JPS63189665A - Vapor fuel processing device for engine - Google Patents

Vapor fuel processing device for engine

Info

Publication number
JPS63189665A
JPS63189665A JP2325487A JP2325487A JPS63189665A JP S63189665 A JPS63189665 A JP S63189665A JP 2325487 A JP2325487 A JP 2325487A JP 2325487 A JP2325487 A JP 2325487A JP S63189665 A JPS63189665 A JP S63189665A
Authority
JP
Japan
Prior art keywords
fuel
supply
engine
air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2325487A
Other languages
Japanese (ja)
Other versions
JPH0723706B2 (en
Inventor
Toshimitsu Fujishima
藤嶋 利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2325487A priority Critical patent/JPH0723706B2/en
Publication of JPS63189665A publication Critical patent/JPS63189665A/en
Publication of JPH0723706B2 publication Critical patent/JPH0723706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a torque shock, by temporarily stopping the supply of vaporizing fuel in a specific operation region and limiting the supply of the vaporizing fuel when an operative condition small changes in the time of restarting the supply of the vaporizing fuel. CONSTITUTION:A control unit 24, which calculates a basic fuel injection amount being based on detection values of a hot wire type air flow meter 7 and an engine speed sensor built in a distributor 15, performs a feedback control of air-fuel ratio on the basis of a detection value of an O2 sensor 12 in a predetermined operation region. In a steady operation condition with the basic fuel injection and engine speed in a predetermined range, an engine, which switches a selector control valve 23 connecting a purge passage 22 from the side of a canister 19 to the side of an atmospheric passage 25 and cutting the supply of vaporizing fuel, performs a study control of the air-fuel ratio. When the supply of the vaporizing fuel is restarted with the engine in a transfer from its steady operation to acceleration or deceleration operation, a supply amount of the vaporizing fuel is limited if a throttle opening provides a small change rate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蒸発燃料を吸気系に供給するようにしたエン
ジンの蒸発燃料処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an evaporated fuel processing device for an engine that supplies evaporated fuel to an intake system.

(従来技術) 自動車用エンジンは、通常、燃料タンクや気化器のフロ
ート室に発生する蒸発燃料が大気中に漏洩するのを防止
するため、蒸発燃料を活性炭などの吸着剤を収容したキ
ャニスタ内に一旦吸着捕集しエンジン運転時の吸入負圧
で離脱(パージ)させて吸気系に導入するようにした蒸
発燃料処理装置を備えている。
(Prior art) Automotive engines normally store evaporated fuel in a canister containing an adsorbent such as activated carbon to prevent the evaporated fuel generated in the fuel tank or the float chamber of the carburetor from leaking into the atmosphere. It is equipped with an evaporated fuel processing device that once adsorbs and collects the fuel, then removes it (purged) using negative intake pressure during engine operation and introduces it into the intake system.

このような蒸発燃料処理装置は、普通、■Cホールの負
圧に応動する制御弁によって、スロットル弁が若干量い
たときにパージ通路を開き蒸発燃料を離脱吸入させるが
、さらに、アイドル時以外にも一部特定の運転状態で蒸
発燃料の吸気系への供給を停止させることがある。たと
えば、学習制御を行なうようなフィードバック空燃比制
御装置を備えたエンジンにこのような蒸発燃料処理装置
を用いた場合に、吸気系に供給される蒸発燃料の量には
変動があって空燃比に及ぼす影響が一定しないから、誤
学習を防ぐために、学習時には蒸発燃料の供給を一時停
止させる必要がある。また、同じくフィードバック制御
装置を備えたものにおいて、Otセンサが断線やショー
トによってり−ン側あるいはリッチ側に張り付くといっ
た異常状態を検知する際に、異常がなくても蒸発燃料が
多量に供給されたためO,センサの張り付き現象を生じ
たというケースもあるので、蒸発燃料を一時カットして
やることが必要である。そういった、ある特定の領域で
蒸発燃料を切るようにした場合には、蒸発燃料の供給が
再開されたときに急に多量の蒸発燃料が燃焼室に入って
くることになるので、空燃比が大きく変わり、トルクが
変動する。
Such evaporative fuel processing devices normally open the purge passage when the throttle valve is slightly depressed by a control valve that responds to the negative pressure in the C hole, allowing evaporative fuel to be drawn in and released, but in addition, it is also In some cases, the supply of evaporated fuel to the intake system may be stopped under certain operating conditions. For example, when such an evaporative fuel processing device is used in an engine equipped with a feedback air-fuel ratio control device that performs learning control, the amount of evaporative fuel supplied to the intake system fluctuates, causing the air-fuel ratio to change. Since the influence is not constant, it is necessary to temporarily stop the supply of evaporated fuel during learning to prevent erroneous learning. In addition, in a similar device equipped with a feedback control device, when the Ot sensor detects an abnormal condition such as sticking to the lean side or rich side due to a disconnection or short circuit, it is possible that a large amount of evaporated fuel has been supplied even if there is no abnormality. O: There are cases where the sensor sticks, so it is necessary to temporarily cut off the evaporated fuel. If the vaporized fuel is cut off in such a specific area, a large amount of vaporized fuel will suddenly enter the combustion chamber when the vaporized fuel supply is resumed, resulting in a large air-fuel ratio. and the torque fluctuates.

たとえばそのような状態が丁度スロットルの操作時と重
なった場合は運転者が気付くことは少いのでさほど問題
が無いが、スロットルがあまり動かない定常時に蒸発燃
料の供給が再開されて出力が変動すると、そのような定
常時には運転者は出力変動を予測していないわけで、ド
ライブフィーリングが悪いという問題がある。
For example, if such a situation coincides with the throttle operation, the driver will hardly notice and there is no problem, but if the evaporative fuel supply is resumed during steady state when the throttle is not moving much, the output will fluctuate. , In such a steady state, the driver does not anticipate the output fluctuations, so there is a problem that the driving feeling is poor.

ところで、多量の蒸発燃料を一度に吸気系に供給すると
空燃比が変動するなどの不都合を生じるので、それを防
ぐため、蒸発燃料の供給を徐々に行なうようにしたもの
は知られている(特開昭58−91357号公報参照)
By the way, if a large amount of evaporated fuel is supplied to the intake system at once, problems such as fluctuations in the air-fuel ratio will occur, so in order to prevent this, it is known that the evaporated fuel is gradually supplied (especially (Refer to Publication No. 58-91357)
.

しかし、このような従来の技術は、スロットル開度等運
転状態の変化の程度によって制御量を変えるというもの
ではないから、定常時に特有な上記問題点を解決するた
めの手段とはなり難い。吸着された蒸発燃料は、キャニ
スタが飽和しないよう早くパージして供給するのが本来
望ましいのであって、ドライブフィーリングの面から供
給を制限するにしても、そのような制限は必要な時に限
って行なわれなくてはならないからである。
However, such conventional techniques do not change the control amount depending on the degree of change in operating conditions such as throttle opening, and therefore are difficult to serve as a means for solving the above-mentioned problems specific to steady state conditions. It is originally desirable to purge and supply adsorbed evaporated fuel quickly so that the canister does not become saturated, and even if supply is restricted from the perspective of drive feeling, such restrictions should only be applied when necessary. Because it must be done.

(発明の目的) 本発明は、上記のような、従来技術によっては解決でき
ない問題点に鑑みてなされたものであって、吸気系への
蒸発燃料の供給再開時にトルクシタツクを招くことのな
いエンジンの蒸発燃料処理装置を提供することを目的と
する。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems that cannot be solved by the conventional techniques, and is an object of the present invention to provide an engine that does not cause torque shift when restarting the supply of evaporated fuel to the intake system. The purpose of the present invention is to provide an evaporative fuel processing device.

(発明の構成) 本発明の全体的な構成は第1図に示すとおりである。す
なわち、本発明に係るエンジンの蒸発燃料処理装置は、
エンジンの運転状態を検出する運転状態検出手段と、蒸
発燃料をエンジンの吸気系に供給する蒸発燃料供給装置
と、該蒸発燃料供給装置をエンジンの運転状態に応じて
作動させる蒸発燃料制御手段と、一時的に蒸発燃料の供
給を停止すべき特定の領域を検出して停止信号を出力す
る停止領域検出手段と、蒸発燃料の供給再開時における
エンジン運転状態の変化率を検出する再開時運転状態変
化率検出手段と、供給再開時の運転状態の変化が小さい
ときに蒸発燃料の供給を制限する供給制限手段とを備え
ている。
(Configuration of the Invention) The overall configuration of the present invention is as shown in FIG. That is, the evaporative fuel processing device for an engine according to the present invention has the following features:
an operating state detection means for detecting the operating state of the engine; an evaporative fuel supply device for supplying evaporative fuel to the intake system of the engine; and an evaporative fuel control means for operating the evaporative fuel supply device according to the operating state of the engine; stop area detection means that detects a specific area where the supply of vaporized fuel should be temporarily stopped and outputs a stop signal; and a change in operating state upon restart that detects the rate of change in the engine operating state when the supply of vaporized fuel is resumed. and a supply restriction means for restricting the supply of evaporated fuel when the change in the operating state at the time of resumption of supply is small.

(作用) 燃料タンクや気化器のフロート室に完工する蒸発燃料は
蒸発燃料供給装置内に一旦捕集される。
(Function) The evaporated fuel that is completed in the fuel tank or the float chamber of the vaporizer is once collected in the evaporated fuel supply device.

そして、エンジンが作動し所定の運転状態に達すると、
捕集された蒸発燃料が吸気系に供給される。
Then, when the engine starts and reaches the specified operating condition,
The collected evaporated fuel is supplied to the intake system.

アイドル時やエンジン温度が低い時など、蒸発燃料の供
給が燃焼の安定性を損う恐れがある運転領域では蒸発燃
料の供給は行なわない。また、フィードバック空燃比制
御系において学習が行なわれている間とか、0.センサ
が張り付いた場合など、特定の領域であることが検出さ
れると、蒸発燃料の供給は一時的に停止される。そして
、そのような停止領域を過ぎれば供給が再開されるので
あるが、このときのスロットル開度の変化など運転状態
の変化を見て、その変化率が大きいときはそのまま蒸発
燃料の供給を再開し、変化率が小さいとき即ち定常時に
は供給を停止したままにするかあるいは徐々に供給する
ように制御される。つまり、運転状態の変化が小さい時
には蒸発燃料の再開を制限して空燃比の変動によるトル
クショックを抑えている。
Evaporative fuel is not supplied in operating ranges where supplying evaporative fuel may impair combustion stability, such as when the engine is idling or when the engine temperature is low. Also, while learning is being performed in the feedback air-fuel ratio control system, 0. If a specific area is detected, such as when a sensor is stuck, the supply of evaporated fuel is temporarily stopped. Supply is resumed once such a stop region is passed, but changes in operating conditions such as changes in throttle opening are observed at this time, and if the rate of change is large, the supply of evaporated fuel is resumed. However, when the rate of change is small, that is, when it is steady, the supply is controlled to remain stopped or to be supplied gradually. In other words, when the change in operating conditions is small, resumption of vaporized fuel is restricted to suppress torque shock due to fluctuations in the air-fuel ratio.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図は、空燃比の学習制御を行なうエンジンに適用し
た本発明の実施例を示している。
FIG. 2 shows an embodiment of the present invention applied to an engine that performs air-fuel ratio learning control.

同図に示すように、エンジン1の吸気通路2には、スロ
ットル弁3の下流側で吸気弁4に近接した位置に燃料噴
射弁5が設けられている。そしてスロットル弁3の上流
側吸気通路には、エアクリーナ6のすぐ下流にホットワ
イヤ式のエアフローセンサ7が設けられ、また、スロッ
トル弁3の下流には吸気温度を検出する吸気温センサ8
が設けられている。さらに、スロットル弁開度を検出す
る開度センサ9がスロットル弁に付設されている。
As shown in the figure, a fuel injection valve 5 is provided in an intake passage 2 of an engine 1 at a position downstream of a throttle valve 3 and close to an intake valve 4. In the intake passage on the upstream side of the throttle valve 3, a hot wire type air flow sensor 7 is provided immediately downstream of the air cleaner 6, and an intake temperature sensor 8 that detects the intake air temperature is provided downstream of the throttle valve 3.
is provided. Further, an opening sensor 9 for detecting the throttle valve opening is attached to the throttle valve.

一方、排気弁lOから排出された排気ガスを通す排気通
路11には、排気ガス中の酸素濃度を検出するOtセン
サ12が設けられている。また、イグナイタ13に接続
され点火プラグ14に点火信、号を送る配電器15には
回転数センサが内蔵されている。エンジン1のシリンダ
ブロック16には、冷却水の温度を検出する水温センサ
17が取り付けられている。また、エンジンlは、燃料
タンク18内に発生する蒸発燃料を吸着処理するキャニ
スタ19を備えている。キャニスタ19は、導入通路2
0を通って燃料タンク18から導入される蒸発燃料を吸
着し、負圧制御弁21の開放時にパージ通路22を介し
て吸気通路2内に供給するよう構成されている。負圧制
御弁21は、スロットル弁3直上流のVC負圧によって
開閉するものであって、スロットル弁3が閉じている時
はパージ通路22への出口を閉じ、スロットル弁3が開
いてVCホールに負圧が作用するとパージ通路22を開
いて吸着燃料をパージする。さらに、このパージ通路2
2には、ソレノイド式の切換制御弁23が介設されてい
る。切換制御弁23は、コントロールユニット24から
の制御信号によって、吸気通路2に開口するパージ通路
22をキャニスタ側あるいは大気側に切り換える。大気
側に切り換わったときは、蒸発燃料に代わって、大気通
路25からフィルタ26で濾過されたエアが吸気通路2
に入る。コントロールユニット24は、切換制御弁23
への制御信号のデユーティ−比を変えることによって蒸
発燃料の供給をリニアーにコントロールする。また、コ
ントロールユニット24は、各センサの出力信号に基づ
いて、燃料噴射条件および点火時期を制御している。燃
料噴射の制御は、フィードバック制御信号に基づいて学
習値を作成しそれを次のフィードバック制御信号として
用いるいわゆる学習制御を行なって目標空燃比に制御す
るものである。
On the other hand, an Ot sensor 12 for detecting the oxygen concentration in the exhaust gas is provided in the exhaust passage 11 through which the exhaust gas discharged from the exhaust valve IO passes. Further, a power distributor 15 connected to the igniter 13 and sending an ignition signal to the spark plug 14 has a built-in rotation speed sensor. A water temperature sensor 17 is attached to the cylinder block 16 of the engine 1 to detect the temperature of cooling water. The engine l also includes a canister 19 that adsorbs evaporated fuel generated within the fuel tank 18. The canister 19 is connected to the introduction passage 2.
The vaporized fuel introduced from the fuel tank 18 through the purge passage 22 is adsorbed and supplied into the intake passage 2 through the purge passage 22 when the negative pressure control valve 21 is opened. The negative pressure control valve 21 is opened and closed by the VC negative pressure immediately upstream of the throttle valve 3. When the throttle valve 3 is closed, the outlet to the purge passage 22 is closed, and when the throttle valve 3 is opened, the VC hole is closed. When negative pressure acts on the purge passage 22, the adsorbed fuel is purged. Furthermore, this purge passage 2
2 is provided with a solenoid type switching control valve 23. The switching control valve 23 switches the purge passage 22 that opens into the intake passage 2 to the canister side or the atmosphere side in response to a control signal from the control unit 24. When switching to the atmosphere side, air filtered by the filter 26 from the atmosphere passage 25 flows into the intake passage 2 instead of the evaporated fuel.
to go into. The control unit 24 includes a switching control valve 23
The supply of vaporized fuel is linearly controlled by changing the duty ratio of the control signal. Furthermore, the control unit 24 controls fuel injection conditions and ignition timing based on output signals from each sensor. Fuel injection control involves creating a learning value based on a feedback control signal and performing so-called learning control, which is used as the next feedback control signal, to control the air-fuel ratio to a target air-fuel ratio.

つぎに、この実施例の制御を実行するフローチャートを
第3図によって説明する。図中S1〜S 13は各ステ
ップを示すものである。
Next, a flowchart for executing control in this embodiment will be explained with reference to FIG. In the figure, S1 to S13 indicate each step.

まず、Slで初期化を行なった後、S、で吸入空気量Q
a、エンジン回転数Ne等、各種センサの信号を読み込
み、S、で吸入空気量Qaとエンジン回転数Neとに基
づいて基本噴射パルス幅Tpを式Tp= (Qa/Ne
) ・K (Kは定数)より演算する。ここで、(Q 
a / N e )は吸気充填量つまりエンジン負荷に
相当するので、Tpはエンジン負荷に対応する。また、
S4でそのときのエンジン運転状態に応じてこの基本噴
射パルス幅Tpを補正する水温補正係数C11,吸気温
補正係数CAIRおよび領域補正係数CR(フィードバ
ックゾーンではO)を読み込み、次いでエンジン!が空
燃比をフィードバック制御すべきゾーンにあるか否かを
判断すべく、S、でエンジン負荷Tpが所定値T I)
 r以下か否かを、S6でエンジン回転数Neが所定値
N e +以下か否かをそれぞれ判定し、この判定のい
ずれかがNoのときつまりTp>Tp、またはNe>N
e+であるときにはフィードバックゾーンでないと判断
して、S7において基本噴射パルス幅Tpを補正するフ
ィードバック補正係数Craを1にして、直ちにSts
に進む。
First, after initializing with Sl, the intake air amount Q with S
a, reads the signals of various sensors such as engine speed Ne, and calculates the basic injection pulse width Tp based on the intake air amount Qa and engine speed Ne using the formula Tp= (Qa/Ne
)・K (K is a constant) Here, (Q
Since a/N e ) corresponds to the intake air filling amount, that is, the engine load, Tp corresponds to the engine load. Also,
In S4, the water temperature correction coefficient C11, intake temperature correction coefficient CAIR, and region correction coefficient CR (O in the feedback zone) are read, which correct the basic injection pulse width Tp according to the engine operating state at that time, and then the engine! In order to judge whether or not the air-fuel ratio is in the zone where feedback control is required, the engine load Tp is set to a predetermined value T (I) at S.
In S6, it is determined whether or not the engine speed Ne is equal to or less than a predetermined value N e +.If either of these determinations is No, that is, Tp>Tp or Ne>N
When it is e+, it is determined that it is not in the feedback zone, and in S7, the feedback correction coefficient Cra for correcting the basic injection pulse width Tp is set to 1, and immediately Sts
Proceed to.

一方、上記S5およびS8の判定が共にYESのとき、
つまりTp≦Tp+で且つNe≦Ne+のときにはフィ
ードバックゾーンにあると判断して、S8で排気センサ
25の出力に基づき混合気の空燃比が目標空燃比よりも
リッチであるか否かを判別し、リッチであるYESのと
きにはSgでフィードバック補正係数CFIIをαずつ
減算補正する一方、リーンであるNOのときにはS、。
On the other hand, when the determinations in S5 and S8 are both YES,
That is, when Tp≦Tp+ and Ne≦Ne+, it is determined that the feedback zone exists, and in S8 it is determined whether the air-fuel ratio of the air-fuel mixture is richer than the target air-fuel ratio based on the output of the exhaust sensor 25, When YES is rich, the feedback correction coefficient CFII is corrected by subtracting α by Sg, while when NO is lean, Sg is used.

でフィードバック補正係数CFBをαずつ加算補正して
空燃比を目標空燃比になるようフィードバック制御する
Then, the feedback correction coefficient CFB is added and corrected by α to perform feedback control so that the air-fuel ratio becomes the target air-fuel ratio.

次に、エンジン1が空燃比の学習制御をすべきゾーン(
このゾーンはリーンバーン運転すべきゾ−ンに一致する
)にあるか否かを判断すべく、S目でエンジン負荷’r
pがTI)co≦’rp≦Tpa+の範囲か否かを、5
lffiでエンジン回転数NeがNeco< N e 
< N e a+の範囲か否かを、srsで定常運転時
か否かをそれぞれ判別し、これらの判別がいずれもYE
Sのとき、つまりTpao≦’rp<’rp6、でNe
ao≦Ne≦Nec+でかつ定常運転時であるときには
学習ゾーンにあると判断して空燃比の学習制御を行うべ
くS、、に進む。なお、上記S1.。
Next, the zone where engine 1 should perform air-fuel ratio learning control (
In order to judge whether or not this zone corresponds to the zone where lean burn operation is required, the engine load 'r
Whether p is in the range of TI)co≦'rp≦Tpa+,
At lffi, engine speed Ne is Neco < Ne
<N e It is determined whether or not it is in the a+ range and whether it is in steady operation using srs, and both of these determinations are YE.
When S, that is, Tpao≦'rp<'rp6, Ne
When ao≦Ne≦Nec+ and the engine is in steady operation, it is determined that the engine is in the learning zone, and the process proceeds to S to perform air-fuel ratio learning control. Note that the above S1. .

Si1及び5rffの判別のいずれかがNOのときには
、学習制御をせずに直ちにStSに進む。
If either Si1 or 5rff is NO, the process immediately proceeds to StS without performing learning control.

そして、先ず、S14で学習制御が完了したか否かを判
定し、初めはまだ学習制御がされていないことからSi
5に進み、吸気通路2への蒸発燃料の供給をカットして
いるときか否かを判定する。蒸発燃料が供給されている
NOのときには、混合気の空燃比が蒸発燃料によって変
動して学習制御精度が低下することから、Sll+で蒸
発燃料の供給をカットする。これは、先程の切換制御弁
23のデユーティ−比Eに0%を入れるという操作であ
る。
First, in S14, it is determined whether learning control has been completed, and since learning control has not yet been performed at the beginning, Si
5, it is determined whether or not the supply of vaporized fuel to the intake passage 2 is being cut. When the fuel vapor is supplied (NO), the air-fuel ratio of the air-fuel mixture changes depending on the fuel vapor and the learning control accuracy decreases, so the supply of the fuel vapor is cut at Sll+. This is an operation of setting the duty ratio E of the switching control valve 23 to 0%.

そしてSt?で蒸発燃料カットフラッグを立てたのち、
直ちにS33に移行して最終噴射パルス幅Tpを式’r
p=’r’px (1+Cw+CAzR+Cn+CpJ
より算出する。
And St? After setting the evaporative fuel cut flag at
Immediately proceed to S33 and calculate the final injection pulse width Tp using the formula 'r
p='r'px (1+Cw+CAzR+Cn+CpJ
Calculate from

一方、S16で蒸発燃料の供給がカットされているYE
Sのときには、常置制御するに先立って、S IIでカ
ウンタT、が0か否かを判定する。これは、蒸発燃料は
カットしてもすぐにはなくならないので少し待つ必要が
あるため、カットしてから所定時間経ったかどうかを見
ている。初めはまだ0にはなっていないので、Sl、で
T、をlずつ減らすことを繰返し、T、−0になるまで
の時間をかせぐことにより、蒸発燃料の供給カット直後
の学習制御を回避して残留する蒸発燃料による誤学習を
防止するようにしている。その後、T1がOになると、
吸気通路2に蒸発燃料がないと判断して、S、。でフィ
ードバック補正係数CFBを平均し。
On the other hand, YE whose vaporized fuel supply is cut off at S16
In the case of S, it is determined in S II whether the counter T is 0 or not before performing permanent control. This is because evaporative fuel does not disappear immediately even if it is cut, so it is necessary to wait for a while, so it is checked whether a predetermined amount of time has passed since the cut. Initially, it has not yet reached 0, so by repeatedly decreasing T by 1 with Sl, and gaining time until T becomes -0, learning control can be avoided immediately after the vaporized fuel supply is cut. This is to prevent erroneous learning due to residual evaporated fuel. After that, when T1 becomes O,
It is determined that there is no evaporated fuel in the intake passage 2, and S. Average the feedback correction coefficient CFB.

て学習値C5TDYを演算したのち、Sllで学習時間
のカウンタT、を1ずつ減らす処理をし、S9.でカウ
ンタT、がOになるのを待ち、T、=0になると、92
3で学習完了フラッグを立てる。
After calculating the learning value C5TDY, the learning time counter T is decremented by 1 in Sll, and S9. Wait until the counter T, becomes O, and when T, = 0, 92
Set the learning completion flag at 3.

しかる後、上記学習制御が完了してS +4の判定がY
ESになると、Sl4で上記学習値CIITDYに所定
のリーン係数を掛けてフィードバック補正係数CFBを
算出し、SZSに進む。
After that, the above learning control is completed and the judgment of S +4 becomes Y.
When ES is reached, the learning value CIITDY is multiplied by a predetermined lean coefficient in Sl4 to calculate a feedback correction coefficient CFB, and the process proceeds to SZS.

Szsでは、蒸発燃料カット中か否かを判定する。At Szs, it is determined whether or not evaporative fuel is being cut.

そしてNoであれば蒸発燃料が供給されているというこ
となので、何もせずに迂回する。燃料カット中(YES
)ということであれば、まずStSでスロットル開度を
入力し、ついで、S6.でスロットル開度の変化率が大
きいかどうかを判定する。
If the answer is No, it means that evaporated fuel is being supplied, so the route is bypassed without doing anything. Fuel cut in progress (YES)
), first enter the throttle opening in StS, then enter S6. to determine whether the rate of change in throttle opening is large.

つまり、加速、減速であるか、それとも定常運転である
かを見ている。そして、Noすなわち変化率が小さいと
き、これは、運転者がスロットルの変化を意識していな
い、したがってトルクショックを予期していないという
状態であって、このときは、srsへ行って、燃料カッ
ト時のデユーティ−比E(0%)に5%を加え徐々に増
やしていく。
In other words, we are looking at acceleration, deceleration, or steady operation. If No, that is, the rate of change is small, this means that the driver is not aware of the throttle change and therefore does not expect a torque shock.In this case, go to SRS and cut the fuel. Add 5% to the duty ratio E (0%) and gradually increase it.

そしてS。でEが100%になったかどうかを判定し、
100%になるまでこれを繰り返す。Eが100%にな
れば、YESで931に行き蒸発燃料カットフラッグを
おとす。また、St?でYESすなわちスロットル変化
率が大きいというとき、これは、運転者がスロットルを
踏んでいて出力変化を認識している状態であって、この
ときはS3゜へ行ってEに直ちに100%を入れて蒸発
燃料のパージ通路をいっばいに開く。
And S. Determine whether E has reached 100% with
Repeat this until it reaches 100%. When E reaches 100%, say YES to 931 and lower the evaporative fuel cut flag. Also, St? If you say YES, that is, the throttle change rate is large, this means that the driver is stepping on the throttle and is aware of the change in output, and in this case, go to S3° and immediately set 100% to E. Open the vaporized fuel purge passage all at once.

なお、この実施例ではスロットル変化が小さいときに徐
々に蒸発燃料の供給を再開するようにしたが、徐々イこ
供給量を増やすのではなくて、完全にカットするような
制御を行なうことも可能である。
In addition, in this embodiment, the supply of vaporized fuel is gradually resumed when the throttle change is small, but it is also possible to perform control to completely cut off the supply amount instead of gradually increasing the amount of vaporized fuel. It is.

また、本発明は上記実施例に限定されず、その他いろい
ろな態様で実施できるものである。
Furthermore, the present invention is not limited to the above embodiments, but can be implemented in various other ways.

(発明の効果) 本発明は以上のように構成されているので、蒸発燃料供
給に伴なう空燃比変動によりトルクショックが生じるの
を防止することができる。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to prevent torque shock from occurring due to air-fuel ratio fluctuations accompanying the supply of evaporated fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図、第2図は本発明の一実施
例の全体図、第3図は同実施例の制御を実行するフロー
チャートである。 l:エンジン、2:吸気通路、3:スロットル弁、9:
開度センサ、19:キャニスタ、21:負圧制御弁、2
3:切換制御弁、24:コントロールユニット。 代理人 弁理士 進 藤 純 − 第1図
FIG. 1 is an overall configuration diagram of the present invention, FIG. 2 is an overall diagram of an embodiment of the invention, and FIG. 3 is a flowchart for executing control of the embodiment. l: Engine, 2: Intake passage, 3: Throttle valve, 9:
Opening sensor, 19: Canister, 21: Negative pressure control valve, 2
3: switching control valve, 24: control unit. Agent Patent Attorney Jun Shinfuji - Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの運転状態を検出する運転状態検出手段
と、蒸発燃料をエンジンの吸気系に供給する蒸発燃料供
給装置と、該蒸発燃料供給装置をエンジンの運転状態に
応じて作動させる蒸発燃料制御手段と、一時的に蒸発燃
料の供給を停止すべき特定の領域を検出して停止信号を
出力する停止領域検出手段と、蒸発燃料の供給再開時に
おけるエンジン運転状態の変化率を検出する再開時運転
状態変化率検出手段と、供給再開時の運転状態の変化が
小さいときに蒸発燃料の供給を制限する供給制限手段と
を備えたエンジンの蒸発燃料処理装置。
(1) An operating state detection means for detecting the operating state of the engine, an evaporative fuel supply device that supplies evaporative fuel to the intake system of the engine, and evaporative fuel control that operates the evaporative fuel supply device according to the engine operating state. stop area detection means for detecting a specific area where the supply of evaporative fuel should be temporarily stopped and outputting a stop signal; and restart time detecting means for detecting a rate of change in the engine operating state when the supply of evaporative fuel is resumed. A evaporated fuel processing device for an engine, comprising an operating state change rate detection means and a supply restriction means for restricting the supply of evaporated fuel when the change in the operating state at the time of resumption of supply is small.
JP2325487A 1987-01-31 1987-01-31 Evaporative fuel processor for engine Expired - Lifetime JPH0723706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325487A JPH0723706B2 (en) 1987-01-31 1987-01-31 Evaporative fuel processor for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325487A JPH0723706B2 (en) 1987-01-31 1987-01-31 Evaporative fuel processor for engine

Publications (2)

Publication Number Publication Date
JPS63189665A true JPS63189665A (en) 1988-08-05
JPH0723706B2 JPH0723706B2 (en) 1995-03-15

Family

ID=12105461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325487A Expired - Lifetime JPH0723706B2 (en) 1987-01-31 1987-01-31 Evaporative fuel processor for engine

Country Status (1)

Country Link
JP (1) JPH0723706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782218A (en) * 1996-09-04 1998-07-21 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5836293A (en) * 1996-08-13 1998-11-17 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5944003A (en) * 1996-08-09 1999-08-31 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5950607A (en) * 1996-08-13 1999-09-14 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013308097B2 (en) * 2012-08-30 2016-05-05 Basf Se Double donor functionalisation of the peri-positions of perylene and naphthalene monoimide via versatile building blocks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944003A (en) * 1996-08-09 1999-08-31 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5836293A (en) * 1996-08-13 1998-11-17 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5950607A (en) * 1996-08-13 1999-09-14 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine
US5782218A (en) * 1996-09-04 1998-07-21 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of an engine

Also Published As

Publication number Publication date
JPH0723706B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPH034742B2 (en)
JPH0494445A (en) Vaporized fuel processing control device for internal combustion engine
JP3666460B2 (en) Evaporative fuel processing device for internal combustion engine
JPH0617714A (en) Evaporative fuel treatment device for internal combustion engine
JPH025751A (en) Method for controlling air-fuel ratio
JPH08144870A (en) Evaporated fuel processing device for internal combustion engine
JP2011220253A (en) Air-fuel ratio learning control device for bifuel engine
JPH06146948A (en) Air/fuel ratio control device of internal combustion engine provided with evaporated fuel processing device
JPS63189665A (en) Vapor fuel processing device for engine
JPH08121266A (en) Evaporating fuel treatment device of internal combustion engine
JP2001329894A (en) Fuel system abnormality diagnostic device for internal combustion engine
JP3331660B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05180103A (en) Evaporated fuel control apparatus for vehicle
JP2881258B2 (en) Evaporative fuel processing equipment
JP3024448B2 (en) Evaporative fuel control system for internal combustion engine
JP3862934B2 (en) Evaporative fuel processing device for internal combustion engine
JP3937702B2 (en) Evaporative purge control device for internal combustion engine
JPH01190955A (en) Evaporating fuel processing device for engine
JPH05248312A (en) Evaporated fuel treating device of internal combustion engine
JPH04112959A (en) Evaporated fuel process controller
JP3306146B2 (en) Control device for engine with evaporative fuel supply device
JP2000087813A (en) Evaporative fuel purge device for engine with supercharger and evaporative fuel purge control device
JP3900757B2 (en) Evaporative fuel processing device for internal combustion engine
JP2745984B2 (en) Failure diagnosis device for evaporation purge system
JP3601080B2 (en) Air-fuel ratio control device for internal combustion engine