JPS6318825B2 - - Google Patents

Info

Publication number
JPS6318825B2
JPS6318825B2 JP6642480A JP6642480A JPS6318825B2 JP S6318825 B2 JPS6318825 B2 JP S6318825B2 JP 6642480 A JP6642480 A JP 6642480A JP 6642480 A JP6642480 A JP 6642480A JP S6318825 B2 JPS6318825 B2 JP S6318825B2
Authority
JP
Japan
Prior art keywords
getter
getter device
barium
boric acid
acid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6642480A
Other languages
Japanese (ja)
Other versions
JPS56162460A (en
Inventor
Katsuhiro Shimura
Sakae Kimura
Tadaki Okai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6642480A priority Critical patent/JPS56162460A/en
Priority to DE8080106502T priority patent/DE3070123D1/en
Priority to EP80106502A priority patent/EP0028372B1/en
Priority to US06/201,198 priority patent/US4342662A/en
Publication of JPS56162460A publication Critical patent/JPS56162460A/en
Publication of JPS6318825B2 publication Critical patent/JPS6318825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

【発明の詳細な説明】 本発明はバリウム−アルミニウム合金粉末と、
ニツケル粉末が断面U字状の環状金属製のゲツタ
容器に充填され、加熱によりバリウムを蒸発する
ことができるゲツタ装置に関するものがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides barium-aluminum alloy powder,
There is a getter device in which nickel powder is filled in a getter container made of annular metal and has a U-shaped cross section, and barium can be evaporated by heating.

ゲツタ装置は通常、排気、封止された真空容器
内において、たとえば高周波誘導加熱などの方法
で加熱され、バリウムのゲツタ膜を真空容器内壁
に形成する。このような工程中にゲツタ装置は不
所望な加熱を余儀なく被る場合がある。たとえば
特公昭49−12031号公報に開示されているような
受像管の製造工程における場合などがそれであ
る。
The getter device is usually heated in an evacuated and sealed vacuum chamber by, for example, high-frequency induction heating to form a getter film of barium on the inner wall of the vacuum chamber. During such processes, the getter device may be subject to undesirable heating. For example, this is the case in the manufacturing process of picture tubes as disclosed in Japanese Patent Publication No. 12031/1983.

この公報に開示されている技術によれば受像管
を構成するパネル部とフアンネル部とがフリツト
ガラスにより封着される前にゲツタ装置が内部に
取り付けられ、その後大気中で約400〜450℃、1
時間加熱してパネル部とフアンネル部とがフリツ
トガラスを介して封着される。
According to the technique disclosed in this publication, a getter device is installed inside the picture tube before the panel section and the funnel section that constitute the picture tube are sealed together with frit glass, and then heated at about 400 to 450 degrees Celsius in the atmosphere for 1 hour.
By heating for a period of time, the panel portion and the funnel portion are sealed together via the fritted glass.

この場合、通常のたとえばバリウム−アルミニ
ウム合金(BaAl4)粉末とニツケル(Ni)粉末
との混合粉末(混合重量比約1:1)を有するゲ
ツタ材は大気中350℃程度以上で長時間加熱され
ると、酸化して主に酸化ニツケル(NiO)を生じ
る。そして、ゲツタ装置中にNiOとが存在する
と、NiOとBaAl4とが高温で急激に反応するため
に、ゲツタ装置を加熱してバリウムを蒸発させる
(以後ゲツタフラツシユと称する)際に、爆発的
なバリウムの飛散という結果をもたらす。この
時、NiOの生成量がさらに多くなると、金属製の
ゲツタ容器まで溶断してゲツタ材と共に爆発的に
飛散するようになる。たとえばカラーテレビジヨ
ン用カラー受像管において、この種の爆発的飛散
は受像管の耐圧不良などの原因となるため完成に
避けなければならない。以上の理由から大気中で
高温に曝されても、何ら障害を生じないゲツタ装
置が要望されている。
In this case, a typical getter material containing a mixed powder of barium-aluminum alloy (BaAl 4 ) powder and nickel (Ni) powder (mixed weight ratio of approximately 1:1) is heated in the atmosphere at temperatures above 350°C for a long period of time. When exposed, it oxidizes to produce mainly nickel oxide (NiO). If NiO is present in the getter device, NiO and BaAl 4 react rapidly at high temperatures, so when the getter device is heated to evaporate barium (hereinafter referred to as getta flash), explosive barium is released. This results in the scattering of At this time, if the amount of NiO generated increases further, the metal getter container will also melt and be explosively scattered along with the getter material. For example, in a color picture tube for color television, this type of explosive scattering must be avoided during completion because it can cause the picture tube to withstand poor pressure. For the above reasons, there is a need for a getter device that does not cause any trouble even when exposed to high temperatures in the atmosphere.

このような目的のため、ゲツタ材の露出表面に
有機シランを被覆したゲツタ装置が特開昭52−
84960号公報に、また酸化シリコンを被覆したゲ
ツタ装置が特開昭52−139355号公報に開示されて
いる。
For this purpose, a getter device in which the exposed surface of the getter material was coated with organic silane was developed in Japanese Patent Laid-Open No.
A getter device coated with silicon oxide is disclosed in Japanese Patent Application Laid-Open No. 139355/1984.

先ず特開昭52−84960号公報によれば、アルキ
ル、アリール、アラルキル、アルカリールおよび
水素を含むポリシロキサンなどの有機シランによ
り被覆されたゲツタ装置が空気中で420℃、1時
間の加熱に耐え、爆発的な飛散を呈することな
く、バリウムを蒸発させ得る技術が開示されてい
る。
First, according to JP-A No. 52-84960, a getter device coated with organic silane such as polysiloxane containing alkyl, aryl, aralkyl, alkaryl and hydrogen can withstand heating at 420°C for 1 hour in air. , a technique has been disclosed that can evaporate barium without causing explosive scattering.

しかしながら、このような有機シランにより被
覆されたゲツタ装置は、その使用時において次の
ような欠点を持つている。即ち、このようなゲツ
タ装置はゲツタフラツシユの際、主として炭化水
素系気体を多量に放出する。この放出された気体
は容易にゲツタ膜に吸着されずにゲツタフラツシ
ユ後しばらくの間、管内圧力が10-3Torr程度に
放置される。
However, such getter devices coated with organic silane have the following drawbacks when used. That is, such a getter device mainly emits a large amount of hydrocarbon gas during getter flushing. This released gas is not easily adsorbed by the getter membrane, and the pressure inside the tube remains at about 10 -3 Torr for a while after the getter flush.

周知のように多量の残留ガスはカラーテレビジ
ヨン用カラー受像管内などの高電圧が印加される
空間内ではイオン化された後、加速されて陰極あ
るいは陽極に衝突する。このいわゆるスパツタリ
ング効果により、陰極上の電子放射性物質の一部
分が他の好ましくない箇所に飛着し、耐圧特性を
著しく劣化されることになるであろうことは容易
に推察できることである。
As is well known, a large amount of residual gas is ionized in a space to which a high voltage is applied, such as in a color picture tube for color television, and is then accelerated and collides with the cathode or anode. It can be easily inferred that due to this so-called sputtering effect, a portion of the electron-emitting substance on the cathode will fly to other undesirable locations, resulting in a significant deterioration of the breakdown voltage characteristics.

また特開昭52−139355号公報においては、酸化
シリコン層によりゲツタ材の露出表面が被覆され
たゲツタ装置が大気中で450℃、1時間の加熱に
耐えること、さらに、このような酸化シリコン層
が、たとえばメタノール、脱イオン水と硝酸から
なる組成物の加水分解されたエチルシリケート溶
液中にゲツタ装置を浸漬した後に残る硅酸塩を真
空中120℃に加熱することにより得られる技術が
開示されている。このようにして得られるゲツタ
装置は高温酸化に対して、かなりの保護効果を示
す。即ち、保護被膜を有しないゲツタ装置を大気
中で450℃、1時間の加熱をし、その後、真空中
でゲツタフラツシユさせた場合、爆発的な飛散を
呈し、ゲツタ容器も、その殆んどが散逸してしま
うのに対し、前述したような方法で露出表面を酸
化シリコン層で被覆したゲツタ装置を同様に大気
中で加熱後、真空中でフラツシユさせた場合、爆
発的飛散の程度はかなり改善され、少量のゲツタ
材の脱落と一部焼結したゲツタ材のゲツタ容器外
への浮き上り(ピールオフ現象)が認められたの
に留まつた。しかしながら、軽度の爆発的飛散と
ゲツタ材の浮き上りは受像管などの電子管におい
ては完全に避けなければならない。前述したよう
に、これらは電子管の耐圧特性を著しく劣化させ
るからである。爆発的な飛散は飛散粒子の管内の
不所望な箇所への飛着を生ぜしめ、耐圧特性の劣
化のみならず回路の短絡をひきおこす場合すらあ
る。またゲツタ材の浮き上りは、管内の不所望な
箇所へバリウム膜を形成させ、これもまた耐圧特
性を劣化させる原因となる。このような軽度とい
えども爆発的な飛散を引き起す原因として、ゲツ
タ材中のNiの酸化が考えられる。前述した方法
で酸化シリコン層で被覆したゲツタ装置の表面を
電子顕微鏡を用いて観察したところ、酸化シリコ
ン層が多孔質な構造からなることが判明した。こ
の細孔を通してゲツタ装置表面へ酸素が供給さ
れ、ゲツタ材の一部が酸化されたものと考えられ
る。
Further, in Japanese Patent Application Laid-Open No. 139355/1989, it is disclosed that a getter device in which the exposed surface of the getter material is covered with a silicon oxide layer can withstand heating at 450°C for one hour in the air, and that such a silicon oxide layer However, a technique has been disclosed which is obtained by heating the silicates remaining after immersing the Getter device in a solution of hydrolyzed ethylsilicate in a composition consisting of, for example, methanol, deionized water and nitric acid to 120° C. in vacuo. ing. The getter device thus obtained exhibits considerable protection against high temperature oxidation. That is, when a getter device without a protective coating is heated in the atmosphere at 450°C for 1 hour and then flashed in a vacuum, explosive scattering occurs, and most of the getter container is also scattered. On the other hand, when a getter device whose exposed surface is coated with a silicon oxide layer using the method described above is similarly heated in the atmosphere and then flashed in a vacuum, the degree of explosive scattering is considerably improved. However, only a small amount of the getter material fell off and a partially sintered getter material rose to the outside of the getter container (peel-off phenomenon). However, mild explosive scattering and lifting of the getter material must be completely avoided in electron tubes such as picture tubes. This is because, as mentioned above, these materials significantly deteriorate the withstand voltage characteristics of the electron tube. Explosive scattering causes the scattered particles to fly to undesired locations within the pipe, which not only deteriorates the withstand voltage characteristics but may even cause short circuits. Furthermore, the lifting of the getter material causes the formation of a barium film at undesired locations within the tube, which also causes deterioration of the pressure resistance characteristics. The oxidation of Ni in the Getsuta material is thought to be the cause of such mild but explosive scattering. When the surface of the getter device coated with a silicon oxide layer by the method described above was observed using an electron microscope, it was found that the silicon oxide layer had a porous structure. It is thought that oxygen was supplied to the surface of the getter device through these pores, and a portion of the getter material was oxidized.

前述した欠点を除くため、発明者らは硼酸系化
合物をゲツタ材の露出表面に形成するゲツタ装置
を先に出願した。このように硼酸系化合物をゲツ
タ容器表面に形成することにより、耐高温酸化性
を有するゲツタ装置を得ることが出来る。
In order to eliminate the above-mentioned drawbacks, the inventors have previously filed an application for a getter device in which a boric acid compound is formed on the exposed surface of a getter material. By forming a boric acid compound on the surface of the getter container in this manner, a getter device having high temperature oxidation resistance can be obtained.

次にこの様なゲツタ装置の製造方法を説明する
と、先ず硼酸系化合物のアルコール溶液にゲツタ
装置を浸漬し、乾燥後、真空加熱により脱ガスを
行なう。このとき硼酸系化合物は融解し、ゲツタ
装置の表面は隈なく透明で緻密なガラス質硼酸系
化合物で被覆される。ここで云う硼酸系化合物と
は実質的に無水硼酸オルト硼酸、メタ硼酸および
四硼酸からなる群より選ばれる単体または混合物
質からなる。これらの物質はいずれを用いてもほ
ぼ同等な効果が期待できる。すなわち大気中で
450℃、2時間の加熱を行なつた場合でもゲツタ
装置はほとんど酸化されることがない。またバリ
ウムのフラツシユ時に爆発的な飛散を引き起す原
因となる酸化ニツケル(NiO)の生成はほとんど
認められない。また大気中で450℃、2時間加熱
されたこのゲツタ装置は受像管などの電子管製造
工程において正常にバリウムをフラツシユさせる
ことができる。
Next, a method for manufacturing such a getter device will be described. First, the getter device is immersed in an alcoholic solution of a boric acid compound, dried, and then degassed by vacuum heating. At this time, the boric acid compound is melted, and the surface of the getter device is completely coated with the transparent and dense vitreous boric acid compound. The boric acid compound mentioned here consists essentially of a single substance or a mixture selected from the group consisting of boric anhydride, orthoboric acid, metaboric acid, and tetraboric acid. Almost the same effect can be expected using any of these substances. i.e. in the atmosphere
Even when heated at 450°C for 2 hours, the getter device is hardly oxidized. In addition, almost no nickel oxide (NiO), which causes explosive scattering during barium flashing, is produced. Furthermore, this getter device heated in the atmosphere at 450°C for 2 hours can successfully flash barium in the manufacturing process of electron tubes such as picture tubes.

しかしながら、前述したゲツタ装置には次のよ
うな問題点があることがわかつた。すなわち、カ
ラーテレビジヨン用カラー受像管の製造工程にお
いて、あらかじめ、ゲツタ装置を内部に取付けた
パネル部とフアンネル部とをフリツトガラスによ
り封着したのち、長時間高温度の雰囲気に放置さ
れた場合、雰囲気中の水分が硼酸系化合物被覆層
に吸着される。この吸着された水分は、その後の
排気工程において一部管外に排出されるが、残り
はゲツタフラツシユ工程において管内に放出され
る。この放出された水分は周知のようにバリウム
膜に吸着された炭素化合物と反応してメタンなど
の炭化水素系気体に変換される。この気体はゲツ
タ膜に吸着され難く、ゲツタフラツシユ後、しば
らくの間管内に存在する。このような残留ガスの
有害性は前述した通りである。
However, it has been found that the above-mentioned getter device has the following problems. That is, in the manufacturing process of color picture tubes for color television, if the panel part with the getter device installed inside and the funnel part are sealed with frit glass in advance, and then left in a high temperature atmosphere for a long time, the atmosphere The moisture inside is adsorbed by the boric acid compound coating layer. A portion of this adsorbed water is discharged outside the tube in the subsequent exhaust process, but the rest is discharged into the tube in the getter flush process. As is well known, this released moisture reacts with carbon compounds adsorbed on the barium film and is converted into hydrocarbon gas such as methane. This gas is difficult to be adsorbed by the getter film and remains in the tube for some time after the getter flush. The harmfulness of such residual gas is as described above.

本発明は前述した欠点及び問題点に鑑みなされ
たものであり、高温耐酸化性を具備し、かつその
使用に際しても何等の障害を伴うことのない高品
位のゲツタ装置を提供することを目的としてい
る。
The present invention was made in view of the above-mentioned drawbacks and problems, and an object of the present invention is to provide a high-quality getter device that has high temperature oxidation resistance and does not cause any trouble when used. There is.

即ち本発明は耐高温酸化性の優れた硼酸系化合
物被覆に二酸化硅素を少量含有させることによ
り、耐水性の向上した硼酸系化合物−二酸化硅素
のガラス質被覆を少なくともゲツタ材の露出表面
に形成したゲツタ装置である。
That is, the present invention forms a boric acid compound-silicon dioxide glassy coating with improved water resistance on at least the exposed surface of the getter material by incorporating a small amount of silicon dioxide into a boric acid compound coating having excellent high-temperature oxidation resistance. It is a getter device.

二酸化硅素(SiO2)と無水硼酸(B2O2)の混
合物を加熱溶融した場合、SiO2が5重量%以下
の場合はガラス状になることは例えばT・J・
Rocket、W・R・Foster:J・Am・Ceram・
Soc・、48〔2〕78(1965)などに記載されてお
り、B2O3−SiO2混合系において2重量%SiO2
共晶点があり溶融温度が低下する。
For example , T.J.
Rocket, W. R. Foster: J. Am. Ceram.
Soc., 48 [2] 78 (1965), etc., and in a B 2 O 3 -SiO 2 mixed system, there is a eutectic point at 2% by weight SiO 2 and the melting temperature is lowered.

少なくともゲツタ材の露出表面にSiO2を混合
した硼酸系化合物を塗布した後、真空中で加熱溶
融して緻密な被覆を形成する場合、真空処理温度
は主としてゲツタ材中のニツケル粉末の焼結によ
つて制限される。
When a boric acid compound mixed with SiO 2 is applied to at least the exposed surface of the getter material and then heated and melted in a vacuum to form a dense coating, the vacuum treatment temperature is mainly used for sintering the nickel powder in the getter material. Therefore, it is limited.

すなわち、ゲツタ装置に使用する粒径数μmの
ニツケル粉末は約600℃より焼結による粒子の粗
大化が顕著となり、これはゲツタフラツシユの
際、BaAl4との反応速度を低下させ、結果として
バリウム蒸発量を減少させることになり好ましく
ない。従つて真空処理温度は550℃以下、好まし
くは500℃以下が適当である。
In other words, the nickel powder used in the Getta device, which has a particle size of several μm, becomes noticeably coarser due to sintering at about 600°C, which reduces the reaction rate with BaAl 4 during Getta flashing, and as a result, barium evaporates. This is not preferable because it reduces the amount. Therefore, the vacuum treatment temperature is suitably 550°C or lower, preferably 500°C or lower.

B2O3−SiO2系状態図では500℃以下の溶融点を
有するのはSiO2含有量が約7%以下であるが処
理時間を考慮した場合、実用的な含有量は5%以
下であつた。
In the B 2 O 3 -SiO 2 system phase diagram, the SiO 2 content that has a melting point of 500°C or less is approximately 7% or less, but when processing time is considered, the practical content is 5% or less. It was hot.

次に本発明のゲツタ装置を図面を用いて説明す
る。すなわち第1図は本発明のゲツタ装置の断面
図であり、図に於てバリウム−アルミニウム合金
粉末とニツケル粉末とを含むゲツタ材11は断面
ほぼU字状の環状金属製のゲツタ容器12に充填
され、このゲツタ容器12とゲツタ材11の表面
は総て二酸化硅素を含有した硼酸系化合物被覆1
3で覆われている。
Next, the getter device of the present invention will be explained using the drawings. That is, FIG. 1 is a cross-sectional view of the getter device of the present invention, and in the figure, a getter material 11 containing barium-aluminum alloy powder and nickel powder is filled into a getter container 12 made of annular metal and having a substantially U-shaped cross section. The surfaces of the getter container 12 and the getter material 11 are coated with a boric acid compound coating 1 containing silicon dioxide.
Covered by 3.

次に本発明のゲツタ装置を実施例を用いて詳細
に説明する。
Next, the getter device of the present invention will be explained in detail using examples.

実施例 1 BaAl4粉とNi粉の混合粉(混合重量比約1:
1)と、これに数%の窒化ゲルマニウム−鉄粉末
を加えたゲツタ材が外径22mm、内径15mm、高さ
1.9mmの断面ほぼU字状の不銹鋼よりなる環状金
属製ゲツタ容器内に充填されている所謂窒素放出
源を有する発熱型バリウムゲツタ装置を二酸化硅
素粉末を分散させた無水硼酸10重量%−メタノー
ル溶液中に浸漬する。二酸化硅素粉末は溶融を容
易にするため粒径0.1μmの微粉末を用い、添加量
は無水硼酸に対して2重量%とした。浸漬後大気
中で赤外線ランプを使用して乾燥させ、さらに真
空中で500℃、30分間加熱し第1図に示すような
ゲツタ装置を作製した。この場合ゲツタ容器及び
ゲツタ材の露出表面は薄い透明で緻密な硼酸系化
合物−二酸化硅素被覆により覆われている。
Example 1 Mixed powder of BaAl 4 powder and Ni powder (mixed weight ratio of approximately 1:
1) and a getsuta material with a few percent of germanium nitride-iron powder added to it with an outer diameter of 22 mm, an inner diameter of 15 mm, and a height of
A heat-generating barium getter device with a so-called nitrogen release source, which was filled in a ring-shaped metal getter container made of stainless steel and approximately U-shaped in cross section with a 1.9 mm cross section, was placed in a 10% by weight boric anhydride-methanol solution in which silicon dioxide powder was dispersed. Soak in. As the silicon dioxide powder, a fine powder with a particle size of 0.1 μm was used to facilitate melting, and the amount added was 2% by weight based on boric anhydride. After dipping, it was dried in the atmosphere using an infrared lamp, and further heated in a vacuum at 500°C for 30 minutes to produce a getter device as shown in Figure 1. In this case, the exposed surfaces of the getter container and getter material are covered with a thin, transparent, dense boric acid compound-silicon dioxide coating.

このように作製されたゲツタ装置を大気中で
450℃、2時間加熱したのち真空容器内に設置し
外部から高周波誘導加熱することによりゲツタフ
ラツシユを行なつた。この時真空容器内の残留ガ
スを残留ガス分析針で分析したところ炭化水素系
のガスは非常に少なかつた。またゲツタ装置を大
気中で450℃、2時間加熱後、湿度が約70%の室
内に24時間放置後、同様の実験をしたところ、炭
化水素系ガスの増加は軽微であつた。また数多く
のゲツタ装置を用いてフラツシユ実験を行なつた
が爆発的なバリウム飛散やピールオフ現象は全く
見られなかつた。さらに形成したバリウム膜の飛
散バリウム量および分布、放出ガス量、などを測
定したところ、全く異常がないことが確認され
た。
The getter device created in this way was placed in the atmosphere.
After heating at 450°C for 2 hours, it was placed in a vacuum container and subjected to high-frequency induction heating from the outside to perform a getter flash. At this time, when the residual gas in the vacuum container was analyzed using a residual gas analyzer, it was found that there was very little hydrocarbon gas. In addition, when a similar experiment was conducted after heating the Getta device in the atmosphere at 450°C for 2 hours and leaving it in a room with approximately 70% humidity for 24 hours, the increase in hydrocarbon gas was slight. In addition, although flash experiments were conducted using a number of getter devices, no explosive barium scattering or peel-off phenomenon was observed. Furthermore, when the amount and distribution of scattered barium in the formed barium film, the amount of released gas, etc. were measured, it was confirmed that there were no abnormalities at all.

実施例 2 第2図は本発明によつて得られたゲツタ装置を
カラー受像管に適用した一実施例を示す。図にお
いて前面ガラスパネル20内面に螢光膜21アル
ミニウム蒸着膜22を被着形成し、シヤドウマス
ク23をフレーム24を介して取付ける。次に
(実施例1)で示されたように作製された本発明
によるゲツタ装置を支持板26を介してフレーム
24に取付ける。しかる後に所定の要領で内面に
アクアダグ27が塗られたフアンネル28とガラ
スパネル20とをフリツトガラス29により被着
し、約450℃、1時間の加熱により両者を固定す
ると共に螢光膜21及びこの螢光膜21とアルミ
ニウム蒸着膜22の有機材を蒸発させる。その後
に電子銃をネツク部30に装着し、周知の排気工
程を経て封じ切る。次に高周波による誘導加熱に
よりゲツタフラツシユを行ない、電子銃のエージ
ング等を経てカラー受像管が完成する。このよう
にして得られたカラー受像管の電子放射特性は全
く異常がないことが確認された。したがつて本発
明のゲツタ装置を用いることによりゲツタ装置を
フアンネル28のネツク部30から挿入する必要
はなくなりネツク部30径を小さくすることが可
能となる。これは小型化された省電力型の陰極を
用いる場合に有益である。またゲツタ装置を電子
銃から電気的に切り離すことができるので不所望
なサージ電流がゲツタ装置−電子銃間に流れるこ
とを避けることができる。無水硼酸はアルコール
溶液とした後に大気中に於ける乾燥により主とし
てオルト硼酸に変化する。またオルト硼酸は加熱
条件によりメタ硼酸、四硼酸、無水硼酸などに変
化する。そこでこれら種々の硼酸系化合物につい
て単体またはこれらの混合体で実施例1と同様に
ゲツタ装置を作製し、ゲツタフラツシユを行つた
が同様な効果が得られた。
Embodiment 2 FIG. 2 shows an embodiment in which the getter device obtained according to the present invention is applied to a color picture tube. In the figure, a fluorescent film 21 and an aluminum vapor-deposited film 22 are formed on the inner surface of a front glass panel 20, and a shadow mask 23 is attached via a frame 24. Next, the getter device according to the present invention manufactured as shown in (Example 1) is attached to the frame 24 via the support plate 26. Thereafter, the funnel 28 whose inner surface is coated with Aquadag 27 and the glass panel 20 are adhered to each other using fritted glass 29 in a predetermined manner, and both are fixed by heating at approximately 450° C. for 1 hour, and the fluorescent film 21 and this fluorescent The organic material of the optical film 21 and the aluminum deposited film 22 is evaporated. Thereafter, the electron gun is attached to the neck portion 30, and the tube is sealed off through a well-known exhaust process. Next, a getter flash is performed by induction heating using high frequency waves, and the color picture tube is completed through aging of the electron gun, etc. It was confirmed that there were no abnormalities in the electron emission characteristics of the color picture tube thus obtained. Therefore, by using the getter device of the present invention, it is no longer necessary to insert the getter device through the neck portion 30 of the funnel 28, and the diameter of the neck portion 30 can be reduced. This is beneficial when using a smaller, power-saving cathode. Furthermore, since the getter device can be electrically separated from the electron gun, it is possible to prevent undesired surge current from flowing between the getter device and the electron gun. After boric acid anhydride is made into an alcohol solution, it is dried in the atmosphere to mainly change into orthoboric acid. Further, orthoboric acid changes into metaboric acid, tetraboric acid, boric anhydride, etc. depending on heating conditions. Therefore, getter devices were prepared in the same manner as in Example 1 using these various boric acid compounds alone or in mixtures thereof, and getter flushing was performed, and similar effects were obtained.

以上の実施例でも示したように、本発明は少く
ともバリウム−アルミニウム合金粉末とニツケル
粉末を含むゲツタ材の露出表面を二酸化硅素を含
有する硼酸系化合物の被覆で覆つているので耐高
温酸化性および耐水性にすぐれ、かつその使用に
対しても、何ら障害を伴なうことのない高品位の
ゲツタ装置である。
As shown in the above examples, the present invention has high temperature oxidation resistance because the exposed surface of the getter material containing at least barium-aluminum alloy powder and nickel powder is covered with a coating of a boric acid compound containing silicon dioxide. It is a high-quality getter device that has excellent water resistance and does not cause any problems when used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るゲツタ装置の軸方向の断
面図、第2図は本発明のゲツタ装置のカラー受像
管への取付状態の一実施例を示す一部切欠分解立
面である。 11……ゲツタ材、12……ゲツタ容器、13
……二酸化硅素を含有する硼酸系化合物被覆、2
0……ガラスパネル、21……螢光膜、22……
アルミニウム蒸着膜、23……シヤドウマスク、
24……フレーム、25……ゲツタ装置、26…
…支持板、27……アクアダグ、28……フアン
ネル、29……フリツトガラス。
FIG. 1 is an axial cross-sectional view of a getter device according to the present invention, and FIG. 2 is a partially cut away exploded elevational view showing an embodiment of the getter device of the present invention attached to a color picture tube. 11...Getsuta material, 12...Getsuta container, 13
...boric acid compound coating containing silicon dioxide, 2
0... Glass panel, 21... Fluorescent film, 22...
Aluminum vapor deposited film, 23...Shadow mask,
24...Frame, 25...Getter device, 26...
...Support plate, 27...Aqua Dug, 28...Funnel, 29...Flit glass.

Claims (1)

【特許請求の範囲】 1 バリウム−アルミニウム合金粉末とニツケル
粉末を含むゲツタ材が断面ほぼU字状の環状金属
製のゲツタ容器に充填されてなるゲツタ装置にお
いて、少なくとも前記ゲツタ材の表面に酸化硅素
を含有する硼酸系化合物の被覆を有することを特
徴とするゲツタ装置。 2 硼酸系化合物が実質的に無水硼酸、オルト硼
酸、メタ硼酸、および四硼酸より成る群より選ば
れた単体または混合物から成ることを特徴とする
特許請求の範囲第1項記載のゲツタ装置。 3 酸化硅素が5重量%以下の含有量であること
を特徴とする特許請求の範囲第1項記載のゲツタ
装置。
[Scope of Claims] 1. A getter device in which a getter material containing barium-aluminum alloy powder and nickel powder is filled in a ring-shaped metal getter container with a substantially U-shaped cross section, wherein at least the surface of the getter material is coated with silicon oxide. A getter device characterized by having a coating of a boric acid compound containing. 2. The getter device according to claim 1, wherein the boric acid compound consists essentially of a single substance or a mixture selected from the group consisting of boric anhydride, orthoboric acid, metaboric acid, and tetraboric acid. 3. The getter device according to claim 1, wherein the content of silicon oxide is 5% by weight or less.
JP6642480A 1979-10-25 1980-05-21 Getter device Granted JPS56162460A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6642480A JPS56162460A (en) 1980-05-21 1980-05-21 Getter device
DE8080106502T DE3070123D1 (en) 1979-10-25 1980-10-23 Getter device
EP80106502A EP0028372B1 (en) 1979-10-25 1980-10-23 Getter device
US06/201,198 US4342662A (en) 1979-10-25 1980-10-27 Getter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6642480A JPS56162460A (en) 1980-05-21 1980-05-21 Getter device

Publications (2)

Publication Number Publication Date
JPS56162460A JPS56162460A (en) 1981-12-14
JPS6318825B2 true JPS6318825B2 (en) 1988-04-20

Family

ID=13315388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6642480A Granted JPS56162460A (en) 1979-10-25 1980-05-21 Getter device

Country Status (1)

Country Link
JP (1) JPS56162460A (en)

Also Published As

Publication number Publication date
JPS56162460A (en) 1981-12-14

Similar Documents

Publication Publication Date Title
US4342662A (en) Getter device
US2368060A (en) Coating of electron discharge device parts
US2348045A (en) Electron discharge device and method of manufacture
US3563797A (en) Method of making air stable cathode for discharge device
JP3489373B2 (en) Short arc mercury lamp
US3497757A (en) Tungsten dispenser cathode having emission enhancing coating of osmium-iridium or osmium-ruthenium alloy for use in electron tube
US3846006A (en) Method of manufacturing of x-ray tube having thoriated tungsten filament
JPS6318825B2 (en)
US2449493A (en) Attaining high vacuum in photoelectric tubes
JPH026185B2 (en)
JPS6318824B2 (en)
US1670483A (en) Electron device and method of activation
US2540647A (en) Method of manufacturing electronic tubes with active getters
US3842469A (en) Method of activating electron emissive electrodes
US3465196A (en) Electric discharge device with means to prevent release of occluded gases from the envelope thereof and method
US3666547A (en) Photo-cathodes for electronic discharge tubes
US2453753A (en) Method of manufacturing cathodes of electric discharge tubes
US1244216A (en) Electron-discharge apparatus and method of preparation.
JP2002519814A (en) Electron tube with semiconductor cathode
US2431402A (en) Photoube and method of manufacture
KR100312691B1 (en) Vacuum fluorescent display having non-evaporable getter and method for making vacuous using getter
JPH0418660B2 (en)
JP2000082416A (en) Phosphor screen and its formation method
JP3290789B2 (en) Getter device for electron tube
JPH09259755A (en) Manufacture of impregnated type cathode and manufacture of cathode-ray tube