JPS63190635A - Treating device for microwave plasma - Google Patents

Treating device for microwave plasma

Info

Publication number
JPS63190635A
JPS63190635A JP1948287A JP1948287A JPS63190635A JP S63190635 A JPS63190635 A JP S63190635A JP 1948287 A JP1948287 A JP 1948287A JP 1948287 A JP1948287 A JP 1948287A JP S63190635 A JPS63190635 A JP S63190635A
Authority
JP
Japan
Prior art keywords
reaction vessel
waveguide
gas
microwave
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1948287A
Other languages
Japanese (ja)
Inventor
Kouichi Ishihori
石堀 宏一
Mantaro Yamamoto
山本 萬太郎
Kotaro Kashima
鹿島 幸太郎
Hiroyuki Funamoto
船本 宏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, Seiko Instruments Inc filed Critical Denki Kogyo Co Ltd
Priority to JP1948287A priority Critical patent/JPS63190635A/en
Publication of JPS63190635A publication Critical patent/JPS63190635A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Abstract

PURPOSE:To form uniform plasma by fitting a dielectric plate consisting of a dielectric which is large in relative dielectric constant and small in dielectric loss to the inner wall of the terminal part of a waveguide or the terminal part and the inner wall of the part adjacent to the terminal part. CONSTITUTION:Output electric power of a microwave oscillator 1 is led to a reaction vessel 3 made of quartz via a waveguide 2. Specified kind of gas is introduced into the reaction vessel 3 via a gas feed pipe 6 and discharged at constant flow rate through an exhaust pipe 7. Thereby the inside of the reaction vessel 3 is maintained at constant pressure and the introduced gas is made to plasma by means of microwave electric power and etching processing or depositing treatment of a thin film is performed on the surface of a sample 4 placed on a sample base 5. The cross-section of the waveguide 2 is a rectangular shape or a circular shape and its end is housed in the reaction vessel 3 and enlarged into a tapered shape to reduce the reflection of microwave electric power.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明はマイクロ波プラズマ処理装置に関する。[Detailed description of the invention] a. Industrial application field The present invention relates to a microwave plasma processing apparatus.

プラズマ処理装置とは、一定のガスをプラズマ化し、そ
の反応生成物により試料をエツチングしもしくは試料表
面上に薄膜を堆積せしめる装置である。
A plasma processing apparatus is an apparatus that converts a certain gas into plasma and etches a sample or deposits a thin film on the surface of the sample using the reaction product.

近年、ガスのプラズマ化の手段としてマイクロ波を利用
する方法が盛んに用いられるようになった。
In recent years, methods using microwaves as a means of turning gas into plasma have come into widespread use.

マイクロ波を利用する利点として、他の方法よりもプラ
ズマ密度を効率的に高められること、プラズマ化できる
圧力範囲が広いこと、必要に応じて試料の加熱が可能な
こと、放電を起すための電極が反応容器中にないので試
料表面の汚染を少くできること等があげられる。
The advantages of using microwaves are that plasma density can be increased more efficiently than other methods, that the pressure range that can be turned into plasma is wide, that it is possible to heat the sample as necessary, and that there is no need for electrodes to generate electric discharge. Since there are no substances in the reaction vessel, contamination of the sample surface can be reduced.

b、従来の技術 第4図は従来技術によるマイクロ波プラズマ処理装置の
概念的立面図である。
b. Prior Art FIG. 4 is a conceptual elevational view of a microwave plasma processing apparatus according to the prior art.

マイクロ波発振器1aの出力電力は導波管2aを経由し
て石英製反応容器3aに導かれる。反応容器3aにはガ
ス供給管6aから特定の種類のガスが導入され、排気管
7aから一定流量で排気される。これにより反応容器3
aの内部は一定の圧力に維持される。導入されたガスは
マイクロ波電力によりプラズマ化され、試糾合5aに載
置された試料4aの表面にエツチング加工。
The output power of the microwave oscillator 1a is guided to a quartz reaction vessel 3a via a waveguide 2a. A specific type of gas is introduced into the reaction vessel 3a from the gas supply pipe 6a, and is exhausted at a constant flow rate from the exhaust pipe 7a. As a result, reaction vessel 3
The inside of a is maintained at a constant pressure. The introduced gas is turned into plasma by microwave power, and the surface of the sample 4a placed on the test plate 5a is etched.

または薄膜堆積処理を行う。Or perform a thin film deposition process.

導波管2aは断面が矩形状もしくは円形状をなしており
、その末端は反応容器3aを収容しかつマイクロ波電力
の反射を少くするためにテーパ状に拡大されている。
The waveguide 2a has a rectangular or circular cross section, and its end is tapered to accommodate the reaction vessel 3a and to reduce reflection of microwave power.

C1発明が解決しようとする問題点 導波管を第5図に図示するように誘電率εが一様に分布
する例えば矩形導波管とし、TE、、モードで励振する
と、第6図に図示するように電場は導波管の2等分面で
最大となる。なお電場はそのy成分Eyが図示されてい
る。マイクロ波エネルギー密度Pは、導波管の中央部(
矩形の長辺の2等分面)で最大になる。これは、マイク
ロ波電力が導波管の2等分面内の反応容器中のガスに集
中して照射されることを意味する。
C1 Problems to be Solved by the Invention When the waveguide is, for example, a rectangular waveguide with a uniform dielectric constant ε distributed as shown in FIG. The electric field is maximum at the bisecting plane of the waveguide. Note that the y component Ey of the electric field is illustrated. The microwave energy density P is the central part of the waveguide (
It is maximum at the bisector of the long side of the rectangle). This means that the microwave power is concentratedly irradiated onto the gas in the reaction vessel within the bisecting plane of the waveguide.

一般に反応容器中の圧力が増大すると、特にガス圧力が
約1 torr以上のとき、プラズマ中の電離電子等の
平均自由工程が短かくなる。したがってマイクロ波が局
部的に照射されることにより、プラズマはさらに縮小す
る。すなわち試料4aの表面に均一な処理を施こすこと
ができなくなり、かつ試料4aが局部的に加熱され易い
という問題点がある。
Generally, as the pressure in the reaction vessel increases, the mean free path of ionized electrons, etc. in the plasma becomes shorter, especially when the gas pressure is about 1 torr or higher. Therefore, by locally irradiating microwaves, the plasma is further reduced. That is, there are problems in that it is not possible to uniformly process the surface of the sample 4a, and the sample 4a is likely to be locally heated.

本発明は、マイクロ波を利用したプラズマ処理装置にお
いて、反応容器内のガスにマイクロ波を均一に照射し均
一なプラズマを形成することができるマイクロ波プラズ
マ処理装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microwave plasma processing apparatus that can uniformly irradiate gas in a reaction vessel with microwaves to form uniform plasma.

d0問題点を解決するための手段 上記問題点は、マイクロ波発振回路と、マイクロ波を伝
播させる導波管と、導波管の終端部に収容された反応容
器と、反応容器にガスを送るガス供給管と、反応容器か
らガスを排出するガス排出管と、反応容器中に試料を載
置する試料台を備え、反応容器中のガスにマイクロ波を
照射してガスを励起してプラズマを発生させ、該プラズ
マで試料にプラズマ処理をするマイクロ波プラズマ処理
装置において、上記導波管の終端部の内壁に、または終
端部と終端部に隣接する部分の内壁に比誘電率が大きく
誘電体損失の小さい誘電体からなる誘電体板が取付けら
れていることを特徴とするマイクロ波プラズマ処理装置
によって解決された。
Means for solving the d0 problem The above problem consists of a microwave oscillation circuit, a waveguide for propagating microwaves, a reaction vessel housed at the end of the waveguide, and a gas sent to the reaction vessel. It is equipped with a gas supply pipe, a gas exhaust pipe for discharging gas from the reaction vessel, and a sample stage for placing the sample in the reaction vessel.The gas in the reaction vessel is irradiated with microwaves to excite the gas and generate plasma. In a microwave plasma processing apparatus that generates plasma and performs plasma treatment on a sample with the plasma, a dielectric material having a large relative dielectric constant is used on the inner wall of the terminal end of the waveguide, or on the inner wall of the terminal end and a portion adjacent to the terminal end. The problem was solved by a microwave plasma processing apparatus that is equipped with a dielectric plate made of a dielectric material with low loss.

e、 作用 内壁が金属である導波管(以下金属導波管と称す)の内
部を伝播するマイクロ波は、マイクロ波伝播方向に関し
ては進行波であり、伝播方向に垂直な面内においては定
在波である。マイクロ波が単一モードからなるとき、マ
イクロ波のボインティングベクトルの空間分布はそのモ
ードに固有の分布関数となる。
e. Microwaves propagating inside a waveguide whose inner wall is metal (hereinafter referred to as a metal waveguide) are traveling waves in the direction of microwave propagation, and constant in a plane perpendicular to the direction of propagation. There is a wave. When a microwave consists of a single mode, the spatial distribution of the microwave Boing vector becomes a distribution function specific to that mode.

例えばE、。モードのマイクロ波においては導波管の2
等分面近傍においてエネルギー分布が最大となる。
For example, E. In the microwave mode, the waveguide's 2
The energy distribution is maximum near the equiparting surface.

本発明に係るマイクロ波プラズマ処理装置においては、
導波管の終端部近傍においてマイクロ波電界成分に平行
な内壁の金属は誘電体に覆われている。
In the microwave plasma processing apparatus according to the present invention,
Near the end of the waveguide, the metal on the inner wall parallel to the microwave electric field component is covered with a dielectric.

誘電体内部における光の位相速度と真空中における光の
位相速度は異なるので、この近傍におけるマイクロ波の
境界条件は金属導波管のそれとは異なる。
Since the phase velocity of light inside a dielectric and the phase velocity of light in a vacuum are different, the boundary conditions of microwaves in this vicinity are different from those of a metal waveguide.

すなわちこの近傍におけるマイクロ波は、金属導波管に
対する単一モードでは表現できず、金属導波管の固有モ
ードを複数個重ね合わせた複合モードマイクロ波となる
That is, the microwave in this vicinity cannot be expressed as a single mode for the metal waveguide, but becomes a complex mode microwave that is a combination of a plurality of eigenmodes of the metal waveguide.

−aに高次モードのマイクロ波のエネルギー分布は低次
モードのそれに比較してより一様であるので、高次モー
ドを含む複合モードマイクロ波のエネルギー分布は低次
モードのみからなる単一モードマイクロ波よりエネルギ
ー分布はより一様になる。
-a Since the energy distribution of high-order mode microwaves is more uniform compared to that of low-order modes, the energy distribution of complex-mode microwaves including high-order modes is a single mode consisting only of low-order modes. The energy distribution is more uniform than with microwaves.

したがってマイクロ波によって励起されるプラズマのエ
ネルギー分布が一様になる。
Therefore, the energy distribution of the plasma excited by the microwave becomes uniform.

f、実施例 第1図は本発明に係るマイクロ波プラズマ処理装置の概
念的断面図である。
f. Example FIG. 1 is a conceptual sectional view of a microwave plasma processing apparatus according to the present invention.

マイクロ波発振器1の出力電力は導波管2を経由して石
英反応容器3に導かれる。反応容器3にはガス供給管6
から特定の種類のガスが導入され、排気管7から一定流
量で排気される。これにより反応容器3の内部は一定の
圧力に維持される。導入されたガスはマイクロ波電力に
よりプラズマ化され、試料台5に載置された試料40表
面にエツチング加工。
The output power of the microwave oscillator 1 is guided to a quartz reaction vessel 3 via a waveguide 2. A gas supply pipe 6 is provided in the reaction vessel 3.
A specific type of gas is introduced from the exhaust pipe 7 and exhausted at a constant flow rate from the exhaust pipe 7. As a result, the inside of the reaction vessel 3 is maintained at a constant pressure. The introduced gas is turned into plasma by microwave power, and the surface of the sample 40 placed on the sample stage 5 is etched.

または薄膜堆積処理を行う。Or perform a thin film deposition process.

導波管2は断面が矩形状もしくは円形状をなしており、
その末端は反応容器3を収容しかつマイクロ波電力の反
射を少くするためにテーパ状に拡大されている。
The waveguide 2 has a rectangular or circular cross section,
Its end is tapered to accommodate the reaction vessel 3 and to reduce reflection of microwave power.

導波管2の終端部2A、または終端部2Aと終端部2A
に隣接する部分2Bのマイクロ波電界成分に平行な内壁
にアルミナセラミックスからなる誘電体板が取り付けら
れている。なお誘電体板はアルミナセラミックスに限ら
れず、比誘電率が大きく誘電体損失が小さい他の材質か
らなる誘電体板を使用することもできる。
Termination part 2A of waveguide 2, or termination part 2A and termination part 2A
A dielectric plate made of alumina ceramics is attached to the inner wall of the portion 2B adjacent to the microwave electric field component parallel to the microwave electric field component. Note that the dielectric plate is not limited to alumina ceramics, and a dielectric plate made of other materials having a large dielectric constant and a small dielectric loss can also be used.

第2図は第1図のB−B断面における誘電率の概念的分
布図である。
FIG. 2 is a conceptual distribution diagram of the dielectric constant in the BB cross section of FIG.

誘電率εは導波管の境界部分で大きいので、導波管の境
界部分における電磁波の位相速度は導波管の中央部と異
なる。したがって誘電体と金属内壁の境界条件2誘電体
と真空の間の境界条件を満すために位相の異なるマイク
ロ波あるいは高次モードのマイクロ波が発生する。すな
わちマイクロ波伝播方向に対して垂直な面内においてマ
イクロ波は定在波ではなくなり、種々の位相のマイクロ
波および高次モードのマイクロ波の重ね合せとなる。例
えば電場のy成分E、は、第3図に図示するように、導
波管の内部では比較的一様であり誘電体と金属の境界に
おいてゼロとなる分布となる。この結果、導波管内部に
おけるエネルギー分布が、誘電体板を取付けないときに
比較してより一様になる。なおE、の分布は断面毎に、
および時間的に変動する。
Since the dielectric constant ε is large at the boundary of the waveguide, the phase velocity of the electromagnetic wave at the boundary of the waveguide is different from that at the center of the waveguide. Therefore, in order to satisfy the boundary condition 2 between the dielectric material and the metal inner wall and the boundary condition between the dielectric material and the vacuum, microwaves with different phases or microwaves in a higher order mode are generated. That is, in a plane perpendicular to the microwave propagation direction, the microwave is no longer a standing wave, but becomes a superposition of microwaves of various phases and microwaves of higher order modes. For example, the y component E of the electric field has a distribution that is relatively uniform inside the waveguide and zero at the boundary between the dielectric and the metal, as shown in FIG. As a result, the energy distribution inside the waveguide becomes more uniform than when no dielectric plate is attached. Note that the distribution of E is as follows for each cross section:
and temporally variable.

なおマイクロ波は誘電体板8内におけるエネルギー損失
を少くするために、誘電体材料としては誘電体損失ta
n δが小さい物質が好ましい。
Note that in order to reduce the energy loss in the dielectric plate 8 for microwaves, the dielectric material has a dielectric loss ta.
A substance with a small n δ is preferred.

実際に使用した結果、誘電体取付は位置は、反応室3を
収容する部分および反応室3より約1波長手前の導波管
拡大部、すなわち導波管の終端部2八と終端部2八に隣
接する部分2Bのマイクロ波電界成分に平行な内壁に誘
電体板を取付けると、従来技術によるより一様なプラズ
マが得られることが判明した。誘電体の厚さは該誘電体
内の波長の約1/10であった。
As a result of actual use, the positions for dielectric mounting are the part that accommodates the reaction chamber 3 and the expanded part of the waveguide approximately one wavelength before the reaction chamber 3, that is, the end part 28 of the waveguide and the end part 28 of the waveguide. It has been found that a more uniform plasma than in the prior art can be obtained by attaching a dielectric plate to the inner wall parallel to the microwave electric field component of the portion 2B adjacent to the . The thickness of the dielectric was approximately 1/10 of the wavelength within the dielectric.

なお反応室3を収容する部分2Aだけに誘電体板を取付
けたときにもかなり一様なプラズマが得られた。
Note that even when a dielectric plate was attached only to the portion 2A housing the reaction chamber 3, a fairly uniform plasma was obtained.

誘電体板8を反応室3より1波長以上手前の位置から取
付けても、電力損失が増大するのみで効果は変らない。
Even if the dielectric plate 8 is attached from a position one wavelength or more before the reaction chamber 3, the effect remains the same except that the power loss increases.

g、 効果 マイクロ波照射によって、プラズマとは無関係に試料4
.試料台が加熱されるが、このとき試料4゜試料台5の
中央部のみが局所的加熱されることなく、一様に加熱さ
れる。したがって本発明においては広いガス圧力範囲に
おける一様なプラズマ生成と相俟って、従来技術に比較
してより一様な試料上の反応および薄膜の形成が可能と
なる。
g. Effect Microwave irradiation allows sample 4 to be removed independently of plasma.
.. The sample stage is heated, but at this time, only the central part of the sample 4° sample stage 5 is heated uniformly without being locally heated. Therefore, in the present invention, in combination with uniform plasma generation over a wide gas pressure range, more uniform reaction on a sample and formation of a thin film are possible than in the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るマイクロ波プラズマ処理装置の概
念的断面図、第2図は第1図のA−A断面における誘電
率εの概念的分布図、第3図は第1図のA−A断面にお
ける電場の概念的分布図、第4図は従来技術によるマイ
クロ波プラズマ処理装置の概念的断面図、第5図は第4
図のB−B断面における誘電率εの概念的分布図、第6
図は第4図のB−B断面における電場の概念的分布図で
ある。 1・・・マイクロ波発振回路、 212□、23・・・
導波管、3・・・反応容器、       4・・・試
料、5・・・試料台、        6・・・ガス供
給管、7・・・排気管、        8・・・誘電
体板。
FIG. 1 is a conceptual sectional view of a microwave plasma processing apparatus according to the present invention, FIG. 2 is a conceptual distribution diagram of the dielectric constant ε in the AA cross section of FIG. - A conceptual distribution diagram of the electric field in the A cross section, FIG. 4 is a conceptual cross-sectional diagram of a microwave plasma processing apparatus according to the prior art, and FIG.
Conceptual distribution diagram of permittivity ε in the BB cross section of the figure, No. 6
The figure is a conceptual distribution diagram of the electric field in the BB cross section of FIG. 4. 1...Microwave oscillation circuit, 212□, 23...
Waveguide, 3... Reaction container, 4... Sample, 5... Sample stage, 6... Gas supply pipe, 7... Exhaust pipe, 8... Dielectric plate.

Claims (1)

【特許請求の範囲】 マイクロ波発振回路と、マイクロ波を伝播させる導波管
と、導波管の終端部に収容された反応容器と、反応容器
にガスを送るガス供給管と、反応容器からガスを排出す
るガス排出管と、反応容器中に試料を載置する試料台を
備え、反応容器中のガスにマイクロ波を照射してガスを
励起してプラズマを発生させ、該プラズマで試料にプラ
ズマ処理をするマイクロ波プラズマ処理装置において、 上記導波管の終端部の内壁に、または終端部と終端部に
隣接する部分の内壁に比誘電率が大きく誘電体損失の小
さい誘電体からなる誘電体板が取付けられていることを
特徴とするマイクロ波プラズマ処理装置。
[Scope of Claims] A microwave oscillation circuit, a waveguide for propagating microwaves, a reaction vessel housed in the terminal end of the waveguide, a gas supply pipe for feeding gas to the reaction vessel, and a gas supply pipe for supplying gas from the reaction vessel to the reaction vessel. Equipped with a gas exhaust pipe for discharging gas and a sample stage for placing a sample in a reaction vessel, the gas in the reaction vessel is irradiated with microwaves to excite the gas and generate plasma, and the plasma is applied to the sample. In a microwave plasma processing apparatus that performs plasma processing, a dielectric material made of a dielectric material with a large relative dielectric constant and a small dielectric loss is provided on the inner wall of the terminal end of the waveguide, or on the inner wall of the terminal end and a portion adjacent to the terminal end. A microwave plasma processing apparatus characterized in that a body plate is attached.
JP1948287A 1987-01-29 1987-01-29 Treating device for microwave plasma Pending JPS63190635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1948287A JPS63190635A (en) 1987-01-29 1987-01-29 Treating device for microwave plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1948287A JPS63190635A (en) 1987-01-29 1987-01-29 Treating device for microwave plasma

Publications (1)

Publication Number Publication Date
JPS63190635A true JPS63190635A (en) 1988-08-08

Family

ID=12000563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1948287A Pending JPS63190635A (en) 1987-01-29 1987-01-29 Treating device for microwave plasma

Country Status (1)

Country Link
JP (1) JPS63190635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044311A (en) * 1988-11-04 1991-09-03 Kabushiki Kaisha Toshiba Plasma chemical vapor deposition apparatus
US6080977A (en) * 1997-03-12 2000-06-27 Nukem Nuklear Gmbh Apparatus for concentrating salt-containing solutions with microwave energy
JP2008544134A (en) * 2005-06-16 2008-12-04 ボーグワーナー・インコーポレーテッド Disc member for turbocharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044311A (en) * 1988-11-04 1991-09-03 Kabushiki Kaisha Toshiba Plasma chemical vapor deposition apparatus
US6080977A (en) * 1997-03-12 2000-06-27 Nukem Nuklear Gmbh Apparatus for concentrating salt-containing solutions with microwave energy
JP2008544134A (en) * 2005-06-16 2008-12-04 ボーグワーナー・インコーポレーテッド Disc member for turbocharger

Similar Documents

Publication Publication Date Title
EP0874386B1 (en) Apparatus and process for remote microwave plasma generation
KR970071945A (en) Plasma treatment method and apparatus
KR20020043446A (en) Plasma processing apparatus
JPH10512391A (en) Apparatus for generating plasma by plasma induced microwave energy
JPH03191073A (en) Microwave plasma treating device
EP0284436A2 (en) Substrate-treating apparatus
KR950027912A (en) Microwave Plasma Processing Apparatus And Method
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JPS63190635A (en) Treating device for microwave plasma
US4749589A (en) Method of surface treatment
JP3566046B2 (en) Plasma processing device and sputtering device
KR102107310B1 (en) Plasma processing apparatus
JPH09171900A (en) Plasma generating device
JP3550466B2 (en) Plasma processing method
JPS63103088A (en) Plasma treating device
JP2697464B2 (en) Microwave plasma processing equipment
EP0184917B1 (en) Plasma reactor vessel and process
JPS6360530A (en) Microwave plasma processor
JP2001044175A (en) Plasma processing apparatus
JP3092559B2 (en) Plasma processing apparatus and gas introduction method for the apparatus
JPH0734253A (en) Microwave plasma treating device
JP2001326216A (en) Plasma processing device
JP3839570B2 (en) Plasma processing equipment
JPH11135480A (en) Plasma treatment device
JPH09102486A (en) Plasma treatment apparatus