thermal and chemical stability, so they are used as engineering ceramics, especially for heat engines such as gas turbines, etc. However, as heat engines become more efficient, the operating temperature of heat engines can reach 1400° C. or higher, and materials that can be used under these conditions are desired.
窒化珪素質焼結体の製造方法に際しては窒化珪素単独で
の焼結が難しいため、金属酸化物、窒化物等の焼結助剤
を加えて焼成することが知られているが、高温材料とし
ての用途から焼結助剤の量を少なくするか、また粒界相
に耐熱性の高いガラス相を生成することが主として行わ
れている。その手法の1つとして高い温度にて焼成する
ことが試みられているが、窒化珪素は高温において次式
%式%(1)
の反応に従い分解し重量減少することが知られている。When producing silicon nitride sintered bodies, it is known that sintering with silicon nitride alone is difficult, so sintering aids such as metal oxides and nitrides are added to the sintering process. For this purpose, the main efforts are to reduce the amount of sintering aid or to generate a glass phase with high heat resistance in the grain boundary phase. As one of the methods, firing at a high temperature has been attempted, but it is known that silicon nitride decomposes and loses weight at high temperatures according to the reaction expressed by the following formula (1).
そこでこの高温域での窒化珪素の熱分解を抑制し、高温
焼結を可能とすることを目的とじて特開昭52−470
15号公報に記載されているように焼成雰囲気の窒素ガ
ス圧を焼成温度における窒化珪素の分解平衡圧の約10
倍以上に設定するqとが提案されている。Therefore, with the aim of suppressing the thermal decomposition of silicon nitride in this high temperature range and enabling high temperature sintering, we published Japanese Patent Application Laid-Open No. 52-470.
As described in Publication No. 15, the nitrogen gas pressure in the firing atmosphere is set to about 10% of the decomposition equilibrium pressure of silicon nitride at the firing temperature.
It has been proposed to set q to be more than double.
しかし乍ら、焼成雰囲気の圧力を高くすることによりあ
る程度の高密度化は可能であるが、逆に焼成中に焼結体
の気孔内に高圧ガスがトラップされることによって焼結
が抑制され、内部に気孔が残存してしまい高密度化を阻
害してしまうという欠点を有している。特に成形体が大
型品である場合は全体として均一な高密度化が難しいの
が現状である。However, although it is possible to increase the density to some extent by increasing the pressure of the firing atmosphere, conversely, high-pressure gas is trapped in the pores of the sintered body during firing, which suppresses sintering. It has the disadvantage that pores remain inside, which hinders high density. Particularly when the molded product is a large product, it is currently difficult to uniformly increase the density as a whole.
よって、焼成方法として低圧下で高温焼結が可能な方法
が望まれる。Therefore, as a firing method, a method that allows high temperature sintering under low pressure is desired.
本発明者は、上記問題点に対し、鋭意研究の結果、焼成
時の窒化珪素の重量減少の要因として前述した式(1)
の分解反応と同時に下記式(2)SiJ< +3Si
Oz−6SiOi千2NZ ↑ ・ ・ ・(2)の
反応が進行することに着目し、雰囲気中のN!分圧とと
もにSiOを制御することにより式(L) (2)の分
解を押さえ、低圧下での高温焼結が可能となることを見
い出し、本発明に至った。As a result of intensive research, the present inventors solved the above problem and found that the above-mentioned formula (1) was used as a factor for the weight reduction of silicon nitride during firing.
Simultaneously with the decomposition reaction of the following formula (2) SiJ< +3Si
Oz-6SiOi 1,200 NZ ↑ ・ ・ ・ Focusing on the progress of the reaction (2), N in the atmosphere! It has been discovered that by controlling the partial pressure and SiO, the decomposition of formula (L) (2) can be suppressed and high temperature sintering can be performed under low pressure, leading to the present invention.
即ち、本発明は1800乃至2200℃で焼結を行う場
合、1500℃から2200℃の温度領域の焼成雰囲気
を少なくとも窒素と酸素あるいはSiOとから構成し、
窒素ガス圧を大気圧以上で且つその焼成温度における窒
化珪素の分解平衡圧以上に設定し、また酸素あるいはS
iOのガス圧をその焼成温度における窒化珪素とSiO
との反応でのSiOの平衡蒸気圧以上に設定するもので
ある。That is, in the present invention, when sintering is performed at 1800 to 2200°C, the sintering atmosphere in the temperature range of 1500°C to 2200°C is composed of at least nitrogen and oxygen or SiO,
The nitrogen gas pressure is set above atmospheric pressure and above the decomposition equilibrium pressure of silicon nitride at the firing temperature, and oxygen or S
The gas pressure of iO is the same as that of silicon nitride and SiO at the firing temperature.
The pressure is set to be higher than the equilibrium vapor pressure of SiO in the reaction with SiO.
以下、本発明を詳述する。The present invention will be explained in detail below.
窒化珪素の焼成にあたっては高温下において、前述した
式(1)の分解反応が生しるとともに、原料粉末である
窒化珪素粉末中に不可避的にSiO□を主体とする酸素
化合物が存在するためにS+J4とSiO□の間には式
(2)の反応が進行し、N2とSiOのガスが生成する
。When firing silicon nitride, the decomposition reaction of formula (1) described above occurs at high temperatures, and oxygen compounds mainly composed of SiO□ inevitably exist in the silicon nitride powder, which is the raw material powder. The reaction of formula (2) proceeds between S+J4 and SiO□, and gases of N2 and SiO are generated.
これらの反応に対しては、窒化珪素の分解平衡圧の約1
0倍以上の高圧の窒素ガスを焼成雰囲気に導入すること
によってその反応の進行を抑制することができるが、前
述したように高圧ガスを用いることは緻密化促進に対し
弊害を生じる。For these reactions, approximately 1 of the decomposition equilibrium pressure of silicon nitride is required.
The progress of the reaction can be suppressed by introducing nitrogen gas at a pressure higher than 0 times into the firing atmosphere, but as described above, the use of high pressure gas has a negative effect on the promotion of densification.
本発明によれば、これらの分解の反応の進行を抑制する
ことを目的としてまず、焼成雰囲気に少なくとも窒素ガ
スおよび酸素またはSiOを導入する。そこで、これら
のガス分圧に関して第1図をもとに説明する。According to the present invention, first, at least nitrogen gas and oxygen or SiO are introduced into the firing atmosphere for the purpose of suppressing the progress of these decomposition reactions. Therefore, the partial pressures of these gases will be explained based on FIG. 1.
第1図は温度と窒化珪素の分解平衡圧および第2図は窒
化珪素と5i02との反応におけるSiOの平衡蒸気圧
との関係をそれぞれを示す図である。FIG. 1 is a diagram showing the relationship between temperature and the decomposition equilibrium pressure of silicon nitride, and FIG. 2 is a diagram showing the relationship between the equilibrium vapor pressure of SiO in the reaction between silicon nitride and 5i02.
第1図によれば、窒化珪素の分解平衡圧線^および窒化
珪素とSiO□との反応におけるSiOの平衡蒸気圧線
Bは温度の上昇とともに高くなる傾向にある。According to FIG. 1, the decomposition equilibrium pressure line ^ of silicon nitride and the equilibrium vapor pressure line B of SiO in the reaction between silicon nitride and SiO□ tend to increase as the temperature rises.
本発明によれば、まず窒素ガス分圧を大気圧以上で且つ
焼成温度における窒化珪素の分解平衡圧より高く設定す
る。According to the present invention, first, the nitrogen gas partial pressure is set to be at least atmospheric pressure and higher than the decomposition equilibrium pressure of silicon nitride at the firing temperature.
ヶ 、 ・ 62“ル
それにより反応(1)による分解反応は抑制される。一
方、酸素或いはSiOの分圧は窒化珪素とSiO□との
反応(2)におけるSiOの平衡蒸気圧以上に設定する
ことによって反応(2)の進行を抑制する。反応(2)
の抑制効果はN2圧を制御するよりもSiO圧で制御す
る方が効果的であってこのことは熱力学的にもN2が2
剰の効果があるのに対し、SiOでは6剰の効果がある
ことを示している。従って、SiOの分圧が高くなると
極端に分解が抑制されるのである。Therefore, the decomposition reaction caused by reaction (1) is suppressed. On the other hand, the partial pressure of oxygen or SiO is set to be higher than the equilibrium vapor pressure of SiO in reaction (2) between silicon nitride and SiO□. The progress of reaction (2) is suppressed by this.Reaction (2)
The suppression effect of N2 is more effective when controlled by SiO pressure than by controlling N2 pressure, and this also means thermodynamically that N2
This shows that SiO has a 6-residue effect, whereas SiO has a 6-residue effect. Therefore, when the partial pressure of SiO becomes high, decomposition is extremely suppressed.
本発明の製造方法によれば、焼成雰囲気の全圧力は10
気圧以下に設定されることが望ましく、lO気圧を超え
ると焼結体中に高圧ガスがトラップされ、緻密化が阻害
される傾向にあるためである。According to the manufacturing method of the present invention, the total pressure of the firing atmosphere is 10
This is because it is desirable to set the pressure to below the atmospheric pressure, and if it exceeds 10 atmospheric pressure, high-pressure gas will be trapped in the sintered body and densification will tend to be inhibited.
本発明の製造方法によれば、まず原料粉末として窒化珪
素粉末および公知の焼結助剤粉末を用いる。窒化珪素粉
末はα−窒化珪素を70%以上含有するものが望ましく
、70χを下回ると焼結性が低下する。焼結助剤として
はスカンジウム、イツトリウム、ランタノイド元素等の
周期律表第111a族元素の酸化物、窒化物、酸窒化物
、あるいはBe。According to the manufacturing method of the present invention, silicon nitride powder and known sintering aid powder are first used as raw material powders. It is desirable that the silicon nitride powder contains 70% or more of α-silicon nitride, and if the content is less than 70χ, the sinterability will decrease. As the sintering aid, oxides, nitrides, oxynitrides of elements of Group 111a of the periodic table, such as scandium, yttrium, and lanthanide elements, or Be.
Mg、 Ca、 Sr、 Ba等の周期率表第11a族
元素の酸化物、窒化物の他、八IzO++AIN、5i
Oz、Zr(h+ZrN、)If(h等を1種または2
種以上の組み合わせで用いることができる。In addition to oxides and nitrides of Group 11a elements of the periodic table such as Mg, Ca, Sr, and Ba, 8IzO++AIN, 5i
Oz, Zr (h + ZrN,) If (h etc. 1 or 2
Can be used in combination of more than one species.
これらの焼結助剤は、全体量に対し0.1〜20重量%
の割合で窒化珪素粉末と均一に混合された後、粉砕後公
知の成形手段、例えば鋳込み成形、射出成形、インジェ
クション成形等により所望の形に成形され、焼成工程に
移される。These sintering aids are contained in an amount of 0.1 to 20% by weight based on the total amount.
The mixture is uniformly mixed with silicon nitride powder at a ratio of 1,000 ml, and then pulverized and molded into a desired shape by known molding means such as cast molding, injection molding, injection molding, etc., and then transferred to a firing process.
焼成工程では焼結温度は1800乃至2200℃に設定
される。焼成雰囲気はN2および酸素或いはSin、が
前述した所定の分圧になるように設定される。N2ガス
および酸素ガスを用いる場合は、焼成炉内に窒素ボンベ
あるいは空気ボンベ等から導入し所定の圧力に維持すれ
ば良い。SiO雰囲気を調整する場合、炉内への外部か
らの導入が難しいことから、炉内にてSiOを生成させ
る反応を行なわしめることによって調整する。具体的に
は焼成炉内に配置される成形体以外に窒化珪素と5iO
zの混合粉末を成形体の回りに配置することによって焼
成時車化珪素とSiO□との反応が進行してN2ガス及
びSiOガスが発生し、焼成炉内は設定された焼結温度
における窒化珪素と5i02との反応における平衡蒸気
圧に設定される。それによって成形体内部での窒化珪素
とSiO□との反応(2)は抑制される。In the firing process, the sintering temperature is set at 1800 to 2200°C. The firing atmosphere is set so that N2 and oxygen or Sin have the predetermined partial pressures mentioned above. When N2 gas and oxygen gas are used, they may be introduced into the firing furnace from a nitrogen cylinder or an air cylinder and maintained at a predetermined pressure. When adjusting the SiO atmosphere, it is difficult to introduce SiO into the furnace from the outside, so it is adjusted by performing a reaction to generate SiO in the furnace. Specifically, silicon nitride and 5iO are used in addition to the molded body placed in the firing furnace.
By placing the mixed powder of It is set to the equilibrium vapor pressure in the reaction between silicon and 5i02. This suppresses the reaction (2) between silicon nitride and SiO□ inside the molded body.
他の方法としては、焼成炉内にSi0g粉末、SiO粉
末あるいはSi粉末とSiO□粉末との混合粉末を予め
配置させ、焼成時にSiO□を分解揮散させるが又は下
記反応(3)
Si+SiO,→2SiO↑・・・(3)を進行させる
ことによってSiO雰囲気を作ることができる。この時
に設定されるSi0分圧によって反応(2)が抑制され
ることを本発明者は確認した。Another method is to place Si0g powder, SiO powder, or a mixed powder of Si powder and SiO□ powder in the firing furnace in advance, and decompose and volatilize the SiO□ during firing, or the following reaction (3) Si+SiO,→2SiO ↑... By proceeding with (3), an SiO atmosphere can be created. The inventors have confirmed that reaction (2) is suppressed by the Si0 partial pressure set at this time.
この理由は、反応(3)におけるSiO蒸気圧が反応(
2)におけるSiO蒸気圧よりも高いためと考えられる
。The reason for this is that the SiO vapor pressure in reaction (3) is
This is thought to be because it is higher than the SiO vapor pressure in 2).
さらに他の方法としては、焼結体製造用原料粉未調整時
にSin、粉末を0.5〜10重量%の割合で混入させ
、焼成時にSiO□を揮散させることによりある程度の
SiOを発生させることもできるが、この方法のみでは
分解抑制は難しく、前述した方法と併用することが望ま
しい。Still another method is to mix Si powder at a ratio of 0.5 to 10% by weight when the raw material powder for producing a sintered body is not prepared, and generate a certain amount of SiO by volatilizing SiO□ during firing. However, it is difficult to suppress decomposition using this method alone, and it is desirable to use it in combination with the above-mentioned method.
なお、上述した焼成を行うに当たり、焼成雰囲気内に炭
素質材料を存在させないことが望ましく、高温雰囲気で
は炭素質材料から炭素を離れ、成装置するための鉢とし
て従来から用いられている炭素製のもののかわりに、窒
化珪素、窒化ホウ素等の全く炭素を含まない材質か、炭
化珪素のように炭素を含んでも化合物の構成原子として
存在するものを用いることが望ましい。用いる鉢は、そ
れ事態が上記材質から成るか、或いは内壁が上記材質か
ら成る膜又は層が形成されていれば良い。このような鉢
の製造に際しては、例えば炭化珪素質を例にとれば、カ
ーボン体内で珪素を含む成形体を焼成し、その内壁を珪
化させて炭化珪素を生成させるか、又はCVD、PVD
等の公知の薄膜手段によって炭化珪素膜を生成させるこ
とができる。他の材質に対しても同様にして製造するこ
とができる。When performing the above-mentioned firing, it is desirable that no carbonaceous material be present in the firing atmosphere. Instead, it is desirable to use a material that does not contain carbon at all, such as silicon nitride or boron nitride, or a material that does not contain carbon at all, such as silicon carbide, but exists as a constituent atom of a compound, such as silicon carbide. The pot to be used may be made of the above-mentioned material, or may have an inner wall formed with a membrane or layer made of the above-mentioned material. When manufacturing such pots, for example, when using silicon carbide, a molded body containing silicon is fired in a carbon body, and its inner wall is silicified to produce silicon carbide, or CVD, PVD, etc.
A silicon carbide film can be produced by a known thin film method such as. Other materials can also be manufactured in the same manner.
本発明における焼成工程によれば、特に大型形状の緻密
な焼結体を得ようとする場合、焼成開始後、成形体に開
気孔が多く残存する段階では窒化珪素が分解を起こさな
い最低の圧力条件で一旦保持し、閉気孔が生成されると
同時に開気孔が一定量以下になるまで焼成を行いその後
、さらに高温高圧に保持して焼結を行うことが望ましい
。それによって焼成中に焼結体を気孔中に封印されるガ
ス圧を小さくすることができ、緻密で均質な焼結体を得
ることができる。詳細に説明すれば焼成工程を少なくと
も2段階に分け、第1段階として成形体の開気孔率が1
0体積%以下となるまでを窒素ガスおよび酸素あるいは
SiOが前述した条件で調整された雰囲気全体の圧力が
大気圧から5気圧の低圧で焼成し、その後第2段階とし
て5気圧以上の高圧で焼成する。各段階における温度は
開気孔率の減少効率に依存するものであり、望ましくは
第1段階を1900℃以下、第2段階を1900℃以上
に設定する。なお、この焼成工程では各段階の目的を逸
脱しない限りにおいて、さらに細かく焼成パターンを分
けることも可能である。According to the firing process of the present invention, especially when trying to obtain a large-sized, dense sintered body, the minimum pressure at which silicon nitride does not decompose is applied at the stage where many open pores remain in the compact after the start of firing. It is desirable to hold the material under the same conditions and sinter it until closed pores are generated and at the same time the open pores decrease to a certain amount or less, and then to perform sintering by further holding the material at high temperature and pressure. Thereby, the gas pressure sealed in the pores of the sintered body during firing can be reduced, and a dense and homogeneous sintered body can be obtained. To explain in detail, the firing process is divided into at least two stages, and in the first stage, the open porosity of the molded body is reduced to 1.
The pressure of the entire atmosphere adjusted under the conditions described above is fired at a low pressure of atmospheric pressure to 5 atm until the concentration of nitrogen gas and oxygen or SiO becomes 0 volume % or less, and then the second step is firing at a high pressure of 5 atm or more. do. The temperature in each stage depends on the open porosity reduction efficiency, and is preferably set at 1900°C or lower in the first stage and 1900°C or higher in the second stage. In addition, in this firing process, it is also possible to divide the firing pattern into more finely divided patterns as long as the purpose of each stage is not deviated from.
以下、本発明を実施例で説明する。The present invention will be explained below with reference to Examples.
まず、実験を行うに当たり、焼成炉内に配置する匣鉢と
して下記第1表の5種の容器を準備した。First, in carrying out the experiment, five types of containers shown in Table 1 below were prepared as saggers to be placed in the firing furnace.
第1表
実施例 l
5ixNa粉末(比表面積15m”/g、 cx含有率
90χ、酸素含有量1.2重量%)92重量%+Y!0
35重量%、5iOz 3 重量%から成る混合粉末
を5 N4 X45の成形体にプレス成形した後、匣鉢
■■■の夫々に同一の成形体を配置し、同一パターンで
焼成を行った。焼成パターンは1770℃、N2分圧1
atmで3時間、1850℃、N2圧2.5atmで
2時間、1970℃N2圧9.8atm で2時間行
った。Table 1 Example l 5ixNa powder (specific surface area 15 m”/g, cx content 90χ, oxygen content 1.2 wt%) 92 wt% + Y!0
After a mixed powder consisting of 35% by weight and 3% by weight of 5iOz was press-molded into a 5 N4 x 45 molded body, the same molded body was placed in each of the saggers ■■■ and fired in the same pattern. The firing pattern is 1770℃, N2 partial pressure 1
Atm for 3 hours, 1850°C and N2 pressure of 2.5 atm for 2 hours, and 1970°C and N2 pressure of 9.8 atm for 2 hours.
得られた焼結体に対し、分解量と比重を測定した。なお
結果は第2表に示す。The amount of decomposition and specific gravity of the obtained sintered body were measured. The results are shown in Table 2.
実施例2
実施例1と同一の原料粉末を用い、5iJn 93重
量%、YtCh 2.5重量%、Ah(h 4.5重量
%の組成で実施例1と同様にして成形体を作成した。Example 2 Using the same raw material powder as in Example 1, a molded body was produced in the same manner as in Example 1 with a composition of 93% by weight of 5iJn, 2.5% by weight of YtCh, and 4.5% by weight of Ah (h).
得られた、成形体を匣鉢■■■を用いそれぞれに配置し
、同一の焼成パターンで焼成した。焼成パターンは、1
720℃、N2圧1atmで1時間焼成し、次いで19
10℃、N!圧9.8atmで3時間焼成した。The obtained molded bodies were individually placed in saggers ■■■ and fired in the same firing pattern. The firing pattern is 1
Calcined for 1 hour at 720°C and 1atm of N2 pressure, then heated to 19°C.
10℃, N! It was fired for 3 hours at a pressure of 9.8 atm.
得られた焼結体に対し、実施例1と同様にして分解量比
重を測定した。The decomposition amount specific gravity of the obtained sintered body was measured in the same manner as in Example 1.
結果は第2表に示す。The results are shown in Table 2.
実施例3
実施例1と同一の原料粉末を用い、Si+Na 87
重量%、’It(h 4重量%、Al2O35重量%、
5iOz 4重量%の組成で実施例1と同様にして成形
体を作成した。Example 3 Using the same raw material powder as in Example 1, Si+Na 87
wt%, 'It(h 4 wt%, Al2O35 wt%,
A molded body was prepared in the same manner as in Example 1 with a composition of 4% by weight of 5iOz.
得られた、成形体を匣鉢■■■を用いそれぞれに配置し
、実施例2と同一の焼成パターンで焼成した。得られた
焼結体に対し実施例1と同様にして分解量比重を測定し
た。The obtained molded bodies were each placed in a sagger pot and fired in the same firing pattern as in Example 2. The decomposition amount specific gravity of the obtained sintered body was measured in the same manner as in Example 1.
結果は第2表に示す。The results are shown in Table 2.
実施例4
実施例1と同一の原料粉末を用い、5iJ493.5重
量%、YrO36,5重量%の組成で実施例1と同様に
して成形体を作成した。Example 4 Using the same raw material powder as in Example 1, a molded body was produced in the same manner as in Example 1 with a composition of 5iJ493.5% by weight and YrO36.5% by weight.
得られた、成形体を匣鉢■■■を用いそれぞれに配置し
、同一の焼成パターンで焼成した。焼成パターンは、1
750℃、N2圧1atmで3時間焼成し、次いで18
50℃、Nt圧2.5atmで1時間、さらに続いて1
970℃、N2圧10at+*で2時間焼成した。The obtained molded bodies were individually placed in saggers ■■■ and fired in the same firing pattern. The firing pattern is 1
Calcined for 3 hours at 750°C and 1atm of N2 pressure, then heated to 18
50°C, Nt pressure 2.5 atm for 1 hour, and then 1 hour.
It was fired for 2 hours at 970°C and N2 pressure of 10at++.
得られた焼結体に対し、実施例1と同様にして分解量比
重を測定した。The decomposition amount specific gravity of the obtained sintered body was measured in the same manner as in Example 1.
結果は第2表に示す。The results are shown in Table 2.
第2表
第2表から明らかなように焼成雰囲気を単なるN2雰囲
気としてカーボン鉢■で焼成して得られた焼結体はN、
圧が大気圧以上であっても分解が認められ、得られた焼
結体の表面は変色しており緻密体を得ることができなか
った。Table 2 As is clear from Table 2, the sintered body obtained by firing in a carbon pot (■) with a simple N2 atmosphere was
Decomposition was observed even when the pressure was above atmospheric pressure, and the surface of the obtained sintered body was discolored, making it impossible to obtain a dense body.
また、SiC鉢■を用いた場合でも、Si0g粉末を添
加或いは含有しているにも拘わらず、分解抑制効果は不
十分であった。Furthermore, even when SiC pot (2) was used, the decomposition inhibiting effect was insufficient despite the addition or inclusion of 0 g Si powder.
これらの比較例に対し、5i3Na粉末とSiO□粉末
との混合粉末を配置した匣鉢■■では混合粉末は反応し
ており、分解量は7重量%以下に抑制することができた
。このことにより、Si、N、粉末とSi0g粉末との
反応によって形成される雰囲気、つまりN2とSiOか
ら成る雰囲気が分解抑制に効果があることが証明された
。なお、匣鉢の材質としてSiC鉢を用いることにより
さらに分解抑制効果は優れ4重量%以下の分解量に抑え
ることができた。In contrast to these comparative examples, in the saggers ■■ in which the mixed powder of 5i3Na powder and SiO□ powder was placed, the mixed powder reacted, and the amount of decomposition could be suppressed to 7% by weight or less. This proves that the atmosphere formed by the reaction of Si, N, powder and SiOg powder, that is, the atmosphere consisting of N2 and SiO, is effective in suppressing decomposition. In addition, by using a SiC pot as the material of the sagger, the decomposition suppressing effect was further improved and the amount of decomposition could be suppressed to 4% by weight or less.
さhに、SiO粉末を配置した匣鉢■においてもSiO
粉末のほとんどが融解連敗しており、匣鉢内でSiO雰
囲気が形成されたことが確認された。そしてこの雰囲気
によって焼成された焼結体は分解量も4重量%以下に抑
制されており、SiO粉末を配置することが分解抑制に
効果があることが確認された。Furthermore, SiO powder was also placed in the sagger pot
Most of the powder was melted continuously, and it was confirmed that an SiO atmosphere was formed in the sagger. The decomposition amount of the sintered body fired in this atmosphere was also suppressed to 4% by weight or less, and it was confirmed that disposing the SiO powder is effective in suppressing decomposition.
C発明の効果〕
以上、詳述した通り、本発明の窒化珪素質焼結体の製造
方法は、焼成雰囲気をN2および酸素またはSiO雰囲
気として各々を所定の圧力に制御することによって、低
圧雰囲気でも窒化珪素の分解を抑制しつつ、高温焼結が
可能となり、それにより高緻密質の焼結体を得ることが
できる。C Effects of the Invention As detailed above, the method for producing a silicon nitride sintered body of the present invention can be performed even in a low-pressure atmosphere by controlling the firing atmosphere to a predetermined pressure in N2, oxygen, or SiO atmosphere. High-temperature sintering is possible while suppressing the decomposition of silicon nitride, thereby making it possible to obtain a highly dense sintered body.
また、製造装置自体も煩雑で大型の高圧容器を有する装
置を必要としないことからも製造コストの安い焼結体を
安全に得ることができる。Further, since the manufacturing apparatus itself does not require a complicated and large-sized high-pressure container, a sintered body with low manufacturing cost can be safely obtained.
第1図は、温度と窒化珪素の分解平衡圧との関係を示す
図、第2図は温度と窒化珪素と5in2との反応におけ
るSiOの平衡蒸気圧との関係を示す図である。FIG. 1 is a diagram showing the relationship between temperature and the decomposition equilibrium pressure of silicon nitride, and FIG. 2 is a diagram showing the relationship between temperature and the equilibrium vapor pressure of SiO in the reaction between silicon nitride and 5in2.
Claims (1)
2200℃の温度にて焼結する窒化珪素質焼結体の製造
方法において、1500〜2200℃の温度領域の焼成
雰囲気が窒素と酸素あるいはSiOを含み該窒素ガス圧
が大気圧以上で且つ焼成温度における窒化珪素の分解平
衡圧より高く、該酸素あるいはSiOの分圧がその焼成
温度での窒化珪素とSiO_2との反応におけるSiO
の平衡蒸気圧以上に設定することを特徴とする窒化珪素
質焼結体の製造方法。After mixing silicon nitride powder and sintering aid and molding, 1800~
In a method for producing a silicon nitride sintered body which is sintered at a temperature of 2200°C, the firing atmosphere in the temperature range of 1500 to 2200°C contains nitrogen and oxygen or SiO, and the nitrogen gas pressure is at least atmospheric pressure, and the firing temperature is The partial pressure of oxygen or SiO is higher than the decomposition equilibrium pressure of silicon nitride at
A method for producing a silicon nitride sintered body, characterized in that the equilibrium vapor pressure is set at or above the equilibrium vapor pressure of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62020771A JP2543353B2 (en) | 1987-01-30 | 1987-01-30 | Method for producing silicon nitride based sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62020771A JP2543353B2 (en) | 1987-01-30 | 1987-01-30 | Method for producing silicon nitride based sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63190759A true JPS63190759A (en) | 1988-08-08 |
JP2543353B2 JP2543353B2 (en) | 1996-10-16 |
Family
ID=12036429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62020771A Expired - Fee Related JP2543353B2 (en) | 1987-01-30 | 1987-01-30 | Method for producing silicon nitride based sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2543353B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275068A (en) * | 1985-11-18 | 1987-11-30 | 日本碍子株式会社 | Manufacture of silicon nitride sintered body |
-
1987
- 1987-01-30 JP JP62020771A patent/JP2543353B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275068A (en) * | 1985-11-18 | 1987-11-30 | 日本碍子株式会社 | Manufacture of silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JP2543353B2 (en) | 1996-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4354990A (en) | Process for sintering silicon nitride compacts | |
JPH0269358A (en) | Production of ceramic of super-structure | |
JPS63190759A (en) | Manufacture of silicon nitride sintered body | |
JPH0840773A (en) | Aluminum nitride ceramic and its production | |
JP2662863B2 (en) | Method for producing silicon nitride based sintered body | |
JP2631115B2 (en) | Manufacturing method of silicon nitride sintered body | |
US5855842A (en) | Process for producing a dense ceramic product | |
JPH025711B2 (en) | ||
US5876660A (en) | Sintered reaction-bonded silicon nitride components | |
JPH1179848A (en) | Silicon carbide sintered compact | |
JPS5934676B2 (en) | Method for producing a reaction fired product containing β′-Sialon as the main component | |
JP2694369B2 (en) | Silicon nitride sintered body | |
SU1074402A3 (en) | Method of producing silicon nitride-base articles | |
JP2916934B2 (en) | Method for producing sialon-based sintered body | |
JPH08508458A (en) | Heat treatment of nitrogen ceramics | |
JPH0772105B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JP2694368B2 (en) | Method for producing silicon nitride based sintered body | |
EP0618887B1 (en) | A dense ceramic product | |
JP3839514B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH06305840A (en) | Sintered silicon nitride and its production | |
JP2671539B2 (en) | Method for producing silicon nitride sintered body | |
JPS62256770A (en) | Manufacture of silicon nitride base sintered body | |
JP2811493B2 (en) | Silicon nitride sintered body | |
JPH0570239A (en) | Production of silicon nitride sintered body | |
JPH01234371A (en) | Production of main raw material for aln sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |