JPS63189744A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS63189744A
JPS63189744A JP2072287A JP2072287A JPS63189744A JP S63189744 A JPS63189744 A JP S63189744A JP 2072287 A JP2072287 A JP 2072287A JP 2072287 A JP2072287 A JP 2072287A JP S63189744 A JPS63189744 A JP S63189744A
Authority
JP
Japan
Prior art keywords
compressor
pressure
time
refrigerant
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072287A
Other languages
Japanese (ja)
Other versions
JPH0573982B2 (en
Inventor
和弘 上田
敏明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2072287A priority Critical patent/JPS63189744A/en
Publication of JPS63189744A publication Critical patent/JPS63189744A/en
Publication of JPH0573982B2 publication Critical patent/JPH0573982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷凍装置に関するものであり、特に被冷却
物の鮮度維持を確保し、かつ冷媒中に混じった油を効果
的に圧縮機lζ戻すようfζした冷凍装置に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a refrigeration system, and particularly to a refrigeration system that ensures the freshness of objects to be cooled and effectively removes oil mixed in the refrigerant. This relates to a refrigeration device that returns fζ.

〔従来の技術〕[Conventional technology]

従来、この種の装置として第2図に示すものがあった。 Conventionally, there has been a device of this type as shown in FIG.

第2図多ζおいて、(1)は並列圧縮式冷凍装置、(2
)は複数台Oシ=1−ケース(2a)、 (2b)、(
2c)の組合せで構成された冷却装置である。並列圧縮
式冷凍装置(1)は水冷式の凝縮器(1a)あるいは空
冷式凝縮i@!(図示せず)の下流側に接続される受液
話の辷に圧縮機の定格容量比がほぼ2対1に選定されて
いる大容量の圧縮機(1b)と小容量の圧縮機(1c)
の2台が並列に搭載されており、かつ各圧縮機(1b)
と(IC)の冷媒吐出管(1d)および吸入管(1e)
が互いに並列接続されている。なお、(1f)は各圧縮
機(lb)と(IC)のクランク室を相互に連通させる
均圧均油管である。
In Fig. 2 polyζ, (1) is a parallel compression refrigeration system, (2
) is multiple units Osi=1-case (2a), (2b), (
This is a cooling device configured with the combination of 2c). The parallel compression refrigeration system (1) is a water-cooled condenser (1a) or an air-cooled condenser i@! A large capacity compressor (1b) and a small capacity compressor (1c) are selected in which the rated capacity ratio of the compressors is approximately 2 to 1, depending on the liquid receiving pipe connected downstream of the compressor (not shown). )
Two compressors (1b) are installed in parallel, and each compressor (1b)
and (IC) refrigerant discharge pipe (1d) and suction pipe (1e)
are connected in parallel with each other. Note that (1f) is a pressure equalizing oil pipe that connects the crank chambers of each compressor (lb) and (IC) with each other.

また、(5)は、低圧側の冷媒圧力を検出する圧力検出
部(3)の出力信号と収束させようとする低圧側の冷媒
圧力を設定する圧力設定部(4)で設定された冷媒圧力
との圧力差に応じて上記圧縮機(1b)と(1c)を個
別に運転・停止の制御を行う制御部である。
In addition, (5) is the refrigerant pressure set by the pressure setting unit (4) that sets the refrigerant pressure on the low pressure side to be converged with the output signal of the pressure detection unit (3) that detects the refrigerant pressure on the low pressure side. This is a control unit that individually controls operation and shutdown of the compressors (1b) and (1c) according to the pressure difference between the compressors (1b) and (1c).

(7)は、E記圧縮a (tb)、 (lc)のうち、
1台のみ運転している時間を積算する圧縮機片肺運転時
間積算部である。また、(6)は上記圧縮機単独運転時
間槓算部(7)が所定時間に達すると、上記圧縮機(l
b)、 (lc)を2台とも一定時間停止させると共に
と記圧縮機単独運転時間積算部(7)の積算時間を0と
し、かつ定格容量が異なると記2台の圧縮機(xb)、
 (lc)の運転を開始する圧縮機容量設定部である。
(7) is E-book compression a (tb), (lc),
This is a compressor single-lung operating time integration unit that integrates the time when only one compressor is in operation. In addition, (6) means that when the compressor independent operation time calculator (7) reaches a predetermined time, the compressor (l
b), (lc) are both stopped for a certain period of time, and the cumulative time of the compressor independent operation time integration section (7) is set to 0, and if the rated capacities of the two compressors (xb) are different,
This is the compressor capacity setting unit that starts the operation of (lc).

また、第8図に示すように、通常圧力領域は、上記圧力
設定部(4)によって設定される容量アップ圧力値、容
量ダウン圧力値、低圧カット値の8つによって、並列圧
縮式冷凍装置(りに容にアップ信号を出す容量ア9、ツ
ブ圧力値以上の領域に)と、並列圧縮式冷凍装置(1)
に容量ダウン信号も容量アップ信号も出さない容量ダウ
ン圧力値以上で、かつ容量アップ圧力値未満の領域(ハ
)と、並列圧縮式冷凍装置(1)に容量ダウン信号を出
す容量ダウン圧力値未満の領域(ロ)と、並列圧縮式冷
凍装Kl (1)に停止信号を出す低圧カット値以下の
領域(イ)の4つに分けられる。
In addition, as shown in FIG. 8, the normal pressure region is determined by the parallel compression refrigeration system ( Capacity A9, which sends an up signal to the tank pressure (in the area above the tube pressure value), and a parallel compression refrigeration device (1)
Region (c) above the capacity down pressure value where neither a capacity down signal nor a capacity up signal is issued and less than the capacity up pressure value (c), and a region below the capacity down pressure value where a capacity down signal is issued to the parallel compression refrigeration system (1). It can be divided into four regions: the region (b) where the pressure is below the low pressure cut value that sends a stop signal to the parallel compression refrigeration system Kl (1) (a).

次に動作について説明する。たとえば、冷却装置(2]
の冷凍負荷に対する所要の冷凍能力を得るための所要動
力が15)Pである場合に、一方の圧縮機(lb)の定
格容量は1OH)、他方の圧縮機(1c)の定格容量は
6H)に選定されている。
Next, the operation will be explained. For example, cooling device (2)
When the required power to obtain the required refrigerating capacity for the refrigerating load is 15)P, the rated capacity of one compressor (lb) is 1OH) and the rated capacity of the other compressor (1c) is 6H) has been selected.

一方、複数台のショーケース(2a)、 (2b)、(
2c)からなる冷却装置(2)では、各ショーケースの
使用状況Sζよって冷却負荷は0から100%まで大幅
に変動する。
On the other hand, multiple showcases (2a), (2b), (
In the cooling device (2) consisting of 2c), the cooling load varies greatly from 0 to 100% depending on the usage status Sζ of each showcase.

ここで、冷凍負荷が少なくなると、冷凍サイクルの低圧
側の冷媒圧力が下がり、これに伴って圧力検出部(3)
から制御部(5)に出力される圧力検出信号のレベルも
低下する。
Here, when the refrigeration load decreases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases, and the pressure detection section (3)
The level of the pressure detection signal outputted to the control unit (5) also decreases.

制御部(5)では、上記圧力検出信号を基準値(容量ア
ップ圧力値あるいは容量ダウン圧力値)と比較する比較
回路を有しているため、圧力検出rM@が容量ダウン圧
力値よりも低い場合、すなわち、領域(CI)の場合に
は、制御部(5)は並列圧縮式冷凍装置(1)の容量が
低Fするように制即し、冷却能力をFげる。このように
して冷却能力が下げられると、冷凍サイクルの低圧側の
冷媒圧力が上昇し、領域(ハ)に収束し、運転は安定す
る。
The control unit (5) has a comparison circuit that compares the pressure detection signal with a reference value (capacity up pressure value or capacity down pressure value), so if the pressure detection rM@ is lower than the capacity down pressure value. That is, in the case of the region (CI), the control unit (5) controls the capacity of the parallel compression type refrigeration system (1) to be low F, and increases the cooling capacity by F. When the cooling capacity is lowered in this way, the refrigerant pressure on the low-pressure side of the refrigeration cycle increases and converges to region (c), and the operation becomes stable.

また、冷却負荷が高い場合には、冷凍サイク・しの低圧
側の冷媒圧力が上昇し、これに伴って圧力検出部(3)
から制i1 gI!(5)に出力される圧力検出信号の
レベルが上昇する。この結果、圧力検出信号が容量アッ
プ圧力値よりも高い場合、すなわち、領域に)の場合に
は、制御部(5)は並列圧縮式冷凍装置(1)の容量が
アップするように制御し、冷却能力を増加させる。この
ようにして冷却能力が増加すると、冷凍サイク・しの低
圧側の冷媒圧力は低下し、領域(ハ)に収束し、運転は
安定する。なお、圧力検出部(3)が領域に)あるいは
領域(ロ)の圧力を検出した後、制御部(5)より出力
される容量アップ信号、あるいは容量ダウン信号が発生
する寸での時間は同じである。
In addition, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle increases, and the pressure detection part (3) increases.
Karasei i1 gI! (5) The level of the pressure detection signal outputted increases. As a result, if the pressure detection signal is higher than the capacity-up pressure value (in other words, in the area), the control unit (5) controls the parallel compression refrigeration system (1) to increase its capacity, Increase cooling capacity. When the cooling capacity increases in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases and converges to region (c), and the operation becomes stable. In addition, after the pressure detection section (3) detects the pressure in the area) or area (b), the time at which the capacity up signal or capacity down signal output from the control unit (5) is generated is the same. It is.

なお、冷凍サイク・しの低圧側の冷媒圧力が低圧カット
値以下すなわち領域(イ)になった場合、圧縮機(lb
)、 (lc)は直ちに停止するようになっている。
In addition, if the refrigerant pressure on the low pressure side of the refrigeration cycle is below the low pressure cut value, that is, in region (A), the compressor (lb
), (lc) are designed to stop immediately.

したがって、L記の冷凍負荷変動に対し、冷凍負荷が8
8%以下の部分負荷時間こけ定格容ffi 5 )Pの
圧縮機(1’c)のみが単独運転される。また、冷凍負
荷が88〜66%の範囲では定格容!:10)Pの圧縮
機(1b)のみが単独運転される。
Therefore, for the refrigeration load fluctuation in L, the refrigeration load is 8
Only the compressor (1'c) with a part-load time moss rated capacity ffi 5 )P of less than 8% is operated independently. Also, when the refrigeration load is in the range of 88 to 66%, the rated capacity! :10) Only the compressor (1b) of P is operated independently.

さらに、冷凍負荷が66〜100%になれば圧縮機(1
b)と(lc)が同時に並列運転される。この容量制御
運転の推移を示せば、第4図のようになる。
Furthermore, when the refrigeration load reaches 66 to 100%, the compressor (1
b) and (lc) are operated in parallel at the same time. The transition of this capacity control operation is shown in FIG. 4.

すなわち、第4図に示されているように圧縮機の定格容
量比がほぼ2対1に選定されている大小の圧縮機を選択
的に運転・停止制御することによって0.1lll11
.66、100%の4段階の容量制御運転を行うことが
できる。
In other words, as shown in FIG. 4, by selectively controlling the operation and stopping of large and small compressors whose rated capacity ratio is selected to be approximately 2:1, 0.1lll11
.. Capacity control operation can be performed in four stages of 66 and 100%.

また、一般に冷媒を高温高圧に圧縮する圧縮機において
は、圧縮機の潤滑油が冷媒中チζ重景比で0.5〜1%
混入する。この混入された潤滑油は冷媒が液体状であれ
ば冷媒によく混ざるが、冷媒が気化されると冷媒に混ざ
らず分離する。従って、従来の冷凍装置においては、次
に説明するように冷媒に混入した潤滑油が圧縮機に戻ら
ず、圧縮機内の潤滑油が減少することがあった。
In general, in compressors that compress refrigerant to high temperature and high pressure, the lubricating oil of the compressor is 0.5 to 1% in terms of ζ weight ratio in the refrigerant.
Mixed. This mixed lubricating oil mixes well with the refrigerant when the refrigerant is in a liquid state, but when the refrigerant is vaporized, it does not mix with the refrigerant and separates. Therefore, in conventional refrigeration systems, the lubricating oil mixed in the refrigerant does not return to the compressor, as will be explained next, and the lubricating oil in the compressor sometimes decreases.

従来の冷凍装りにおいて、例えば複数個の被冷却部たと
えばショーケースの夫々に冷却器(2a)。
In conventional refrigeration equipment, for example, a cooler (2a) is provided in each of a plurality of cooled parts, such as a showcase.

(2b)、 (2c)を備えた冷凍装置においては、シ
ョーケース(v1々の温度管理のために、個々のショー
ケースに温間調節器及び冷媒の流れを制御する液ライン
電磁弁を設けて、個々のショーケースの温度制御を行っ
ていた。この場合、例えばショーケースが8台あり、8
台のショーケースを個別に制御する冷凍装置において、
夜間の負荷軽減によって1台の冷却W (2a)だけ長
時間運転する場合がある。
In a refrigeration system equipped with (2b) and (2c), in order to control the temperature of each showcase (v1), each showcase is equipped with a warm regulator and a liquid line solenoid valve that controls the flow of refrigerant. , the temperature of each showcase was controlled.In this case, for example, there were 8 showcases, and 8
In a refrigeration system that individually controls each showcase,
Due to load reduction at night, only one cooling unit W (2a) may be operated for a long time.

この時には負荷が軽減されているため、冷凍装置は冷却
′a(2a)の蒸発温度が下った状態で運転することに
なり、圧縮機(lb)、 (lc)の吸入管中の冷媒ガ
ス流速が減少する。冷媒ガス流速が減少すると冷媒ガス
と分離した潤滑油は、圧縮機(rb)、 (lc)への
戻りが悪くなり、圧縮機(lb)、 (lc)内の潤滑
油が減少して圧縮機軸受等の摺動部が焼損する恐れがあ
った。
At this time, the load has been reduced, so the refrigeration system operates with the evaporation temperature of cooling 'a (2a) lowered, and the refrigerant gas flow rate in the suction pipes of the compressors (lb) and (lc) increases. decreases. When the refrigerant gas flow rate decreases, the lubricating oil separated from the refrigerant gas does not return well to the compressor (RB), (LC), and the lubricating oil in the compressor (LB), (LC) decreases, causing the compressor to There was a risk that sliding parts such as bearings would burn out.

また、上記冷却i! (2a)の1台を運転する負荷軽
減を予想して圧縮機(tb)、 (xc)の吸入管径を
小さくして冷媒ガス流速を確保するようにすると、冷却
器(2a)−(2b)、 (2c)  8台を運転する
大負荷時には、冷媒ガス流速が非常務こ遠くなり、圧縮
機(lb)、(IC)の吸入管での圧力損失が極めて大
きくなる。このため、圧縮機(lb)、 (lc)の圧
縮能力が減少し、冷凍装置の冷凍能力が減少する欠点が
あった。
In addition, the above cooling i! If the suction pipe diameter of the compressors (tb) and (xc) is made smaller to ensure the refrigerant gas flow rate in anticipation of a reduction in the operating load on one of the coolers (2a) to (2b), ), (2c) When eight units are operated under heavy load, the refrigerant gas flow rate becomes extremely low, and the pressure loss in the suction pipes of the compressors (lb) and (IC) becomes extremely large. For this reason, the compression capacity of the compressors (lb) and (lc) is reduced, and the refrigeration capacity of the refrigeration system is reduced.

このような欠点を除去するためCζ、上述のように冷凍
サイク・しの低圧側の冷媒圧力に応じて、冷凍装置の容
量を変化させ、吸入側の蒸発温度を一定に保つ、いわゆ
る容量制御運転を行ない、負荷の低減暑こ伴なう吸入側
圧力の低下で圧@機(lb)。
In order to eliminate such drawbacks, Cζ, as mentioned above, changes the capacity of the refrigeration system according to the refrigerant pressure on the low-pressure side of the refrigeration cycle and maintains the evaporation temperature on the suction side constant, so-called capacity control operation. By doing so, the load is reduced and the pressure on the suction side decreases due to the heat (lb).

(1c)のうち、1台のみが運転する時間を圧縮機単独
運転時間積算部(7)で積算し、その値が所定時間に達
すると、圧縮機容量設定部(6)により、上記圧縮機(
lb)、 (lc)を2台とも一定時間停止させると共
にt記圧縮機単独運転時間留算部(7)の演算時間をO
とし、かつ定格容態が異ると化2台の圧wMl!!1(
lb)、(IC)の並行運転より運転を開始するよう艮
なっている。すなわち、圧縮機(lb)、 (lc)の
一定時闇の停止により、高圧側の液冷媒が低圧側に戻り
、低圧側の冷媒圧力を上昇させ、圧縮機(lb)。
Of (1c), the time during which only one compressor operates is accumulated by the compressor independent operation time accumulating unit (7), and when the value reaches a predetermined time, the compressor capacity setting unit (6) (
Both lb) and (lc) are stopped for a certain period of time, and the calculation time of the compressor independent operation time calculation section (7) is reduced to O.
And if the rated condition is different, the pressure of two units wMl! ! 1(
lb) and (IC) are to be operated in parallel. That is, when the compressors (lb) and (lc) are stopped for a certain period of time, the liquid refrigerant on the high pressure side returns to the low pressure side, increasing the refrigerant pressure on the low pressure side, and the compressor (lb).

(IC)の運転再開により吸入管中の冷媒ガスの流速が
増加して、低負荷運転時に吸入管中■ζ溜った潤滑油を
圧縮機(lb)、(lc)に−気に戻すことによって、
上記圧縮機(tb)、 (lc)内側滑油の減少が防が
れる。
When the (IC) restarts operation, the flow rate of refrigerant gas in the suction pipe increases, and the lubricating oil accumulated in the suction pipe during low-load operation is returned to the compressors (lb) and (lc). ,
A decrease in the oil inside the compressors (tb) and (lc) is prevented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍装置は以上のように構成されているので、2
台の圧縮機のうち1台のみが運転している時間が所定時
間に達すると、2台の圧@機が停止し、被冷却物の鮮度
が保持されないという欠点があった。
Since the conventional refrigeration equipment is configured as described above, 2
When only one of the compressors is operating for a predetermined time, the two compressors stop and the freshness of the cooled material is not maintained.

この発明は、E記のような従来の問題点を解消するため
になされたもので、圧縮機を停止させる時間をできるだ
け短くして、被冷却物の鮮度を保持するとともに、吸入
管中に溜った潤滑油を効果的に圧縮機に戻すようにした
冷凍装置を提供することを目的とする。
This invention was made in order to solve the conventional problems as described in E. The time during which the compressor is stopped is kept as short as possible to maintain the freshness of the material to be cooled, and also to prevent the accumulation of water in the suction pipe. An object of the present invention is to provide a refrigeration system that effectively returns lubricating oil to a compressor.

〔問題を解決するための手段〕[Means to solve the problem]

この発明においては、冷凍サイクルの低圧側における冷
媒圧力を圧力検出部で検出して圧力検出信号を発生させ
、収束させようとする冷媒圧力を圧力設定部で設定する
とともに、上記圧力検出信号が収束させようとする冷媒
圧力以上か、以下かを判定し、冷凍機の容量制御を行う
ための容量制御用出力信号を発生する制御部と、上記圧
w3機が1台のみ運転している時間を積算する圧縮機単
独運転時間積算部と、辷配圧縮機単独運転時間積算部の
積算時間が所定時間に達すると、上記圧縮機を2台とも
一定時間停止させると共に辷配圧縮機単独運転時間積算
部の積算時間を0とし、かつ上記2台の圧縮機の運転を
開始する圧縮機容量設定部と、上記2台の圧縮機の連続
並行運転時間が所定時間に達すると、辷配圧縮機単独運
転時間積算部の積算時間を0とする圧縮機単独運転時間
補正部とを設けることにより冷凍装置面を構成して上記
目的を達成するものである。
In this invention, the pressure detection section detects the refrigerant pressure on the low pressure side of the refrigeration cycle to generate a pressure detection signal, and the pressure setting section sets the refrigerant pressure to be converged. A control unit that determines whether the refrigerant pressure is above or below the desired refrigerant pressure and generates a capacity control output signal to control the capacity of the refrigerator, and a control unit that determines whether the refrigerant pressure is above or below the desired refrigerant pressure, and a control unit that generates a capacity control output signal to control the capacity of the refrigerator, and a control unit that determines whether the refrigerant pressure is above or below the desired refrigerant pressure. When the cumulative time of the compressor independent operation time accumulating section and the parallel compressor independent operation time accumulating section reach a predetermined time, both compressors are stopped for a certain period of time and the parallel compressor independent operation time is integrated. The compressor capacity setting section sets the integrated time of the section to 0 and starts operation of the two compressors, and when the continuous parallel operation time of the two compressors reaches a predetermined time, the parallel compressor is set to 0. The above object is achieved by configuring the refrigeration system by providing a compressor independent operation time correction section that sets the accumulated time of the operation time accumulation section to 0.

〔作 用〕[For production]

この発明における冷凍装置は、と記2台の圧縮機の連続
並行運転時間が所定時間に達すると、圧縮機単独運転時
間補正部の機能により、辷配圧縮機単独運転時間積算部
の積算時間が0になるので、圧縮機を停止させる時間を
できるだけ短くすることができ、被冷却物の鮮度が保持
されるとともに、吸入管中に溜った潤滑油を効果的に圧
縮機に戻すことができる。
In the refrigeration system according to the present invention, when the continuous parallel operation time of the two compressors reaches a predetermined time, the function of the compressor independent operation time correction section causes the integrated compressor independent operation time integration section to adjust the accumulated time. 0, the time during which the compressor is stopped can be made as short as possible, the freshness of the object to be cooled can be maintained, and the lubricating oil accumulated in the suction pipe can be effectively returned to the compressor.

〔実施例〕〔Example〕

第1図は、この発明における冷凍装置の一実施例を示す
構成図であって、第2図と同一部分は同一符号を用いて
示しである8図において、(8)は圧縮機単独運転時間
補正部であり、定格容量が異る上記2台の圧縮機(1b
)、 (lc)の並行運転が所定時間に達すると、辷配
圧縮機単独運転時間槓算部(7)の積算時間を0にする
機能を有している。
FIG. 1 is a configuration diagram showing one embodiment of the refrigeration system of the present invention, and the same parts as in FIG. 2 are indicated using the same symbols. In FIG. It is a correction section, and the above two compressors (1b
) and (lc) reach a predetermined time, the cumulative time of the parallel compressor individual operation time calculating section (7) is set to zero.

次に動作について説明する。h配圧縮機単独運転時間積
鼻部(7) テを配圧fi(A’、 (lb)、 (l
c)のうち、l1台のみが運転している時間を禎算し、
例えば、48分になると圧縮機容量設定部(6)により
、上記圧縮m (tb)、 (IC)を2台とも一定時
間、例えば、8分間停止させると共にL配圧縮機単独述
転時間槓算部(7)の積算時間(48分)を0とし、か
つ定格容量が異る上記2台の圧縮機(lb)、 (lc
)の並行運転より運転を開始するようになっている。と
ころで、L記LE縮礪単独運転時間補正部(8)により
、定格容量が異るt記2台の圧縮機(lb)、 (lc
)の並行連続運転時間を積算し、所定時間、例えば、1
o分になったとき、を配圧縮機単独運転時間積鼻部(7
)の積算時間が48分になっていても、辷配圧縮機単独
運転時間積算部(7)の積算時間を0に戻して、0より
積算するようになっている。
Next, the operation will be explained. h Distribution compressor independent operation time product nose part (7) Te is pressure distribution fi (A', (lb), (l
Of c), calculate the time when only one vehicle is operating,
For example, at 48 minutes, the compressor capacity setting unit (6) stops both of the compressors m (tb) and (IC) for a certain period of time, for example, 8 minutes, and calculates the individual reversal time of the L compressor. The cumulative time (48 minutes) of part (7) is set to 0, and the above two compressors (lb) and (lc) have different rated capacities.
) is started in parallel operation. By the way, the LE compression independent operation time correction unit (8) in L indicates that two compressors (lb), (lc
) for a predetermined period of time, e.g. 1
When o minutes have passed, the compressor independent operation time product nose part (7
) even if the cumulative time is 48 minutes, the cumulative time of the sliding compressor independent operation time cumulative part (7) is reset to 0 and the cumulative time is calculated from 0.

したがって、圧縮(]を停止させる時間をできるだけ短
くシ工、被冷却物の鮮度を保持するとともに、圧縮b’
A (lb)−(lc) Q)一定時間の停止ニよす、
高圧側の液冷媒が低圧側に戻り、低圧側の冷媒圧力を上
昇させ、圧@機(lb)、 (lc)の運転再開により
吸入管中の冷媒ガスの流速が増加して、低負荷運転時に
吸入管中に溜った潤滑油を圧wJ機(lb)。
Therefore, the time for stopping compression () is kept as short as possible, preserving the freshness of the material to be cooled, and compressing b'
A (lb) - (lc) Q) Stoppage for a certain period of time,
The liquid refrigerant on the high-pressure side returns to the low-pressure side, increasing the refrigerant pressure on the low-pressure side, and when the pressure @ machine (lb) and (lc) restart operation, the flow rate of refrigerant gas in the suction pipe increases, resulting in low-load operation. At the same time, the lubricating oil that has accumulated in the suction pipe is removed using a pressure wj machine (lb).

(lc)に−気に戻すことによって、E配圧縮機(lb
)。
(lc) - by returning air to the E-distributor compressor (lb
).

(lc)内温)R油の減少を防止できる。(lc) Internal temperature) Reduction of R oil can be prevented.

また、L記実施例では2台の圧縮機により、容鼠制陣を
行っているが、インバータの出力周波数を変え上記圧縮
機の容量を開開する場合においても、冷媒中に混じった
油を効果的に圧縮機に戻すために、上記圧縮機の出力周
波数が所定値、例えば408Z以下で運転される時間を
積算して、その値が所定値、例えば48分に達すると、
L配圧縮機を一定時間、例えば、8分間停止させた後、
2台の圧縮機の並行運転に入る。そして連続並行運転時
間が、所定時間、例えば10分になったとき、上記圧縮
機の低周波数運転時間漬算部の積算時間を0とすること
により同様な効果が得られる。
In addition, in Example L, two compressors are used to control the capacity, but even when changing the output frequency of the inverter to open up the capacity of the compressor, oil mixed in the refrigerant can be removed. In order to effectively return the compressor to the compressor, the time during which the output frequency of the compressor is operated at a predetermined value, for example, 408Z or less, is accumulated, and when the value reaches a predetermined value, for example, 48 minutes,
After stopping the L compressor for a certain period of time, for example, 8 minutes,
Two compressors start running in parallel. When the continuous parallel operation time reaches a predetermined time, for example, 10 minutes, the same effect can be obtained by setting the cumulative time of the low frequency operation time calculation section of the compressor to 0.

〔発明の効果〕〔Effect of the invention〕

以E説明したように、この発明における冷凍装置は、冷
凍サイクルの低圧側における冷媒圧力を圧力検出部で検
出して圧力検出信号を発生させ、収束させようとする冷
媒圧力設定部で設定するとともに、上記圧力検出信号が
収束させようとする冷媒圧力以とか、以下かを判定し、
冷凍機の容量制御を行うための容量制御用出力@号を発
生する制御部と、上記圧縮機が1台のみ運転している時
間を積算する圧縮機単独運転時間積算部と、辷配圧縮機
単独運転時間積算部が所定時間に達すると、上記圧縮機
を2台とも一定時間停止させると共に辷配圧縮機単独運
転時間積算部の積算時間を0とし、かつE記2台の圧縮
機の運転を開始する圧縮機容量設定部と、上記2台の圧
縮機の連続並行運転時間が所定時間に達すると、と配圧
縮機単独運転時間積算部の積算時間を0とする圧縮機単
独運転時間補正部を備えているので、圧縮機を停止させ
る時間をできるだけ短くすることができ、被冷却物の鮮
度が保持されるとともに、吸入管中1こ溜った潤滑油を
効果的に圧縮機に戻すことができる。
As explained hereafter, in the refrigeration system of the present invention, the refrigerant pressure on the low pressure side of the refrigeration cycle is detected by the pressure detection section, a pressure detection signal is generated, and the refrigerant pressure is set by the refrigerant pressure setting section for convergence. , determine whether the pressure detection signal is above or below the refrigerant pressure to be converged;
A control unit that generates a capacity control output @ number for controlling the capacity of the refrigerator, a compressor independent operation time accumulation unit that accumulates the time during which only one compressor is operating, and a side compressor. When the independent operation time accumulator reaches a predetermined time, both compressors are stopped for a certain period of time, and the accumulated time of the parallel compressor independent operation time accumulator is set to 0, and the two compressors listed in E are operated. A compressor capacity setting unit starts the operation, and when the continuous parallel operation time of the two compressors reaches a predetermined time, a compressor independent operation time correction unit sets the accumulated time of the compressor independent operation time accumulation unit to 0. Since the compressor is equipped with a section, the time during which the compressor is stopped can be kept as short as possible, the freshness of the cooled material can be maintained, and the lubricating oil that has accumulated in the suction pipe can be effectively returned to the compressor. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1Nはこの発明1こよる冷凍装置の一実施例を示す構
成図、第2図は従来の冷凍装置を示す構成図、第3図は
低圧側の冷媒圧力の領域を示す図、第4図は第2図の冷
凍装置の容量制御運転の説明図である。 図において、(Ia)は凝縮器、(1b)、(lc)は
圧縮機、(2a)〜(2c)は冷却器、(3)は圧力検
出部、(4)は圧力設定部、(5)は制御部、(6)は
圧縮機容量設定部、(7)は圧縮機単独運転時間積算部
、(8)は圧縮機単独運転時間補正部である。 なお、図中、同一符号は同一または相当部分を示す。
1N is a block diagram showing an embodiment of the refrigeration system according to the present invention, FIG. 2 is a block diagram showing a conventional refrigeration system, FIG. 3 is a diagram showing the refrigerant pressure region on the low pressure side, and FIG. 2 is an explanatory diagram of capacity control operation of the refrigeration system in FIG. 2. FIG. In the figure, (Ia) is a condenser, (1b) and (lc) are compressors, (2a) to (2c) are coolers, (3) is a pressure detection section, (4) is a pressure setting section, and (5) is a pressure detection section. ) is a control section, (6) is a compressor capacity setting section, (7) is a compressor independent operation time integration section, and (8) is a compressor independent operation time correction section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] それぞれ並列に接続された吸入管及び吐出管を有する2
台の圧縮機、これらの圧縮機から吐出される冷媒を凝縮
液化する凝縮器、及びこの凝縮器から送出される冷媒を
蒸発気化する冷却器が閉回路を形成するように順次配管
接続された冷凍回路、この冷凍回路の低圧側の冷媒圧力
を検出し、この冷媒圧力に応じた圧力検出信号を発生す
る圧力検出部、収束させようとする上記低圧側の冷媒圧
力の収束圧力値を設定する圧力設定部、上記圧力検出信
号が上記収束圧力値以上か以下かを判定し、その判定結
果に基づき、上記冷凍機の容量制御を行うための容量制
御用出力信号を発生する制御部、上記圧縮機が1台のみ
運転している時間を積算する圧縮機単独運転時間積算部
、上記圧縮機単独運転時間積算部の積算時間が所定時間
に達すると、上記圧縮機を2台とも一定時間停止させる
と共に上記圧縮機単独運転時間積算部の積算時間を0と
し、かつ上記2台の圧縮機の運転を開始する圧縮機容量
設定部、及び上記2台の圧縮機の連続並行運転時間が所
定時間に達すると、上記圧縮機単独運転時間積算部の積
算時間を0とする圧縮機単独運転時間補正部とを備えた
ことを特徴とする冷凍装置。
2, each having a suction pipe and a discharge pipe connected in parallel;
A refrigeration system in which a single compressor, a condenser that condenses and liquefies the refrigerant discharged from these compressors, and a cooler that evaporates and vaporizes the refrigerant sent out from this condenser are connected by piping in order to form a closed circuit. circuit, a pressure detection unit that detects the refrigerant pressure on the low pressure side of this refrigeration circuit and generates a pressure detection signal according to this refrigerant pressure, and a pressure that sets the convergence pressure value of the refrigerant pressure on the low pressure side that is to be converged. a setting unit, a control unit that determines whether the pressure detection signal is greater than or equal to the convergence pressure value and generates a capacity control output signal for controlling the capacity of the refrigerator based on the determination result; and the compressor. When the cumulative time of the compressor independent operation time accumulator reaches a predetermined time, both of the compressors are stopped for a certain period of time, and A compressor capacity setting unit that sets the cumulative time of the compressor independent operation time integration unit to 0 and starts operation of the two compressors, and a continuous parallel operation time of the two compressors reaches a predetermined time. A refrigeration system comprising: a compressor independent operation time correction section that sets the accumulated time of the compressor independent operation time accumulation section to zero.
JP2072287A 1987-01-30 1987-01-30 Refrigerator Granted JPS63189744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072287A JPS63189744A (en) 1987-01-30 1987-01-30 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072287A JPS63189744A (en) 1987-01-30 1987-01-30 Refrigerator

Publications (2)

Publication Number Publication Date
JPS63189744A true JPS63189744A (en) 1988-08-05
JPH0573982B2 JPH0573982B2 (en) 1993-10-15

Family

ID=12035061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072287A Granted JPS63189744A (en) 1987-01-30 1987-01-30 Refrigerator

Country Status (1)

Country Link
JP (1) JPS63189744A (en)

Also Published As

Publication number Publication date
JPH0573982B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US5797729A (en) Controlling multiple variable speed compressors
RU2362096C2 (en) Withdrawal of instantly releasing gas from cooling system header
US5123256A (en) Method of compressor staging for a multi-compressor refrigeration system
US6925822B2 (en) Oil return control in refrigerant system
JPS63189744A (en) Refrigerator
JP2018059666A (en) Controller and refrigerant circuit system and control method
JP2787882B2 (en) Heat storage type cooling device
JPS63189745A (en) Refrigerator
JPS629153A (en) Refrigerator
JPH01184368A (en) Freezing device
JP2008057922A (en) Refrigerating device
WO2022224304A1 (en) Heat source unit
JPH01262387A (en) Parallel compression type refrigerator
JP4258030B2 (en) Refrigerant circulation device
JPS63189755A (en) Refrigerator
JPH01262386A (en) Parallel compression type refrigerator
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JP4767134B2 (en) Refrigeration equipment
JPH0289962A (en) Control of number of revolution of blower in refrigerating machine of air-cooling type
JPH0563701B2 (en)
JPH0227176A (en) Parallel compression freezer
JPS6284261A (en) Refrigerator
JPS63108161A (en) Refrigerator
JPS6277553A (en) Refrigerator
WO2019178641A1 (en) An air-conditioning integrated parallel compression transcritical refrigeration rack system and control methods thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term