JPS63190358A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS63190358A
JPS63190358A JP2174287A JP2174287A JPS63190358A JP S63190358 A JPS63190358 A JP S63190358A JP 2174287 A JP2174287 A JP 2174287A JP 2174287 A JP2174287 A JP 2174287A JP S63190358 A JPS63190358 A JP S63190358A
Authority
JP
Japan
Prior art keywords
layer
insulating film
film
wiring layer
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174287A
Other languages
Japanese (ja)
Inventor
Yoshikazu Shinkawa
吉和 新川
Shoji Madokoro
間所 昭次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2174287A priority Critical patent/JPS63190358A/en
Publication of JPS63190358A publication Critical patent/JPS63190358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable the multilayer interconnection comprising high quality Al to be made by a method wherein the W selected CVD (chemical vapor deposition process) and Al CVD process are applied and developed. CONSTITUTION:The first interconnection layer 23 is formed on a primary layer to form an insulating film 24 on the layer 23 and then through holes 25 penetrating the layer 23 are made in the insulating film 24. Next, W(tungsten) is selectively grown on the first interconnection layer 23 of the through holes 25 and then non-selectively grown on the surface of insulating film 24 including the inner wall of through holes 25 as well as the first interconnection layer. Later, an Al film 28 as the second interconnection layer is formed on the insulating film 24 to fill the through holes 25 by Al CVD process using W as the primary layer. Through these procedures, the Al film 28 as the second interconnection layer with excellent step coverage can be formed by Al CVD process regardless of the through holes in deep depth of around 2 mum.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体素子の製造方法に係り、特に多層配線
の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor element, and particularly to a method for forming multilayer wiring.

(従来の技術) 従来技術として、タングステン(W)選択CVD法を用
いた多層配線の形成方法を第2図を用いて説明する。ま
ず、Sl基板11にトランジスタ等を形成し、CVD 
(化学気相成長法)等の方法で中間絶縁膜12(例えば
5in2. PSG)を形成する。次いで、その中間絶
縁膜12にコンタクトホール13を開孔後、AI系合金
をスパッタ等の方法でデポジションしてホトリソ・エツ
チングを施し第1配線層14とする。その後、層間絶縁
膜15をCVD。
(Prior Art) As a conventional technology, a method for forming multilayer wiring using tungsten (W) selective CVD method will be described with reference to FIG. First, transistors and the like are formed on the Sl substrate 11, and then CVD
The intermediate insulating film 12 (for example, 5 in 2. PSG) is formed by a method such as chemical vapor deposition (chemical vapor deposition). Next, after a contact hole 13 is opened in the intermediate insulating film 12, an AI alloy is deposited by sputtering or the like, and photolithography and etching are performed to form a first wiring layer 14. After that, the interlayer insulating film 15 is formed by CVD.

スパッタ等の方法でデポジションし、それにスルーホー
ル16を開孔する。次に、減圧雰囲気中で基板を300
〜500℃に加熱しながら八と六弗化タングステン(W
F 6)を1: 10〜1:200の割合で流す。この
時、圧力を約ITorr程度にしておくと、スルーホー
ル16内の第1配線層(1)14上にのみ選択的にW層
17が成長する。このW層17を5000人程度成長さ
せ、アスペクト比(スルーホールの深さ/スルーホール
径の比)を小さくした後、AI系合金をスパッタ等でデ
ポジションし第2配線層18とする。以上の方法により
、段切れのない多層配線を形成することができる。以上
、第1の方法とする。
It is deposited by a method such as sputtering, and a through hole 16 is formed therein. Next, the substrate was heated for 300 minutes in a reduced pressure atmosphere.
Tungsten octa- and hexafluoride (W) while heating to ~500℃
F6) at a ratio of 1:10 to 1:200. At this time, if the pressure is kept at about ITorr, the W layer 17 selectively grows only on the first wiring layer (1) 14 inside the through hole 16. After growing this W layer 17 by about 5,000 layers and reducing the aspect ratio (ratio of through-hole depth/through-hole diameter), an AI-based alloy is deposited by sputtering or the like to form the second wiring layer 18. By the above method, it is possible to form a multilayer interconnection with no breaks. The above is the first method.

次に、従来技術のもう一つの方法としてAJCVDによ
る多層配線の形成方法を第3図に示す。この方法では、
第1の方法と全く同様の工程で層間絶縁膜15までを形
成し、スルーホール16を開孔する。次いで、減圧雰囲
気中で基板を250〜300℃に加熱する。次に、トリ
イソブチルアルミニウム(TIBA)の液体をバブラー
管内で加熱し、馬ガスによりバブラーする乙とによって
取り出したTIBAと川の混合ガスを基板表面に導く。
Next, FIG. 3 shows a method of forming multilayer wiring by AJCVD as another conventional method. in this way,
In exactly the same steps as in the first method, layers up to the interlayer insulating film 15 are formed, and through holes 16 are opened. Next, the substrate is heated to 250 to 300°C in a reduced pressure atmosphere. Next, a liquid of triisobutylaluminum (TIBA) is heated in a bubbler tube, and the mixed gas of TIBA and river extracted by the bubbler tube is introduced to the substrate surface.

この結果、TIBAは基板表面(層間絶縁膜15表面)
で熱分解され、スルーホール16を埋めて層間絶縁膜1
5の表面に1’をデポジションし、第2配線層19とな
る。
As a result, TIBA is formed on the substrate surface (interlayer insulating film 15 surface).
is thermally decomposed, filling the through hole 16 and forming the interlayer insulating film 1.
1' is deposited on the surface of 5 to form a second wiring layer 19.

乙のAI CVDを用いる方法では、基板表面での反応
のため、スパッタ法に比べAJのステップカバレージが
良く、かつエレクトロマイグレーションの影響のない多
層配線を形成することができる。
In the method using AI CVD, since the reaction occurs on the substrate surface, AJ step coverage is better than in the sputtering method, and multilayer wiring can be formed without being affected by electromigration.

(発明が解決しようとする問題点) しかしながら近年、デバイスの集積化・高密度化に伴い
配線、層間膜の平坦化が強く求められて来ている。その
結果、層間絶縁膜の平坦化法、(例えばバイアススパッ
タ法)により第4図に示すように、場所によっては2μ
m程度の深いスルーホール16が生じることとなった。
(Problems to be Solved by the Invention) However, in recent years, with the increasing integration and density of devices, there has been a strong demand for flattening of wiring and interlayer films. As a result, as shown in FIG.
A through hole 16 having a depth of approximately 1.0 m was formed.

しかしながら、W選択CVD法を用いると、現状では5
000〜7000人程度成長すると成長激に選択性を失
い、層間絶縁膜15上にも堆積が始まる。よって、選択
性を維持できる5000人程度成長を選択成長させたと
しても、スルーホール16内は依然1μm以上の深さが
あり、第2図に示す第2配線層18の段切れが生じるこ
とになる。
However, if the W selection CVD method is used, currently 5
When the number of particles grows to about 000 to 7000, the selectivity is lost due to rapid growth, and deposition also begins on the interlayer insulating film 15. Therefore, even if selective growth is performed to maintain selectivity of about 5,000 layers, the inside of the through hole 16 will still have a depth of 1 μm or more, and a break in the second wiring layer 18 as shown in FIG. 2 will occur. Become.

次に、AtlCVD法を用いた場合、深いスルーホール
16でも第2配線層19のカバレージに関しては全く問
題は生じない。しかしながら、現状のAlCVD技術で
は金属を下地膜とした場合は、品質の良いAl膜(第2
配線層19)が得られてし)るが、下地膜が絶縁膜の場
合、結晶成長する過程で結晶の中心となる核の形成がし
に<<、その結果表面の凹凸が甚しく、膜質も密度が粗
なAl膜しか得られない。また、得られるAl膜は、純
Aj金属であるため、第1配線層14から、またその下
の拡散層からSiが拡散混入するため、デバイスに悪影
響を与えるという問題がある。
Next, when the AtlCVD method is used, no problem arises in terms of coverage of the second wiring layer 19 even with the deep through holes 16. However, with the current AlCVD technology, when metal is used as the base film, it is difficult to obtain a good quality Al film (second
A wiring layer 19) is obtained, but when the underlying film is an insulating film, the formation of a nucleus that becomes the center of the crystal during the crystal growth process is difficult, resulting in severe surface unevenness and poor film quality. However, only an Al film with a coarse density can be obtained. Furthermore, since the obtained Al film is a pure Aj metal, Si is diffused and mixed in from the first wiring layer 14 and from the diffusion layer below, which has a problem of adversely affecting the device.

この発明は、以上述べたW選択CVD法、AJCVD法
を応用発展させることによね、2μm前後の深いスルー
ホールにおいても段切れを防止でき、かっSiの拡散と
いった問題点を解決でき、しかも高品質のAl膜による
多層配線を形成することのできる半導体素子の製造方法
を提供することを目的とする。
By applying and developing the above-mentioned W selection CVD method and AJCVD method, this invention can prevent breakage even in deep through holes of around 2 μm, solve problems such as Si diffusion, and achieve high quality. An object of the present invention is to provide a method for manufacturing a semiconductor element that can form multilayer wiring using an Al film.

(問題点を解決するための手段) この発明では、下地上に第1配線層を形成し、その上に
絶縁膜を形成し、この絶縁膜に前記第1配線層に貫通す
るスルーホールを開けた後、そのスルーホールの第1配
線層上にWを選択的に成長させ、引き続きWの非選択成
長を行うことにより、−4= 前記第1配線層上とともに、スルーホールの内壁を含む
前記絶縁膜の表面にWを成長させ、その後、前記Wを下
地としてAt’ CVD法により第2配線層としてAl
膜を、前記スルーホールを埋めて前記絶縁膜上に形成す
る。
(Means for Solving the Problems) In the present invention, a first wiring layer is formed on a base, an insulating film is formed on the first wiring layer, and a through hole is formed in this insulating film to penetrate the first wiring layer. After that, by selectively growing W on the first wiring layer of the through hole and then non-selectively growing W, -4= the above-mentioned area including the inner wall of the through hole as well as on the first wiring layer. W is grown on the surface of the insulating film, and then Al is grown as a second wiring layer by At' CVD using the W as a base layer.
A film is formed on the insulating film filling the through hole.

(作   用) 上記のような方法においては、スルーホールが2μmW
後と深いスルーホールであっても、AJCVD法により
、良好なステップカバレージを有して第2配線層として
のAl膜が形成される。また、そのAl膜は、下地のW
を結晶の核として結晶が成長するため、下地が絶縁膜の
場合と比べはるかに凹凸の少ない密な良質のAl膜とな
る。また、その第2配線層としてのAl膜と第1配線層
間には下地Wが介在され、この下地Wは、第1配線層か
ら第2配線層にSiが拡散混入されることを防止するバ
リアメタルとして働く。
(Function) In the above method, the through hole is 2 μmW.
Even in the case of deep through-holes, an Al film as a second wiring layer is formed with good step coverage by the AJCVD method. In addition, the Al film is
Since the crystals grow using the crystals as crystal nuclei, a dense, high-quality Al film with far fewer irregularities is formed than when the underlying layer is an insulating film. Further, a base W is interposed between the Al film as the second wiring layer and the first wiring layer, and this base W is a barrier that prevents Si from being diffused and mixed from the first wiring layer to the second wiring layer. Works as a metal.

(実 施 例) 以下乙の発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the invention of B will be described below with reference to FIG.

まず、第1図(alに示すように、Si基板21上にト
ランジスタを形成した後、中間絶縁膜22、第1配線層
23、層間絶縁膜24を順次形成し、層間絶縁膜24に
は第1配線層23に貫通するスルーホール25を開孔す
る。
First, as shown in FIG. A through hole 25 penetrating through the first wiring layer 23 is opened.

次に、減圧雰囲気中で基板を300〜500℃に加熱し
ながらH2とWF6を1: 10〜1:200の割合で
チャンバー内に流す。この時、圧力を約IT’orr程
度とする。すると、第1図(6)に示すように、スルー
ホール25内のAI系合金からなる第1配線層23上に
のみW層26が成長する。そして、このW層26が約5
000成長度まで選択的に成長したところで基板にUV
光を照射する。
Next, H2 and WF6 are flowed into the chamber at a ratio of 1:10 to 1:200 while heating the substrate to 300 to 500[deg.] C. in a reduced pressure atmosphere. At this time, the pressure is set to approximately IT'orr. Then, as shown in FIG. 1(6), the W layer 26 grows only on the first wiring layer 23 made of an AI alloy in the through hole 25. This W layer 26 is about 5
After selectively growing to a growth degree of 0.000, the substrate is exposed to UV light.
Irradiate light.

すると、基板表面が活性化され、層間絶縁膜24上でも
WF6の吸着、分解が起こるようになる。この時の反応
を次式に示す。
Then, the surface of the substrate is activated, and adsorption and decomposition of WF6 also occur on the interlayer insulating film 24. The reaction at this time is shown in the following formula.

UV基板照射 エネルギhν WF6+3H2−W+6HF↑ したがって、上記UV光照射後は、スルーホール25内
の第1配線層23上とともに、前記第1図(blに示す
ように、スルーホール25の内壁を含む層間絶縁膜24
の表面にW層27が形成されるようになる。そして、層
間絶縁膜24上にW層27が2000人程度堆積された
ところで、Wのデポジションを終了する。
UV substrate irradiation energy hν WF6+3H2-W+6HF↑ Therefore, after the above-mentioned UV light irradiation, not only the first wiring layer 23 in the through hole 25 but also the interlayer including the inner wall of the through hole 25 as shown in FIG. Insulating film 24
A W layer 27 is formed on the surface of the wafer. Then, when about 2000 W layers 27 are deposited on the interlayer insulating film 24, the W deposition is terminated.

そして、上記のようにしてW層26,27を形成したな
らば、次に、そのW層26.27を下地としてAlCV
D法により第2配線層としてのAI膜28を第1図(C
)に示すようにスルーホール25を埋めて層間絶縁膜2
4上に形成する。その場合の具体的方法としては、まず
、Wのデポジションに用いたWF6をチャンバーから完
全に排気した後、減圧中で基板を250〜300℃に加
熱する。次に、TIBAの液体をバブラー管に封入し、
約50℃に加熱しながらへガスによりバブラーする。乙
の結果、TIBAの気化ガスを含んt!馬ガスを得る。
After forming the W layers 26 and 27 as described above, next, the W layers 26 and 27 are used as a base to form an AlCV film.
The AI film 28 as the second wiring layer is formed by the D method as shown in FIG.
), the through hole 25 is filled and the interlayer insulating film 2 is
4. Form on top. As a specific method in that case, first, after completely exhausting the WF6 used for W deposition from the chamber, the substrate is heated to 250 to 300° C. under reduced pressure. Next, TIBA liquid is sealed in a bubbler tube,
Bubble with gas while heating to about 50°C. As a result, t! contains TIBA vaporized gas! Get horse gas.

この混合ガスを加熱した基板表面に導くと、TIBAの
熱分解温度は220℃以上であるから、基板表面(スル
ーホール25および層間絶縁膜24上のW層26.27
表面)に吸着したTIBAは、Al−7= とその他の炭素化合物気体に分解し、スルーホール25
と層間絶縁膜24上に1’を堆積する。そして、このよ
うにしてAI膜28を約1μm堆積させた後、ホトリソ
・エツチングを施し、第2配線層を形成する。
When this mixed gas is introduced to the heated substrate surface, since the thermal decomposition temperature of TIBA is 220° C. or higher,
TIBA adsorbed on the surface) decomposes into Al-7= and other carbon compound gases, and the through hole 25
and 1' are deposited on the interlayer insulating film 24. After the AI film 28 is deposited to a thickness of approximately 1 μm in this manner, photolithography and etching are performed to form a second wiring layer.

なお、発明者の実験では、CVD W層26.27を下
地として得られるAI膜28は成長段階で下地のWを結
晶の核として結晶粒が成長を始めるため、下地が絶縁膜
である場合に比べて、AJの結晶粒は小さく、結果とし
て表面が滑らかで密度の高い高品質のA4膜が得られて
いる。また、CvDによって得られたAI膜28中への
第1配線層23からのSiの拡散は、下地W層26.2
7がバリアメタルとして働くため、全く生じなかった。
In addition, in the inventor's experiments, in the AI film 28 obtained using the CVD W layer 26, 27 as a base, crystal grains begin to grow using the W in the base as crystal nuclei during the growth stage, so when the base is an insulating film, In comparison, the crystal grains of AJ are small, resulting in a high-quality A4 film with a smooth surface and high density. Further, the diffusion of Si from the first wiring layer 23 into the AI film 28 obtained by CvD is caused by the diffusion of Si from the base W layer 26.2.
Since No. 7 acts as a barrier metal, it did not occur at all.

また、WCVDの非選択成長させる方法として上記一実
施例では、基板にUV光を照射する方法を採用したが、
他にも、川をプラズマ分解する方法、気相中にエキシマ
・レーザを照射する方法などがある。これらを用いても
よい。
Furthermore, in the above embodiment, a method of irradiating the substrate with UV light was adopted as a method for non-selective growth by WCVD.
Other methods include plasma decomposition of rivers and irradiation of excimer lasers into the gas phase. You may use these.

(発明の効果) 以上詳細に説明したように、乙の発明の製造方法によれ
ば、スルーホールが2μm前後と深いスルーホールであ
っても、AlCVD法により良好なステップカバレージ
を持って第2配線層としてのAJ膜を形成することがで
き、第2配線層の段切れを防止できる。また、スルーホ
ールに選択的にWを形成した後に、連続的にWの非選択
的成長へと移行するので、スルーホールの選択的W層と
非選択的W層との間に構造・電気特性において均一なW
膜が得られる。また、乙のWの成長と同一反応チャンバ
ー中でAj CVD法による、AI膜のデボジシランを
行えるので、WとAIの界面には各々の酸化膜層や不純
物が全く混入しないという効果と、下地のWを核として
結晶が成長するため、下地が絶縁膜の場合と比べはるか
に凹凸の少ない密な良質のAI膜を第2配線層として得
られるという効果がある。さらに、スルーホールの下地
W層は第1配線層側からの第2配線層に対するSiの拡
散混入に対するバリアメタルとして働くので、このSi
の拡散混入を無くすことができる。また、AIとWは一
体としてA1/Wiil!線と考えることができ、Al
/W配線は衆知の如く、ヒロックやエレクトロマイグレ
ーシリンに強いという利点もあり、低抵抗、高信頼性の
平坦なメタル配線を形成できる。さらにスルーホール部
でのWとAI膜の接触面積は非選択Wなしに比べて大き
くなるので、接触抵抗も小さくできる。
(Effects of the Invention) As explained in detail above, according to the manufacturing method of the invention of Part B, even if the through hole is as deep as about 2 μm, the second wiring can be formed with good step coverage using the AlCVD method. An AJ film can be formed as a layer, and breakage of the second wiring layer can be prevented. In addition, after W is selectively formed in the through-hole, the transition to non-selective growth of W occurs continuously, so that the structural and electrical characteristics between the selective W layer and the non-selective W layer of the through-hole are uniform W at
A membrane is obtained. In addition, since the AI film can be devodisilated by the Aj CVD method in the same reaction chamber as the W growth described above, there is an effect that no oxide film layer or impurities are mixed in at the interface between W and AI, and that the underlying layer is Since crystals grow with W as the nucleus, it is possible to obtain a dense, high-quality AI film as the second wiring layer with far fewer irregularities than when the underlying layer is an insulating film. Furthermore, since the underlying W layer of the through hole acts as a barrier metal against diffusion and mixing of Si from the first wiring layer side into the second wiring layer, this Si
Diffusion and contamination can be eliminated. Also, AI and W are integrated into A1/Wil! It can be thought of as a line, and Al
As is well known, the /W wiring has the advantage of being resistant to hillocks and electromigration, and can form flat metal wiring with low resistance and high reliability. Furthermore, since the contact area between the W and the AI film at the through-hole portion is larger than that without the non-selected W, the contact resistance can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体素子の製造方法の一実施例を
示す工程断面図、第2図は従来の多層配線の形成方法の
第1の例を示す断面図、第3図は従来の多層配線の形成
方法の第2の例を示す断面図、第4図は眉間絶縁膜の平
坦化法により深いスルーホールが生じた場合の断面図で
ある。 21・・・Si基板、22・・・中間絶縁膜、23・・
第1配線層、24・・・層間絶縁膜、25・・・スルー
ホール、26,27・・・W層、28・・・AI膜。
FIG. 1 is a process cross-sectional view showing an embodiment of the method for manufacturing a semiconductor element of the present invention, FIG. 2 is a cross-sectional view showing a first example of a conventional method for forming multilayer wiring, and FIG. FIG. 4 is a cross-sectional view showing a second example of the wiring formation method, and is a cross-sectional view when a deep through hole is created by the method of flattening the glabella insulating film. 21... Si substrate, 22... Intermediate insulating film, 23...
1st wiring layer, 24... interlayer insulating film, 25... through hole, 26, 27... W layer, 28... AI film.

Claims (1)

【特許請求の範囲】 (a)下地上に第1配線層を形成する工程と、 (b)その上に絶縁膜を形成する工程と、 (c)その絶縁膜に前記第1配線層に貫通するスルーホ
ールを形成する工程と、 (d)そのスルーホールの第1配線層上にWを選択的に
成長させる工程と、 (e)引き続きWの非選択成長を行うことにより、前記
第1配線層上とともに、スルーホールの内壁を含む前記
絶縁膜の表面にWを成長させる工程と、 (f)そのWを下地としてAlCVD法により第2配線
層としてAl膜を、前記スルーホールを埋めて前記絶縁
膜上に形成する工程とを具備してなる半導体素子の製造
方法。
[Claims] (a) a step of forming a first wiring layer on a base; (b) a step of forming an insulating film thereon; and (c) a step of penetrating the first wiring layer through the insulating film. (d) selectively growing W on the first wiring layer of the through hole; (e) continuing non-selective growth of W to (f) growing W on the surface of the insulating film, including the inner walls of the through holes as well as on the layers; 1. A method for manufacturing a semiconductor device, comprising a step of forming it on an insulating film.
JP2174287A 1987-02-03 1987-02-03 Manufacture of semiconductor element Pending JPS63190358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174287A JPS63190358A (en) 1987-02-03 1987-02-03 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174287A JPS63190358A (en) 1987-02-03 1987-02-03 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS63190358A true JPS63190358A (en) 1988-08-05

Family

ID=12063526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174287A Pending JPS63190358A (en) 1987-02-03 1987-02-03 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS63190358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987099A (en) * 1989-12-29 1991-01-22 North American Philips Corp. Method for selectively filling contacts or vias or various depths with CVD tungsten
JPH06224190A (en) * 1992-10-30 1994-08-12 Hyundai Electron Ind Co Ltd Manufacture of tungsten plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987099A (en) * 1989-12-29 1991-01-22 North American Philips Corp. Method for selectively filling contacts or vias or various depths with CVD tungsten
JPH06224190A (en) * 1992-10-30 1994-08-12 Hyundai Electron Ind Co Ltd Manufacture of tungsten plug

Similar Documents

Publication Publication Date Title
JP2811004B2 (en) Metal thin film growth method and apparatus
EP0216157B1 (en) A method of depositing metal contact regions on a silicon substrate
US6602770B2 (en) Silicon layer to improve plug filling by CVD
US6258174B1 (en) Gas supplying apparatus
JP2004536960A (en) W-CVD by fluorine-free tungsten nucleation
US6136690A (en) In situ plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications
JPH11220021A (en) Manufacture of semiconductor device
JPH0548935B2 (en)
JP4168397B2 (en) Boron doped titanium nitride layer for high aspect ratio semiconductor devices
US6475907B1 (en) Semiconductor device having a barrier metal layer and method for manufacturing the same
WO1999053537A1 (en) Method for relaxing stress in blanket tungsten film formed by chemical vapor deposition
JPS63190358A (en) Manufacture of semiconductor element
US4957880A (en) Method for producing semiconductor device including a refractory metal pattern
JPH0637038A (en) Manufacturing for semiconductor device
US6746957B2 (en) Manufacture of semiconductor device with copper wiring
US6787466B2 (en) High throughout process for the formation of a refractory metal nucleation layer
JP2000091269A (en) Manufacture of semiconductor device
US6821874B2 (en) Method for depositing tungsten silicide film and method for preparing gate electrode/wiring
JP2937998B1 (en) Wiring manufacturing method
JP3246046B2 (en) Deposition method of refractory metal film
JPH0529316A (en) Manufacture of semiconductor device
JPH053170A (en) Forming method of blanket tungsten plug
JPH0684797A (en) Manufacture of semiconductor device
JP3058053B2 (en) Method of forming aluminum thin film
JP4248056B2 (en) Method for producing metal copper thin film by CVD method and CVD apparatus