JPS63189225A - Manufacture of heat-resistance multi-layer container and blow molding equipment - Google Patents

Manufacture of heat-resistance multi-layer container and blow molding equipment

Info

Publication number
JPS63189225A
JPS63189225A JP62020991A JP2099187A JPS63189225A JP S63189225 A JPS63189225 A JP S63189225A JP 62020991 A JP62020991 A JP 62020991A JP 2099187 A JP2099187 A JP 2099187A JP S63189225 A JPS63189225 A JP S63189225A
Authority
JP
Japan
Prior art keywords
blow
parison
temperature
heat
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62020991A
Other languages
Japanese (ja)
Other versions
JPH082583B2 (en
Inventor
Kaneo Yamada
務夫 山田
Kenichi Morizumi
森住 憲一
Yuuji Kameumi
亀海 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP62020991A priority Critical patent/JPH082583B2/en
Publication of JPS63189225A publication Critical patent/JPS63189225A/en
Publication of JPH082583B2 publication Critical patent/JPH082583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6454Thermal conditioning of preforms characterised by temperature differential through the preform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C45/1643Making multilayered or multicoloured articles having a "sandwich" structure from at least three different materials or with at least four layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7343Heating or cooling of the mould heating or cooling different mould parts at different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • B29C49/681Ovens specially adapted for heating preforms or parisons using a conditioning receptacle, e.g. a cavity, e.g. having heated or cooled regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent an item from whitening and eliminate generation of ununiformed section by a method wherein a multi-layer parison is injection-molded under the state that the surface temperature of a male mold is held to be higher than that of a female mold in order to make the temperature of the inside of the parison higher than that of its outside and, under that state, hot and pressurized blow air is blown in the parison for stretching blow molding. CONSTITUTION:After being quenched and solidified in a parison injection mold, wherein the surface temperature of the male mold is held higher than that of its female mold, a parison is released from the mold for temperature controlling. At this time, the temperatures of the parison outside region 5 of a polyethylene terephthalate layer and of the region 7 positioning inside the region 5 are controlled to be near the proper temperature for orienting polyethylene terephthalate. On the other hand, the temperatures of a heat-resistant resin layer 6 and of a terephthalate layer 4 at the inside of the parison are controlled to be near the proper temperature for orienting the heat-resistant resin layer. After the temperature control, the parison is shifted to a blow molding equipment and stretchingly blow-molded by blowing hot pressurized blow air in the parison at or after adiabatic expansion, resulting in allowing to perform favorably a stretch blow-molding with neither whitening nor the generation of ununiformed section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層延伸ブロー容器の製造方法及びブロー成形
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a multilayer stretch blow container and a blow molding apparatus.

〔従来の技術〕[Conventional technology]

近年、耐熱性レジン、例えばUポリマー(ユニチカ製、
ボリアリレートとポリエチレンテレフタレートのブレン
ドポリマー)をポリエチレンテレフタレート(PKT’
Jと共射出し、次いで延伸ブロー成形することにより、
耐熱性ボトルを得る技術の開発がおこなわれている。
In recent years, heat-resistant resins such as U polymer (manufactured by Unitika,
Polyethylene terephthalate (PKT') is a blend polymer of polyarylate and polyethylene terephthalate).
By co-injecting with J and then stretch blow molding,
Techniques for obtaining heat-resistant bottles are being developed.

また、はゾ室温のブローエアを用いて延伸ブロー成形す
る慣用法にかえて、ブロー成形する′□ パリソンを囲
むブロー成形用金型構成部材を閉じ、断熱膨張前におけ
る、即ち、ブローパイプへのブローエアの供給を制御す
る弁を通過する以前における温度が約100−400下
(38−204°C)の範囲にある加熱加圧ブローエア
をパリソン内に注入し、2軸延伸させるブロー成形方法
が開示されている(特公昭61−58288号公報参照
)。
In addition, instead of the conventional method of stretch blow molding using blow air at room temperature, blow molding is performed by closing the blow molding mold components surrounding the parison and blowing air into the blow pipe before adiabatic expansion. Disclosed is a blow molding method in which heated and pressurized blow air whose temperature is in the range of about 100-400°C (38-204°C) before passing through a valve that controls the supply of parison is injected into the parison and biaxially stretched. (Refer to Japanese Patent Publication No. 61-58288).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、PETに耐熱性を賦与するためにPET
と共に耐熱性レジンを共射出し、延伸ブロー成形するこ
とに関しては次のような問題点がある。
However, in order to impart heat resistance to PET,
There are also the following problems with co-injecting heat-resistant resin and stretch blow molding.

例えば耐熱レジンとして用いることができる■ポリマー
とPETは延伸適性温度が異なる。
For example, polymers that can be used as heat-resistant resins and PET have different stretching temperatures.

而して異なる延伸適性温度を持っUポリマーとPETを
共射出し、多層パリソンをPETの延伸適性温度に加熱
し、慣用法によって冷いブローエアを用いて延伸ブロー
成形すれば、延伸ブローの工程において、ボトル胴部中
心にいわゆる白化現象が発生する。−万、■ポリマーの
延伸適性温度まで、多層パリソンを高温加熱し、次いで
延伸ブロー成形することにより、白化を解消することが
できるが、PETの延伸時の伽肉が著しくなる。結晶化
により通明性がそこなわれる。
Therefore, if U polymer and PET, which have different suitable stretching temperatures, are co-injected, the multilayer parison is heated to the suitable stretching temperature of PET, and then stretch-blow molded using cold blow air according to the conventional method, in the stretch-blowing process. , a so-called whitening phenomenon occurs in the center of the bottle body. - 10,000, (2) By heating the multilayer parison at a high temperature to a temperature suitable for stretching the polymer and then stretch-blow molding, whitening can be eliminated, but the PET becomes noticeably thinner during stretching. Crystallization impairs transparency.

この様に耐熱性ポリマーとPETの多層パリソンを延伸
ブローし、延伸ブローボトルを得る製造工程は、きびし
いパリソン温度の制約のものでおこなわれる。
In this manner, the manufacturing process for obtaining a stretch-blown bottle by stretch-blowing a multilayer parison of heat-resistant polymer and PET is carried out under strict parison temperature restrictions.

それのみならず延伸ブローボトルの多数個取り製造工程
において、就中、パリソンの射出成形、温調、及び延伸
ブロー成形の一連の連続工程で行ういわゆるホットパリ
ソン方式で延伸ブローボトルの製造な行うときには、多
数個のパリソンを均等な条件で共射出し、且つ均等に温
調することが困難である。
In addition, in the multi-piece manufacturing process for stretch-blown bottles, especially when manufacturing stretch-blown bottles using the so-called hot parison method, which involves a series of continuous steps of parison injection molding, temperature control, and stretch-blow molding. It is difficult to co-inject a large number of parisons under uniform conditions and to control their temperature uniformly.

また、はゾ室温のブローエアを用いて延伸ブロー成形す
る従来法にかえて、特公昭61−58288号公報に記
載の加熱加圧ブローエアを用いて延伸ブロー成形する場
合、断熱膨張冷却によるブローエアの温度低下をみこし
て高めにエアを加熱しなければならない。したがってエ
ネルギーの効率が悪いのみならず、ホットエアをコンプ
レツサーを経て加圧下にブレナムに供給し、ブレナムよ
りブレナムとブローパイプ間の弁を経てパリソン内に加
熱加圧ブローエアを吹込む方法によるので、設備が大が
かりになる。
In addition, instead of the conventional method of stretch blow molding using blow air at room temperature, when stretch blow molding is performed using heated and pressurized blow air described in Japanese Patent Publication No. 61-58288, the temperature of the blow air due to adiabatic expansion cooling is The air must be heated to a higher temperature to avoid the drop. Therefore, not only is energy inefficient, but the equipment is It's going to be a big deal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記したような多層ボトルの困難性を解消す
べく研究の結果、耐熱性レジン請を中間層として有し、
且つ該耐熱性レジン層が成形体の内側に片寄っている多
層パリソンを成形し、該多層パリソンを延伸ブロー成形
する耐熱性多層容器の製造方法において、パリソン成形
用射出成形金型の雄型の表面温度を雌型の表面温度より
も高く保持した状態で前記多層パリソンを共射出成形し
、次いでパリソンの内側の方が外側よりも高温となるよ
うに温調し、次いで、加熱加圧ブローエアをパリソン内
に吹き込んで延伸ブロー成形する方法によれば白化な防
止ししかも偏肉等を生ぜしめることなく延伸ブロー成形
することができることを見いだした。
As a result of research to solve the above-mentioned difficulties in creating multi-layer bottles, the present inventors have found that they have a heat-resistant resin coating as an intermediate layer,
In a method for producing a heat-resistant multilayer container, the method for producing a heat-resistant multilayer container includes forming a multilayer parison in which the heat-resistant resin layer is biased toward the inside of the molded body, and stretch-blow-molding the multilayer parison. The multilayer parison is co-injection molded while the temperature is maintained higher than the surface temperature of the female mold, the temperature is adjusted so that the inside of the parison is higher than the outside, and then heated and pressurized blow air is applied to the parison. It has been found that, by a method of stretch-blow molding by blowing into the inside, stretch-blow molding can be performed without causing whitening and uneven thickness.

しかしながら、加熱加圧ブローエアのパリソン内への供
給を上記公報に記載の方法によると設備が大がかりとな
り、またエネルギーの利用効率が悪くなってしまう。
However, the method described in the above-mentioned publication for supplying heated and pressurized blow air into the parison requires large-scale equipment and results in poor energy utilization efficiency.

この欠点を解消丁べく研究の結果、パリソンへのブロー
エアの注入を制御する弁の後で、即ち、弁を介してブロ
ーエアをブローマンドレル内部へ注入するとき、もしく
は注入したのち、加熱し、次いでパリソン内に吹き込む
方法をとれば、大がかりな設備を必要とせず、しかもエ
ネルギーを有効に使って延伸ブロー成形することを見い
だし、かかる知見にもとづいて耐熱性多層容器の製造方
法に係る第1の発明を完成したものである。
As a result of research to eliminate this drawback, it was found that after the valve that controls the injection of blow air into the parison, that is, when blow air is injected into the blow mandrel through the valve, or after the injection, heating is performed, and then the parison is heated. The inventors have discovered that if a method of blowing into the interior of the container is used, stretch blow molding can be performed without requiring large-scale equipment and using energy effectively.Based on this knowledge, the first invention relating to a method for manufacturing a heat-resistant multilayer container has been created. It is completed.

即ち、第1の発明は「耐熱性レジン層を中間層として有
し、且つ該耐熱性レジン層が成形体の内側に片寄ってい
る多層パリソンを成形し、該多層パリソンを延伸ブロー
成形する耐熱性多層容器の製造方法において、パリソン
成形用射出成形金型の雄型の表面温度を雌型の表面温度
よりも高く保持した状態で前記多層パリソンを共射出成
形し、次いでパリソンの内側の方が外側よりも高温とな
るように温調し、次いで断熱膨張時もしくは後に加熱し
た加熱加圧ブローエアをパリソン内に吹き込んで延伸ブ
ロー成形することを特徴とする耐熱性多層容器の製造方
法。」  ″を要旨とするものである。
That is, the first invention is ``a heat-resistant method for forming a multilayer parison having a heat-resistant resin layer as an intermediate layer and in which the heat-resistant resin layer is biased toward the inside of the molded body, and stretch-blow-molding the multilayer parison. In a method for manufacturing a multilayer container, the multilayer parison is co-injection molded while the surface temperature of the male mold of an injection mold for molding the parison is maintained higher than the surface temperature of the female mold, and then the inside of the parison is molded on the outside. A method for producing a heat-resistant multilayer container, which comprises adjusting the temperature to a higher temperature than the parison, and then blowing heated and pressurized blow air into the parison during or after adiabatic expansion to perform stretch blow molding. That is.

さらに上記の製造方法を実施するブロー成形装置につき
、研究の結果、加圧ブローエアの加熱をスパイラル状の
ヒータによるならば断熱膨張冷却された加圧ブローエア
を効率良く加熱することが出来、設備を大型化させるこ
とがないこと、及びブローマンドレル簡の温度を測温し
、且つ高圧エアを測温し、両測温結果により、ヒータを
制御することにより、はゾ同−条件で加熱加圧ブローエ
アを供給しうることを見いだし、かかる知見にもとづい
て、ブロー成形装置に係峨 る第2の発見を完成したものである。
Furthermore, as a result of research regarding the blow molding equipment that implements the above manufacturing method, it has been found that if the heating of the pressurized blow air is performed using a spiral heater, the pressurized blow air that has been adiabatically expanded and cooled can be efficiently heated, making it possible to increase the size of the equipment. By measuring the temperature of the blow mandrel and the high pressure air, and controlling the heater based on the temperature measurement results, the heated pressurized blow air can be heated under the same conditions. Based on this knowledge, we completed the second discovery related to blow molding equipment.

即ち、第2の発明は「ブロー成形用金型と、該ブロー成
形用金型につながる筒状のブローマンドレル内と、該ブ
ローマンドレル(7)上方lll:該ブローマンドレル
上方部をかこむように設けられたブローブロックとブロ
ーマンドレルの開放端部を密閉し、且つ延伸ロッドな支
持するためのエアタイト付スライドスリーブとブローマ
ンドレル内部の下方部寄りに設けられた延伸ロッドな支
持するための延伸ロブトスライドスリーブとエアタイト
付スライドスリーブと延伸ロブトスライドスリーブとに
よりブローマンドレルの中心に位置せしめられた延伸ロ
ッドとからなるブロー成形装置において、ブローマンド
レル内にはスパイラル状のヒータが内蔵されて、おり、
ブローマンドレル温度制御用温度センサー及び高圧エア
測温用温度センサーを有し、延伸ロッドと前記ヒータの
間には筒状の延伸ロッドカバースリーブが設けられ、ブ
ロープロ呼り及びブローマンドレルには、それらを貫通
して高圧エアをブローマンドレルと延伸ロッドカバース
リーブ間に供給するための通路が設けられ、該通路につ
ながるようにブローブロックは高圧エア注入管の継手を
介して高圧エア注入管が接続され、高圧エア注入管には
電磁バルブを介して高圧エアを供給する装置が接続され
ていることを特徴とするブロー成形装置。」を要旨とす
るものである。
That is, the second invention provides a blow molding mold, a cylindrical blow mandrel connected to the blow mold, and an upper part of the blow mandrel (7): provided to surround the upper part of the blow mandrel. A slide sleeve with an airtight for sealing the open end of the blow block and blow mandrel and supporting the stretch rod, and a stretched lobe slide sleeve for supporting the stretch rod provided near the lower part of the interior of the blow mandrel. In a blow molding device consisting of a slide sleeve with airtight and a stretched rod positioned at the center of the blow mandrel by a slide sleeve with an air tight and a stretched lobe slide sleeve, a spiral heater is built in the blow mandrel.
The blow mandrel has a temperature sensor for temperature control and a temperature sensor for high pressure air temperature measurement, and a cylindrical stretching rod cover sleeve is provided between the stretching rod and the heater. A passage is provided through the blow block for supplying high pressure air between the blow mandrel and the stretching rod cover sleeve, and a high pressure air injection pipe is connected to the blow block through a joint for the high pressure air injection pipe so as to be connected to the passage. A blow molding device characterized in that a device for supplying high pressure air is connected to the high pressure air injection pipe via a solenoid valve. ” is the gist.

以下、本発明につき詳細に説明する。Hereinafter, the present invention will be explained in detail.

先ず、第1図示のように中間層としての耐熱性レジン層
(1)とメイン樹脂−としてのポリエチレンテレフタレ
ート層(2)とからなり、耐熱性し! ジン層(2)が成形体の内側に片寄っている多層パリソ
ンを成形する。
First, as shown in the first figure, it consists of a heat-resistant resin layer (1) as an intermediate layer and a polyethylene terephthalate layer (2) as a main resin, and is heat-resistant! A multilayer parison is molded in which the gin layer (2) is offset to the inside of the molded body.

ここにおいて、耐熱性レジン層として、Uポリマー(ユ
ニチカ製、ボリアリレートとポリエチレンテレフタレー
トのブレンドポリマー)、ポリカーボネート、ポリカー
ボネートとポリエチレンテレフタレートのブレンドポリ
マー、ボリアリレートとポリカーボネートとポリエチレ
ンテレフタレートのブレンドポリマー等を適用し得る。
Here, as the heat-resistant resin layer, U polymer (manufactured by Unitika, a blend polymer of polyarylate and polyethylene terephthalate), polycarbonate, a blend polymer of polycarbonate and polyethylene terephthalate, a blend polymer of polyarylate, polycarbonate, and polyethylene terephthalate, etc. can be applied. .

次に本発明において用いるポリエチレンテレフタレート
系樹脂とはテレフタル酸又はそのエステル形成性誘導体
(例えば低級アルキルエステル、フェニルエステル等)
トエチレンクリコール又はそのエステル形成性誘導体(
例えばモノカルボン酸エステルエチレンオキサイド等)
とを重合せしめて得られるポリエステルであり、約20
モル優未病の他のジカルボン酸又はグリコール部分が共
重合されていてもよい。また該ポリエステ少はトリメチ
ロールプロパン、ペンダ エ リ ス リ ト − l
し 、  ト リ メ リ ッ ト 酸、  ト リ 
メ シン酸の如き多官能化合物を2モル価未満の範囲で
共1合されていてもよい。罰記共東合成分として用いら
れる他のジカルボン酸成分としてはフタル酸、イソフタ
ル酸、ナフタリンジカルボン酸、ジフェニルジカルボン
酸類、シフエノキ□  シエタンジカルボン酸類等の如
さ芳香族ジカルボン酸類、アジピン酸、セパチン酸、ア
ゼライン酸、デカンジカルボン酸、シクロヘキサンジカ
ルボン酸等の如き脂肪異父は脂4族ジカルボン酸類等が
亭げられる。
Next, the polyethylene terephthalate resin used in the present invention is terephthalic acid or its ester-forming derivatives (for example, lower alkyl esters, phenyl esters, etc.)
ethylene glycol or its ester-forming derivative (
For example, monocarboxylic acid ester ethylene oxide, etc.)
It is a polyester obtained by polymerizing about 20
Other dicarboxylic acid or glycol moieties of the mole may be copolymerized. In addition, the polyester is trimethylolpropane, pendant erythritol.
Tri-meritic acid, Tri-meritic acid
A polyfunctional compound such as mesic acid may be incorporated in a molar value of less than 2. Other dicarboxylic acid components used as penultimate Kyotosei ingredients include phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acids, aromatic dicarboxylic acids such as siethane dicarboxylic acids, adipic acid, and cepatic acid. , azelaic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, and the like include aliphatic group dicarboxylic acids.

また他の共重合成分として用いられる他のグリコール成
分としてはトリメチレングリコール、プロピレングリコ
ール、テトラメチレングリコール、ネオペンチルグリコ
ール、ヘキサメチレングリコール、ドデカメチレングリ
コール、シクロヘキサンジメタツール専の如き脂肪族又
は脂様族グリコール類、ビスフェノール類、ハイドロキ
ノン、2.2−ビス(4−β−ヒドロキシエトキシフェ
ニル)プロパンその他の芳香族ジオール類が挙げられる
Other glycol components used as other copolymerization components include aliphatic or fat-like glycols such as trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, dodecamethylene glycol, and cyclohexane dimetatool. Examples include group glycols, bisphenols, hydroquinone, 2,2-bis(4-β-hydroxyethoxyphenyl)propane, and other aromatic diols.

またその他β−ヒドロキシエトキシ安息香酸、α−オキ
シカプロン酸等の如さオキシ酸類な用いることも可能で
ある。また°これらオキシ酸類の低級アルキルエステル
、その他のエステル形成性誘導体を用いることも可能で
ある。
It is also possible to use other oxyacids such as β-hydroxyethoxybenzoic acid and α-oxycaproic acid. It is also possible to use lower alkyl esters of these oxyacids and other ester-forming derivatives.

次に雄型の表面温度を雌型の表面温度よりも高く保持し
たパリソン射出成形金型内で急冷固化した後璃型し、温
調する。このとさ、第2図示のようにポリエチレンテレ
フタレートIHのパリソン外側領域(5)及びその内側
に位置する領域(7)をポリエチレンテレフタレートの
延伸適性温度付近、即ち、95〜120“Cに温調し、
−万、耐熱性レジンrl!ite+及びパリソン内側の
ポリエチレンテレフタレート層(4)を耐熱性レジン層
の延伸通性温度付近、例えば耐熱性レジン層がσポリマ
ー8400よりなるとぎには120〜165゛Cに温調
する。
Next, the mold is rapidly cooled and solidified in a parison injection mold in which the surface temperature of the male mold is maintained higher than that of the female mold, and then molded and temperature controlled. At this time, as shown in the second figure, the temperature of the outer region (5) of the polyethylene terephthalate IH parison and the region (7) located inside the parison is adjusted to around the suitable stretching temperature of polyethylene terephthalate, that is, 95 to 120"C. ,
- 10,000, heat resistant resin RL! The temperature of the polyethylene terephthalate layer (4) inside the ite+ and parison is adjusted to around the stretching permeability temperature of the heat-resistant resin layer, for example, 120 to 165°C if the heat-resistant resin layer is made of σ polymer 8400.

坤も、パリソン外側が内側よりも相対的に低温になるよ
うに温調する。
The temperature is also adjusted so that the outside of the parison is relatively colder than the inside.

このように温虚する方法として、パリソン外壁を温調型
で接触冷却するか、或いは冷却エアでパリソンよりも相
対的に低温に冷却保持された温調ポット内でパリソン外
壁を冷却する方法、或いはパリソン内側をヒーター加熱
する方法、或いは加熱エア循環でパリソン内側を加熱す
る方法、或いは前記方法の組合せ方法を採用することか
でさる。
As a method of cooling the parison in this way, the outer wall of the parison is cooled by contact cooling with a temperature control type, or the outer wall of the parison is cooled in a temperature control pot that is kept cooled at a relatively lower temperature than the parison with cooling air, or This can be done by heating the inside of the parison with a heater, heating the inside of the parison by circulating heated air, or a combination of the above methods.

第3図は本発明に適用し得るパリソン温調装置の1例を
示す◎ 図において50は温調型、51.52.53.54は分
割された温調ゾーン、55は温調媒体流路、56はロッ
ドヒーター、57はヒーターホルダー、58は加熱コア
、59はヒーターホルダー上固定ブシュ、60はヒータ
ーホルダー上固定ブシュ、61は加熱ピース、62は固
定ブロック、63はヒーター固定ブロブク、64はエア
吹込路、65は加圧エア流管、66は加工エアコントロ
ールバルブ、67は第1ゾーン温調機、68は第2ゾー
ン温調機、69は第3ゾーン温調改、70は!!84ゾ
ーン温調機、71は温蔵媒体流管、72はエアタイト用
○リングj −である。
FIG. 3 shows an example of a parison temperature control device that can be applied to the present invention. In the figure, 50 is a temperature control type, 51, 52, 53, and 54 are divided temperature control zones, and 55 is a temperature control medium flow path. , 56 is a rod heater, 57 is a heater holder, 58 is a heating core, 59 is a fixed bush on the heater holder, 60 is a fixed bush on the heater holder, 61 is a heating piece, 62 is a fixed block, 63 is a heater fixing block, 64 is a fixed bush on the heater holder. 65 is a pressurized air flow pipe, 66 is a processing air control valve, 67 is a first zone temperature controller, 68 is a second zone temperature controller, 69 is a third zone temperature controller, and 70 is! ! 84 zone temperature controller, 71 is a heating medium flow tube, and 72 is an airtight circle j-.

加圧エアを加圧エア流管の9より軟化温度以上に加熱し
たパリソン(3)内部に吹き込んで、4つのゾーンに分
割した温調型■の内面にパリソン(3)の外側を接触さ
せる。
Pressurized air is blown into the inside of the parison (3) heated above the softening temperature through the pressurized air flow pipe 9, and the outside of the parison (3) is brought into contact with the inner surface of the temperature control mold (3) divided into four zones.

セしてロッドヒーター州及びこれに付設した加熱ピース
[F]υにより、パリソン内面を相対的に加熱すると共
にパリソンの外面l相対的に冷却する。
Then, the inner surface of the parison is relatively heated by the rod heater and the heating piece [F]υ attached thereto, and the outer surface l of the parison is relatively cooled.

以上のように温調したのち、パリソンをブロー成形装置
に移し、断熱膨張時もしくは後1:加熱した加熱加圧ブ
ローエアをパリソン内に吹き込んで延伸ブロー成形する
ことl二より、白化を生せしめることなく、且つ偏肉を
生せしめることなく、良好に延伸ブロー成形することが
できる。
After controlling the temperature as described above, the parison is transferred to a blow molding device, and during adiabatic expansion or after 1: blowing heated, heated and pressurized blow air into the parison to perform stretch blow molding. Stretch blow molding can be performed satisfactorily without causing uneven thickness.

而して加熱加圧ブローエアの温度は30°C以上であっ
て、且つ耐熱性レジンの延伸適性温度以下、例えば耐熱
性レジンとしてσポリマーを用いるとさは120°C以
下であるのが望マしい。
Therefore, it is desirable that the temperature of the heated and pressurized blow air is 30°C or higher and lower than the temperature suitable for stretching the heat-resistant resin, for example, when σ polymer is used as the heat-resistant resin, the temperature is 120°C or lower. Yes.

また、最適な加熱加圧ブローエアの温度は、温調された
パリソンの温度に依存Tるが、60〜110−Cであり
、この温度範囲でもっともすぐれた延伸ブロ一作業の安
定性が得られる。
In addition, the optimum temperature of the heated and pressurized blow air depends on the temperature of the temperature-controlled parison, but is between 60 and 110 degrees centigrade, and the best stability of the stretch blowing operation can be obtained within this temperature range. .

ブロー成形装置の金型は90〜110’Cに加熱するが
、熱処理をブロー成形とは別の工程で3こなうときには
加熱しなくても艮い。
The mold of the blow molding apparatus is heated to 90 to 110'C, but heating is not necessary when heat treatment is performed in three steps separate from blow molding.

また、ブロー成形装置の金型な90〜110゛Cに加熱
し、同金型内で引続き熱処理を行なうか、或いは金型の
温度を70゛C以上で且つ融点よりも20゛C以上低い
ベース温度に温度調節し、成形品を金型内に押圧保持し
つつ、棒状ヒーターより赤外線を輻射させ、且つ高温エ
アを放出し、成形品内を循環させて成形品を内部より加
熱し、ベースm度より少くとも10゛C以上高い熱処理
温度に加熱した後、棒状ヒーターを成形品外へ移動させ
て内部加熱を停止し、成形品をベース温度近傍まで冷却
させた後金型より離型させる方法1:よることも出来る
In addition, heat the mold of the blow molding equipment to 90-110°C and continue heat treatment in the same mold, or set the mold temperature to 70°C or more and 20°C or more lower than the melting point of the base. The temperature is adjusted to the desired temperature, and while the molded product is held under pressure in the mold, infrared rays are radiated from a rod-shaped heater, and high-temperature air is released and circulated within the molded product to heat the molded product from within. A method of heating the molded product to a heat treatment temperature that is at least 10°C higher than the temperature, then moving the rod-shaped heater to the outside of the molded product to stop internal heating, allowing the molded product to cool to near the base temperature, and then releasing it from the mold. 1: Can also lean.

第4図は本発明のブロー成形装置な示T0図において、
10はシップキャビティ、11.12はブロー熱処理型
、13は延伸ロッド、14は延伸ロッド先端、15はブ
ローブロック、16はブローマンドレル、17は延伸ロ
ッドスライドスリーブ、18はエアタイト付スライドス
リーブ、19は延伸ロッドカバースリーブ、20はスパ
イル状ヒーター、21は押え板、22はブローマスドリ
ル温度制御用温度センナ−123は高圧エア測温用温度
センサー、24は高圧エア配管継手、25はスパイラル
状ヒーター気密継手、26は高圧エア開放端開閉電磁バ
ルブを示す。
FIG. 4 is a diagram T0 showing the blow molding apparatus of the present invention.
10 is a ship cavity, 11.12 is a blow heat treatment type, 13 is a stretching rod, 14 is a stretching rod tip, 15 is a blow block, 16 is a blow mandrel, 17 is a stretching rod slide sleeve, 18 is a slide sleeve with airtight, 19 is a Stretched rod cover sleeve, 20 is a spiral heater, 21 is a presser plate, 22 is a temperature sensor for controlling the temperature of a brochure drill, 123 is a temperature sensor for high pressure air temperature measurement, 24 is a high pressure air piping joint, 25 is an airtight spiral heater The joint 26 indicates a high pressure air open end opening/closing solenoid valve.

ブローマンドレルαQ内周面に、接触するようにスパイ
ラル状ヒーター(1)が内蔵されている。
A spiral heater (1) is built in and in contact with the inner peripheral surface of the blow mandrel αQ.

而してスパイラル状ヒーター(4)をブローマンドレル
qf3内周面に接触するように内蔵されているのは、余
分の熱望をブローマンドレル(6)に放熱し、ヒーター
の過加熱を防止するためである。
The reason why the spiral heater (4) is built in so as to be in contact with the inner peripheral surface of the blow mandrel qf3 is to radiate excess heat to the blow mandrel (6) and prevent the heater from overheating. be.

また、ブローブロック(至)には冷却水路−が設けられ
、必要に応じて冷却されるように構成されている。
Further, the blow block (to) is provided with a cooling water passage, and is configured to be cooled as necessary.

スパイラル状ヒーター(1)として、Sσ8316裂シ
ースヒーター1.6+mφ400W、200V1320
0IIImをスパイラルに巻き込むか或いは2.4■φ
、700w1200V、4200關をスパイラルに巻き
込んでなるものを適用しうる。
As spiral heater (1), Sσ8316 split sheath heater 1.6+mφ400W, 200V1320
0IIIm into a spiral or 2.4■φ
, 700W, 1200V, and 4200V connected in a spiral can be applied.

延伸ロッドカバースリーブα9としては8σ日616裂
のものを適用しつる。この延伸ロッドカバースリーブα
9は駆動する延伸ロッド■から隔寵して、ブローエアを
クリーンな状態に保つとともに、ブローエアの流れを安
定化するものである。
As the stretched rod cover sleeve α9, one with 8σ day 616 cracks is applied. This stretched rod cover sleeve α
9 is spaced apart from the driving stretching rod (2) to keep the blow air clean and to stabilize the flow of the blow air.

延伸ロッドスライドスリーブ鼎(至)としては耐熱性エ
ンジニアリングプラスチック、例えばポリアミドイミド
(東し製、T1−5000.1000)、ポリイミド(
DuPOnt %、Veaple)、芳香族ポリエステ
ル(住友化学製、エコノール8600、E+1000)
、PII:l!!に等よりなるものを適用しうる。特に
エコノールよりなるもの−は樹脂中にFTFI!fが入
プており、耐摩耗性、摺−シ動性に優れて良好である。
The stretched rod slide sleeve can be made of heat-resistant engineering plastics, such as polyamide-imide (T1-5000.1000 manufactured by Toshi), polyimide (
DuPOnt%, Veaple), aromatic polyester (Sumitomo Chemical, Econol 8600, E+1000)
, PII:l! ! etc. can be applied. Especially those made of Econol contain FTFI in the resin! It has excellent wear resistance and sliding properties.

延伸ロブトスライドスリーブσ7)o8を黄鏑等の金属
で構成テることは、削り粉等の問題があり望ましくない
It is undesirable to construct the stretched Robust slide sleeve σ7)o8 with metal such as yellow iron because of the problem of shavings and the like.

高圧気密にし、かつ、スパイラル状のヒータを容易に組
込み、取出しするため、ブローマンドレルを第5図示の
ように2つ側構造とする。
In order to achieve high-pressure airtightness and to easily incorporate and remove the spiral heater, the blow mandrel has a two-sided structure as shown in Figure 5.

尚、図において81は高圧エア配!継手がつながる四方
向穴、82はヒーター接続穴、83は0リングを示す。
In addition, in the figure, 81 is the high pressure air distribution! 82 is a heater connection hole, and 83 is an O-ring.

第6図はヒーターのリード線の固定装置を示す。FIG. 6 shows a fixing device for the heater lead wires.

外側より固定するための段差を有するスリーブ(271
でリード線(至)が処理され、0リング(至)でスパイ
クルヒーター気密継手(ハ)に固定されている。
Sleeve with steps for fixing from the outside (271
The lead wire (to) is processed and fixed to the spikele heater airtight joint (c) with the O ring (to).

147図はブローエアのフロー囚を示す。Figure 147 shows the flow of blow air.

因において、38は抜気エアバルブ、30はアキュムレ
ーター、31はクーラードライヤー、32はコンプレッ
サー、24.65.34.35はエア流入管、66.5
7はエア抜気管、39はサイレンサーな示T。
38 is a vent air valve, 30 is an accumulator, 31 is a cooler dryer, 32 is a compressor, 24.65.34.35 is an air inflow pipe, 66.5
7 is the air vent pipe, 39 is the silencer T.

ブローエアはコンプレッサー6ので加圧され、クーラー
ドライヤーO1)で冷却及び除湿が行なわれ、アキュム
レーター■にためられる。
The blow air is pressurized by a compressor 6, cooled and dehumidified by a cooler dryer O1), and stored in an accumulator (2).

電磁バルブ■は延伸ブロー1サイクルにつき、、  1
回開かれ、延伸ブロー後、抜気パルプ関が開く前に閉じ
られる。
The solenoid valve ■ is 1 per stretch blow cycle.
After stretching and blowing, it is closed before the air extraction pulp gate is opened.

この電磁バルブ(ハ)の開閉操作はブロー熱処理型11
,12.が閉じた後、延伸aラド13の下降と同時か遅
延タイマーを介してこれより適当な時間経過後の延伸ロ
ッド下陣中に開き、タイマーにより設定したブロー熱処
理時間後に閉じる一定時間間隔のV−ケンス制御により
行なわれる。
The opening/closing operation of this electromagnetic valve (c) is of the blow heat treatment type 11.
,12. is closed, the V-can is opened at fixed time intervals during the lowering of the stretching rod, either at the same time as the stretching rod 13 is lowered or after an appropriate time has elapsed via a delay timer, and closed after the blow heat treatment time set by the timer. This is done through control.

ブローエフ温度はアキュムレーター(7)、及ヒアキュ
ムレーダー(至)と電磁バルブ(至)闇のエア流入管(
2)で室温以下であり、電磁バルブばとブローブロック
(至)間のエア流入管は、及びブローブロック(至)通
過時は断熱膨張によりアキュムレーターq1及びエア流
入f(2)における温度よりさ! −4らに低くなっており、ブローマンドレルμsを通過
する過程で加熱される。
Bloeff temperature is determined by the accumulator (7), the accumulator radar (to), the electromagnetic valve (to), and the dark air inlet pipe (to
2), the air inflow pipe between the solenoid valve and the blow block (to) is lower than the temperature at the accumulator q1 and the air inflow f(2) due to adiabatic expansion when passing through the blow block (to). ! -4, and is heated in the process of passing through the blow mandrel μs.

電磁バルブ(ハ)の作動FvJ(開放前)のエア状態は
アキュムレーター(至)、及びアキエムレータ−ωとw
L電磁バルブホ)間のエア流入管(至)においては高圧
低温(室温)であり、電磁パルプ(4)とブローブロッ
ク(至)間のエア流入管■、ブローブロック(至)、及
びブローマンドレルOeにおいては大気圧で、ブローマ
ンドレル内部内に残留するエアは高温であり、また、ブ
ローブロック(至)につながるエア流入管@及びブロー
ブロック四内に残留するエアはブローブロック叫内を流
れる冷却水で低温に維持されている。
The air condition of the operation FvJ (before opening) of the electromagnetic valve (c) is the accumulator (to), and the accumulator - ω and w.
The air inflow pipe (to) between the electromagnetic pulp (4) and the blow block (to) is at high pressure and low temperature (room temperature), and the air inflow pipe (to) between the electromagnetic pulp (4) and the blow block (to), the blow block (to), and the blow mandrel Oe are at high pressure and low temperature (room temperature). At atmospheric pressure, the air remaining inside the blow mandrel is at a high temperature, and the air remaining in the air inlet pipe leading to the blow block and the air remaining in the blow block is cooled by the cooling water flowing inside the blow block. is maintained at a low temperature.

電磁パルプ(2θが作動(開放)せしめられると、室温
以下に冷却された高圧エアはエア流入管Q4に供給され
、圧力低下しつつ、ブローブロック(至)、及びブロー
マンドレルqQを経てパリソン(3)ζ内に流入せしめ
られる。
When the electromagnetic pulp (2θ) is activated (opened), high-pressure air cooled to below room temperature is supplied to the air inlet pipe Q4, and while the pressure decreases, it passes through the blow block (to) and the blow mandrel qQ to the parison (3). ) is caused to flow into ζ.

エア流入1rCJ4)〜パリソン+33内部の領域にお
けるエアの圧力はエア流入量の増大l二伴って上昇し、
パリソンがひろげられ、キャビティに金型面に接する迄
に至った時点でアキュムレーター(至)における圧力と
同圧となる。
The air pressure in the area between the air inflow 1rCJ4) and the inside of the parison +33 rises with the increase in the amount of air inflow,
When the parison is expanded and reaches the point where it touches the mold surface in the cavity, the pressure becomes the same as the pressure in the accumulator.

〔作 用〕[For production]

先ず本発明の¥!造方法の作用につき説明する。 First of all, ¥ of this invention! The effect of the manufacturing method will be explained.

延伸ブローの工程において、耐熱性レジン層を児熱加圧
ブローエアにより延伸適性温度に保つことにより、白化
が防止され、それと同時に金型に接触する側を低温に保
つことにより、偏肉の発生が防止される。
In the stretch-blowing process, whitening is prevented by keeping the heat-resistant resin layer at a temperature suitable for stretching using baby-heated pressurized blow air, and at the same time, by keeping the side that contacts the mold at a low temperature, uneven thickness can be prevented. Prevented.

次に本発明のブロー成形装置の作用を説明する。Next, the operation of the blow molding apparatus of the present invention will be explained.

ブローマンドレル(至)内のスパイラル状ヒーター■は
断熱膨張冷却、後のエアを加熱する。このスパイラル状
ヒーターはブローエアの流路に沿つて適当な距離にわた
って存在し、ブローエアを塁積的に加熱する。
The spiral heater in the blow mandrel performs adiabatic expansion cooling and then heats the air. This spiral heater exists over a suitable distance along the flow path of the blow air, and heats the blow air in a cumulative manner.

また、ブローマンドレル温度制御用温度センサー、及び
高圧エア測温用温度センサーはブロー マンドレル及び
高圧エアの温度を検出Tる。
In addition, a temperature sensor for blow mandrel temperature control and a temperature sensor for high pressure air temperature measurement detect the temperature of the blow mandrel and high pressure air.

λ 1ブロー成形工程の終了とともに、パリソン内、−1 部及びブローマンドレル内部のエアは高圧に達し、同時
に断熱圧縮効果で温度上昇し、かつエアの通過による冷
却が停止するので、ヒーターが過加熱しないように、ま
た電磁パルプ(2b)の開放前のブローマンドレル内部
の温度状態を一定にするために、ブローマンドレル温度
制御用温度センサー、及び高圧エア測温用温度センサー
鑑二よりtnn測測定2こなわれ、測定データにもとづ
いてヒーターの制御と必要に応じたブローマンドレルの
冷却がなされる。
At the end of the λ1 blow molding process, the air inside the parison, the -1 section, and the blow mandrel reaches high pressure, and at the same time the temperature rises due to the adiabatic compression effect, and cooling by air passage stops, causing the heater to overheat. In order to prevent this from happening, and to keep the temperature inside the blow mandrel constant before the electromagnetic pulp (2b) is released, the temperature sensor for blow mandrel temperature control and the temperature sensor for high pressure air temperature measurement are used to measure tnn measurement 2. The heater is controlled and the blow mandrel is cooled as necessary based on the measured data.

〔実施例〕〔Example〕

ポリエチレンテレフタレート(三井Pl!ITIII、
グレードJ125、IVVO28)及びUポリマー(ユ
ニチカ製、グレードσ8400)を使用し、ポリエチレ
ンテレフタレート90%、σポリマー10係の重量比の
多層パリソンを射出成形した。パリソン胴部中央部のP
E!T/Uポリマー/P11iTの谷−肉厚はパリソン
外側より7、941 / Q、 24 ml / 0.
881mで総肉厚は4.111mであった。
Polyethylene terephthalate (Mitsui Pl!ITIII,
A multilayer parison with a weight ratio of 90% polyethylene terephthalate and 10 parts σ polymer was injection molded using U polymer (manufactured by Unitika, grade σ8400). P in the center of the parison body
E! The valley-wall thickness of T/U polymer/P11iT is 7,941/Q, 24 ml/0.
The total wall thickness was 881 m and 4.111 m.

パリソンの射出成形及び冷却工程においてパリソン外型
(キャピテイ型)は8 ”Cの冷却水で一万バリソン内
型(コア型)は15°Cの冷却水で温度差をつけて冷却
し、成形されるパリソンの内側温度が外側温度より高(
なるようにした。
In the parison injection molding and cooling process, the parison outer mold (capity mold) is cooled with 8"C cooling water and the parison inner mold (core mold) is cooled with 15°C cooling water with a temperature difference, and molded. The inside temperature of the parison is higher than the outside temperature (
I made it so.

射出時間(射出及び保圧時間をいうン、及び冷却時間(
射出終了後パリソンをそのまま金型内にとどめ、冷却す
る時間をいう)の合計時間(以後射出冷却時間という)
を19.3秒より22秒まで変化させ、射出金型内での
パリソンの冷却条件を変え、パリソンの温度を変化させ
た。
Injection time (injection and pressure holding time), cooling time (
The total time (hereinafter referred to as injection cooling time) is the time for the parison to remain in the mold and cool after injection is completed.
was changed from 19.3 seconds to 22 seconds, the cooling conditions of the parison within the injection mold were changed, and the temperature of the parison was changed.

また、パリソンの成形、冷却後、延伸ブロ一工程の前に
パリソンの温・度を一時調整する温調工程を介したが、
この条件設定は一定とし、95゛Cの温度の円筒ポット
内に20秒間とどめること(二した。
In addition, after forming and cooling the parison, a temperature control process was performed to temporarily adjust the temperature and degree of the parison before the stretching and blowing process.
This condition setting was kept constant, and the sample was kept in a cylindrical pot at a temperature of 95°C for 20 seconds.

延伸ブロー成形はブローマンドレル内にスパイラル状の
シースヒーター(strs316製シースヒーター1<
5gmφ、400W、200V)を取り付けたブローエ
ア加熱吹込み装置を使用し、加熱加圧ブローエアを吹込
んでおこなった。
For stretch blow molding, a spiral sheath heater (strs316 sheath heater 1
The heating and pressurizing blow air was blown using a blow air heating blowing device equipped with a 5 gmφ, 400 W, 200 V).

ブローマンドレル外側にうめ込んだ/’lit対で測温
し、シースヒーターを印加する電圧を変え、発熱量を変
化させ、吹込まれる高圧ブローエアの温度を変化させた
The temperature was measured with a /'lit pair embedded on the outside of the blow mandrel, and the voltage applied to the sheath heater was changed to change the amount of heat generated, and the temperature of the high-pressure blow air blown was changed.

まず、射出冷却時間が193秒、19.5秒、及び20
.0秒の短時間のときには、ホットブローエアを用いず
して、冷いブローエアによってUポリマーの白化を生せ
しめることなく延伸ブロー成形でさた。但し195秒で
は、パリソンが未だ高温の状態に残されているため、ポ
リエチレンテレフタレートの結晶化がはじまり、ボトル
の雲りが発生し、透明性の劣る壁厚偏肉の大さいものが
得られてしまった。
First, the injection cooling time was 193 seconds, 19.5 seconds, and 20 seconds.
.. When the time was 0 seconds, stretch blow molding was performed without using hot blow air and without whitening of the U polymer due to cold blow air. However, at 195 seconds, the parison is still left in a high temperature state, so polyethylene terephthalate begins to crystallize, causing cloudiness in the bottle and resulting in a bottle with poor transparency and large uneven wall thickness. Oops.

次に射出冷却時間を延長し、2Q、5秒に設定シ、前記
と同様にして延伸ブロー成形したところ、σポリマーの
白化が発生した。
Next, when the injection cooling time was extended to 2Q and 5 seconds and stretch blow molding was carried out in the same manner as above, whitening of the σ polymer occurred.

次にシースヒーターに通電し、徐々に電圧を上げていっ
た。同時にブローマンドレルの温度を測定した。そして
シースヒーターで加熱した種々の温度のブローエアを用
いて延伸ブロー成形し、シースヒーターによる加熱温度
を白化か発生しな(なるまで高温にした。
Next, the sheath heater was energized and the voltage was gradually increased. At the same time, the temperature of the blow mandrel was measured. Stretch blow molding was then carried out using blow air heated by a sheath heater at various temperatures, and the heating temperature by the sheath heater was raised to a high temperature until no whitening occurred.

55゛Cより完全に白化は発生しなくなった。Whitening completely stopped occurring from 55°C.

さらに同様な条件変更を射出冷却時間を2tO秒、21
.5秒、22.0秒に延長し行ったところそれぞれ76
”C,86−C,1o 3”C:c白化は解消された。
Furthermore, similar conditions were changed such that the injection cooling time was 2tO seconds and 21
.. When extended to 5 seconds and 22.0 seconds, it was 76 respectively.
"C,86-C,1o 3"C:c Whitening was resolved.

以上の実験結果を第8図に示す。The above experimental results are shown in FIG.

なかなりの面積の白化発生、△は丁じ状あるいは点状の
ごくわずかでも発生が目視でさる程度の白化発生を示す
。また○は白化の発生が全く無いことを示す。
Whitening occurs over a fairly large area, and △ indicates that even a very small amount of whitening in the form of cloves or dots is visible to the naked eye. In addition, ◯ indicates that no whitening occurred at all.

〔発明の効果〕〔Effect of the invention〕

(11ボリエテレンテレフダレートと耐熱性レジンとか
らなる多層容器を延伸ブロー成形するとき、白化を防止
するためC;従来はUポリマー等の耐熱性レジンの適性
延伸温度Cニパリソンの温調温度を近づけるため、ポリ
エチレンテレフタレートが適温以上に高温に加熱され、
ポリエチレンテレフタレートの結晶化による曇りが発生
しやすかった。特に射出冷却時間19秒台では遮りが発
生しやすい。本発明によれば、20秒以上の時間をとっ
てパリソンの射出冷却をおこなうことができるので、ボ
リエチレンテレフダレートの曇すを解消し、遜明性のす
ぐれたボトルを得ること′が′eきる。
(When stretching and blow molding a multilayer container made of 11 polyethylene terephthalate and a heat-resistant resin, C is used to prevent whitening; conventionally, the appropriate stretching temperature for heat-resistant resins such as U polymers is C. Temperature control temperature for Niparison) polyethylene terephthalate is heated to a higher temperature than the appropriate temperature,
Clouding was likely to occur due to crystallization of polyethylene terephthalate. Particularly when the injection cooling time is on the order of 19 seconds, blockage is likely to occur. According to the present invention, the injection cooling of the parison can be performed for 20 seconds or more, so that it is possible to eliminate the fogging of polyethylene terephthalate and obtain a bottle with excellent clarity. e-kill.

(2)本発明によれば、σポリマーの白化、歪みを防止
して多層容器′?!f延伸ブロー成形できるので、耐熱
性の高いボリアリレートを多く含んだグレードU345
0 (45%ボリアリレート)を耐熱性レジンとして用
い、耐熱性のすぐれた多層容器を得ることができる。
(2) According to the present invention, whitening and distortion of the σ polymer can be prevented and the multilayer container'? ! f Grade U345 contains a large amount of polyarylate with high heat resistance because it can be stretch blow molded.
0 (45% polyarylate) as a heat-resistant resin, a multilayer container with excellent heat resistance can be obtained.

(3)本発明C:よればポリエチレンテレフタレートの
適性延伸温度に近づけることかでさるため、ポリエチレ
ンテレフタレートの偏肉の発生を減少させることができ
る。このためIV値の高い高価なPETレジンを使用す
る必要がなく、コストを下げることができる。
(3) Invention C: According to the present invention, the stretching temperature can be brought close to the appropriate stretching temperature of polyethylene terephthalate, so that the occurrence of uneven thickness of polyethylene terephthalate can be reduced. Therefore, there is no need to use expensive PET resin with a high IV value, and costs can be reduced.

(4)パリソンを多数個取りする場合一様な射出条件で
成形することができず、したがって延伸ブローするパリ
ソンの品質、温調状態は一様でないため、従来技術では
白化の発生を防止しされなかったが、本来によればキャ
ビティ間のパリソン温度の相違に起因する延伸ブロー適
性の相違を、ホットブローエア温度を個々にコントロー
ルすることにより容易に解消できる。この為、パリソン
の共射出条件及び温調条件中を広くとることができる。
(4) When molding a large number of parisons, it is not possible to mold them under uniform injection conditions, and therefore the quality and temperature control of the parisons to be stretched and blown are not uniform. However, the difference in stretch blow suitability caused by the difference in parison temperature between cavities can be easily resolved by individually controlling the hot blow air temperature. Therefore, the co-injection conditions and temperature control conditions for the parison can be widened.

(5)ブローマンドレルに旧ってスパイラル状ヒーター
が配設されているので、高圧エアの通過時にすみやかに
エアを加熱することかでさる。
(5) Since the blow mandrel is traditionally equipped with a spiral heater, it is possible to quickly heat the high-pressure air as it passes through.

(6)ブロ一工程の終了とともに、ボトル内のエアは高
圧に達し、金型による賦型を完成すると同時に断熱圧縮
効果で温度が上昇する。−万シースヒーターにはブロー
エアの通過停止後も引さ続さ加熱され、シースヒーター
自体が筋温となり蓄熱する。この蓄熱温度が最高になる
タイミングに合わせてT4磁バルブを開放し、次のブロ
一工程を行うことにより、さゎめて効率良く加熱エアヶ
得ることかでさる。
(6) At the end of the blowing process, the air inside the bottle reaches high pressure, and at the same time as the molding is completed, the temperature rises due to the adiabatic compression effect. - The sheath heater continues to be heated even after the blow air stops passing, and the sheath heater itself becomes muscle warm and stores heat. By opening the T4 magnetic valve at the timing when this heat storage temperature reaches its maximum and performing the next blowing process, heated air can be obtained even more efficiently.

また断熱膨俣を発生する位置:;加熱ヒーターを位置さ
せるため、不要な装置部分を加熱下ることがなく、直接
温度低下したブローエアを加熱し、しかも加熱後丁みゃ
かに延伸ブローI:供されるので機械作動上好ましく、
またエネルギーの利用効率も艮い。
In addition, since the heating heater is located at the position where the adiabatic swelling occurs, unnecessary parts of the device are not heated, and the blow air whose temperature has been lowered is directly heated. It is preferable for mechanical operation because
The efficiency of energy use is also impressive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いるパリソンの断面図、第2
因は第1図示のパリソン胴部の拡大断面図、第3図は温
調装置の断面図、@4図は本発明のブロー成形装置の断
面図、第5図はブローマンドレルの分解斜視図、第6図
はヒーターのリード酵の固定袋層の説明図、第7図はホ
ットブローエアのフロー図、第8図は白化の発生状況を
示すグラフである。 3・・・・・・・・・・・・・・・・・・パyソント・
・・・・・・・・・・・・・・・・耐熱性レジン)#!
2・・・・・・・・・・・・・・・・・・ポリエチレン
テレフタレート層 10・・・・・・・・・・・・・・・リップキャビティ
11.12・・・・・・・・・ブロー熱処理型13・・
・・・・・・・・・・・・・延伸ロッド14・・・・・
・・・・・・・・・・延伸ロッド先端15・・・・・・
・・・・・・・・・ブローブロック16・・・・・・・
・・・・−・・・ブローマンドレル17・・・・・・・
・・・・・・・・延伸ロツドスライドスリーフ18・・
・・・−・・・・・・・・・エアタイト付スライドスリ
ーブ 19・・・・・・・・・・・・・・・延伸ロッドカバー
スリーブ20・・・・・・・・・・・・・・・スパイラ
ル状ヒーター21・・・・・・・・・・・・・・・押え
板22・−・・・・・・・・・・・・・ブローマンドレ
ル温度制御用温度センサー 25・・・・・・・・・・・・・・・高圧エア測温用温
度センサー24・・・・・・・・・・・・・・・高圧エ
ア配管継手25・・・・・・・・・・・・・・・スパイ
ラル状ヒーター気@継手 26・・・・・・・・・・・・・・・高圧エア開放端開
閉電磁バルブ 特許出願人 大日本印刷株式会社 代理人 弁理士  小 西 淳 美 第1図 第2図 第3図 第5図 第6図 #!P7図 第8rl!J
Figure 1 is a sectional view of the parison used in the present invention, Figure 2 is a cross-sectional view of the parison used in the present invention.
The cause is an enlarged cross-sectional view of the parison body shown in Figure 1, Figure 3 is a cross-sectional view of the temperature control device, Figure @4 is a cross-sectional view of the blow molding apparatus of the present invention, Figure 5 is an exploded perspective view of the blow mandrel, FIG. 6 is an explanatory diagram of the fixed bag layer of the lead fermentation of the heater, FIG. 7 is a flow diagram of hot blow air, and FIG. 8 is a graph showing the occurrence of whitening. 3・・・・・・・・・・・・・・・Python・
・・・・・・・・・・・・・・・Heat-resistant resin) #!
2・・・・・・・・・・・・・・・・・・Polyethylene terephthalate layer 10・・・・・・・・・・・・・・・Lip cavity 11.12・・・・・・・・・・・Blow heat treatment type 13・・
・・・・・・・・・・・・Stretch rod 14・・・・・・
・・・・・・・・・Extension rod tip 15・・・・・・
・・・・・・・・・Blow block 16・・・・・・・
・・・・・・・・・Bro Mandrel 17・・・・・・
・・・・・・Stretched rod slide sleeve 18...
.........Slide sleeve with airtight 19......Extension rod cover sleeve 20... ...Spiral heater 21...Press plate 22--Blow mandrel temperature control temperature sensor 25...・・・・・・・・・・・・Temperature sensor for high pressure air temperature measurement 24・・・・・・・・・・・・High pressure air piping joint 25・・・・・・・・・・・・・・・・・・Spiral heater air @ fitting 26 ・・・・・・・・・・・・・・・High pressure air open end opening/closing solenoid valve Patent applicant Atsushi Ko Nishi, Patent attorney, Dai Nippon Printing Co., Ltd. Beauty Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 #! P7 figure 8rl! J

Claims (2)

【特許請求の範囲】[Claims] (1)耐熱性レジン層を中間層として有し、且つ該耐熱
性レジン層が成形体の内側に片寄っている多層パリソン
を成形し、該多層パリソンを延伸ブロー成形する耐熱性
多層容器の製造方法において、パリソン成形用射出成形
金の雄型の表面温度を雌型の表面温度よりも高く保持し
た状態で前記多層パリソンを共射出成形し、次いでパリ
ソンの内側の方が外側よりも高温となるように温調し、
次いで断熱膨張時もしくは後に加熱した加熱加圧ブロー
エアをパリソン内に吹き込んで延伸ブロー成形すること
を特徴とする耐熱性多層容器の製造方法。
(1) A method for manufacturing a heat-resistant multilayer container, comprising forming a multilayer parison having a heat-resistant resin layer as an intermediate layer and having the heat-resistant resin layer biased toward the inside of the molded body, and stretch-blow molding the multilayer parison. In this step, the multilayer parison is co-injection molded with the surface temperature of the male die of the injection mold for parison molding being maintained higher than the surface temperature of the female die, and then the inside of the parison is hotter than the outside. Adjust the temperature to
A method for producing a heat-resistant multilayer container, which comprises stretching and blow-molding the parison by blowing heated and pressurized blow air into the parison during or after the adiabatic expansion.
(2)ブロー成形用金型と、該ブロー成形用金型につな
がる筒状のブローマンドレルと、該ブローマンドレルの
上方部に該マンドレル上方部をかこむように設けられた
ブローブロックとブローマンドレルの開放端部を密閉し
、且つ延伸ロッドを支持するためのエアタイト付スライ
ドスリーブとブローマンドレル内部の下方部寄りに設け
られた延伸ロッドを支持するための延伸ロッドスライド
スリーブとエアタイト付スライドスリーブと延伸ロッド
スライドスリーブとによりブローマンドレルの中心に位
置せしめられた延伸ロッドからなるブロー成形装置にお
いて、ブローマンドレル内にはスパイラル状ヒータが内
蔵されており、ブローマンドレル温度制御用温度センサ
ー及び高圧エア測温用温度センサーを有し、延伸ロッド
と前記ヒータの間には、筒状の延伸ロッドカバースリー
ブが設けられ、ブローブロック及びブローマンドレルに
は、それらを貫通して高圧エアをブローマンドレルと延
伸ロッドカバースリーブ間に供給するための通路が設け
られ、該通路につながるようにブローブロックに高圧エ
ア注入管の継手を介して高圧エア注入管が接続され、高
圧エア注入管には電磁バルブを介して高圧エアを供給す
る装置が接続されていることを特徴とするブロー成形装
(2) A blow molding mold, a cylindrical blow mandrel connected to the blow molding mold, a blow block provided above the blow mandrel so as to surround the upper part of the mandrel, and an open end of the blow mandrel. A slide sleeve with an airtight for sealing the area and supporting the stretch rod, a stretch rod slide sleeve for supporting the stretch rod provided near the lower part inside the blow mandrel, a slide sleeve with air tight, and a stretch rod slide sleeve In a blow molding device consisting of a stretching rod positioned at the center of a blow mandrel, a spiral heater is built in the blow mandrel, and a temperature sensor for controlling the temperature of the blow mandrel and a temperature sensor for measuring high pressure air temperature are installed. A cylindrical stretching rod cover sleeve is provided between the stretching rod and the heater, and high pressure air is supplied between the blowing block and the blowing mandrel by passing through them. A high-pressure air injection pipe is connected to the blow block via a high-pressure air injection pipe joint so as to be connected to the passage, and high-pressure air is supplied to the high-pressure air injection pipe via a solenoid valve. A blow molding device characterized in that the device is connected
JP62020991A 1987-01-31 1987-01-31 Heat-resistant multi-layer container manufacturing method and blow molding apparatus Expired - Lifetime JPH082583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020991A JPH082583B2 (en) 1987-01-31 1987-01-31 Heat-resistant multi-layer container manufacturing method and blow molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020991A JPH082583B2 (en) 1987-01-31 1987-01-31 Heat-resistant multi-layer container manufacturing method and blow molding apparatus

Publications (2)

Publication Number Publication Date
JPS63189225A true JPS63189225A (en) 1988-08-04
JPH082583B2 JPH082583B2 (en) 1996-01-17

Family

ID=12042597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020991A Expired - Lifetime JPH082583B2 (en) 1987-01-31 1987-01-31 Heat-resistant multi-layer container manufacturing method and blow molding apparatus

Country Status (1)

Country Link
JP (1) JPH082583B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497822A (en) * 1990-08-14 1992-03-30 Nissei Asb Mach Co Ltd Vessel made of synthetic resin and its manufacture
JPH1134152A (en) * 1997-07-22 1999-02-09 Nissei Asb Mach Co Ltd Large-sized container and its molding method
JP2007099360A (en) * 2005-10-06 2007-04-19 Toyo Seikan Kaisha Ltd Multi-layered polyester vessel and its manufacturing method
WO2008117474A1 (en) * 2007-03-22 2008-10-02 Toyo Seikan Kaisha, Ltd. Multilayered polyester container and process for producing the same
JP2013539723A (en) * 2010-10-12 2013-10-28 エス.アイ.ピー.エイ.ソシエタ’インダストリアリザッジオーネ プロゲッタジオーネ エ オートマジオーネ ソシエタ ペル アチオニ Heating device for preforms manufactured from thermoplastics
CN105965789A (en) * 2016-07-11 2016-09-28 广州华研精密机械有限公司 Hot-runner mold provided with double layers of runners

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497822A (en) * 1990-08-14 1992-03-30 Nissei Asb Mach Co Ltd Vessel made of synthetic resin and its manufacture
JPH1134152A (en) * 1997-07-22 1999-02-09 Nissei Asb Mach Co Ltd Large-sized container and its molding method
JP2007099360A (en) * 2005-10-06 2007-04-19 Toyo Seikan Kaisha Ltd Multi-layered polyester vessel and its manufacturing method
WO2008117474A1 (en) * 2007-03-22 2008-10-02 Toyo Seikan Kaisha, Ltd. Multilayered polyester container and process for producing the same
JPWO2008117474A1 (en) * 2007-03-22 2010-07-08 東洋製罐株式会社 Multilayer polyester container and method for producing the same
US9095997B2 (en) 2007-03-22 2015-08-04 Toyo Seikan Kaisha, Ltd. Multi-layer polyester container and method of producing the same
JP2013539723A (en) * 2010-10-12 2013-10-28 エス.アイ.ピー.エイ.ソシエタ’インダストリアリザッジオーネ プロゲッタジオーネ エ オートマジオーネ ソシエタ ペル アチオニ Heating device for preforms manufactured from thermoplastics
CN105965789A (en) * 2016-07-11 2016-09-28 广州华研精密机械有限公司 Hot-runner mold provided with double layers of runners

Also Published As

Publication number Publication date
JPH082583B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP3388761B2 (en) Method and apparatus for partial crystallization of amorphous plastic objects
US6080353A (en) Method of molding a heat-resistant container
JPH0740955A (en) Manufacture of biaxially oriented plastic bottle with excellent heat resistance and device therefor
US6332770B1 (en) Apparatus for localized preform cooling outside the mold
US5547631A (en) Process for annealing biaxially oriented hollow shaped thermoplastic atricles
WO2003002329A1 (en) Method and device for heating preform
JP5674341B2 (en) POLYESTER THERMOFORMED ARTICLE AND METHOD FOR PRODUCING THE SAME
JPH0137252B2 (en)
JPS63189225A (en) Manufacture of heat-resistance multi-layer container and blow molding equipment
JPH1134152A (en) Large-sized container and its molding method
JPH0156890B2 (en)
JP5848433B2 (en) Blow molding method and blow mold
JPH09118322A (en) Self-standing container excellent in heat-resistance/ pressure-resistance, and its manufacture
JPH06297552A (en) Manufacture of resin blow molding container and molding die
JP2019018514A (en) Container made of polyester resin, method of manufacturing the same, and blow molding mold
JP2509042B2 (en) Preform temperature controller
JP4282364B2 (en) Heat-resistant wide-mouth synthetic resin container, manufacturing method and manufacturing apparatus
JP2592663B2 (en) Manufacturing method of blow molded container
WO2004096525A1 (en) Method of manufacturing heat-resisting polyester bottles and the products therefrom
JPH0462028A (en) Manufacture of high-stretch-blow-molded container
JPH0615643A (en) Manufacture of premolded body
JPH01294025A (en) Preparation of transparent heat-resistant multilayered container
JPH11348106A (en) Method for controlling heating of preform
JPH0740956A (en) Manufacture for heat resistant biaxially oriented plastic bottle and device therefor
JP3353614B2 (en) Manufacturing method of self-standing container with excellent heat and pressure resistance