JPS63187131A - Zero point compensation circuit of pressure transducer - Google Patents

Zero point compensation circuit of pressure transducer

Info

Publication number
JPS63187131A
JPS63187131A JP1867787A JP1867787A JPS63187131A JP S63187131 A JPS63187131 A JP S63187131A JP 1867787 A JP1867787 A JP 1867787A JP 1867787 A JP1867787 A JP 1867787A JP S63187131 A JPS63187131 A JP S63187131A
Authority
JP
Japan
Prior art keywords
voltage
zero point
pressure sensor
temp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1867787A
Other languages
Japanese (ja)
Inventor
Takashi Yanada
簗田 貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP1867787A priority Critical patent/JPS63187131A/en
Publication of JPS63187131A publication Critical patent/JPS63187131A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations

Abstract

PURPOSE:To prevent the deviation of zero point voltage due to the change in the circumferential temp. of the preliminarily adjusted output of an amplifying circuit, by utilizing the bridge circuit of a semiconductive resistor as a pressure sensor and a temp. sensor and directly applying potential divided by an external resistor to the amplifying circuit as voltage to be supplied. CONSTITUTION:The constitutional element of a pressure sensor 1 is a semiconductor and, therefore, said element is high in temp. coefficient and increases the shift of zero point voltage after adjustment when the circumferential temp. largely changes. Since the zero point voltage Vo in the output voltage of an amplifying circuit 15 is adjusted, voltage Va is given by voltage dividing resistors 11, 12. When circumferential temp. change is t deg.C, the offset voltage of the pressure sensor 1 is Voff and the gain of an amplifier 10 is Ga, the temp. coefficient of the semiconductor is set to alphaand Vo(t)=Va(1+alphat)-Ga.Voff(1+alphat) is formed and the shift from the zero point voltage Vo becomes Vo.alphat. Therefore, Vo may be made low. In this constitution, the voltage of a constant current power source is directly given to the amplifying circuit in a divided form and the zero point voltage secondarily generated in the sensor by the change in the circumferential temp. is reduced and, therefore, when the mu-factor of the amplifying circuit is especially high, the deviation from an adjustment point can be reduced.

Description

【発明の詳細な説明】 〔対象技術分野〕 この発明は圧力トランデューサの零点電圧が温度によっ
て変化するのを電気的に補償する回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a circuit for electrically compensating for changes in the zero point voltage of a pressure transducer due to temperature.

〔従来技術および問題点〕[Prior art and problems]

一般に半導体圧カド2ンデユーサは圧力センサに給電す
る電源回路と、圧力センサの出力を増幅する増幅回路を
圧力センサ本体の周囲に有している。すなわち第2図に
おいて圧力センサ1は半導体拡散抵抗RBI、RB2.
RB3およびRB4により形成されるプリッジ回路によ
り構成され、その入力端は演算増幅器2を介して電源2
0の端子a、bに接続される。′電源回路は電源20と
演算増幅器2および抵抗3 、4 、5により構成され
、圧力センサIK定電流を供給する。また増幅回路15
は抵抗6,7,8,9および演算増幅器lOKより構成
され、この増幅回路は圧力センサ1のプリッジ出力を増
幅し、その出力は出力端子Cから得られる。
Generally, a semiconductor pressure sensor has a power supply circuit for supplying power to the pressure sensor and an amplifier circuit for amplifying the output of the pressure sensor around the pressure sensor body. That is, in FIG. 2, the pressure sensor 1 includes semiconductor diffusion resistors RBI, RB2 .
It is composed of a bridge circuit formed by RB3 and RB4, and its input terminal is connected to the power supply 2 via the operational amplifier 2.
Connected to terminals a and b of 0. 'The power supply circuit is composed of a power supply 20, an operational amplifier 2, and resistors 3, 4, and 5, and supplies a constant current to the pressure sensor IK. Also, the amplifier circuit 15
is composed of resistors 6, 7, 8, and 9 and an operational amplifier lOK, and this amplifier circuit amplifies the bridge output of the pressure sensor 1, and the output is obtained from the output terminal C.

ところが圧力センサ1のプリッジ回路が有する零点電圧
の影響により、そのままの状態では出力端子Cに現われ
る零点電圧Voとして希望する値が得られない。
However, due to the influence of the zero-point voltage of the bridge circuit of the pressure sensor 1, the desired value of the zero-point voltage Vo appearing at the output terminal C cannot be obtained in this state.

この欠点を改善するため第3図に示すように定電圧を抵
抗11.12により分圧した値を抵抗9を介して増幅回
路15に入力している。しかし圧力センサlはその構成
要素が半導体であるため、そのプリッジ抵抗は回路の外
付は抵抗に比べてひじように大きな温度係数を有してい
る。したがって周囲温度の変化が大きくなると、すでK
y4整した増幅回路出力における零点′電圧からのずれ
が太さくなる。この出力電圧のずれはその温度変化によ
る情報が増幅回路に与えられていないことに起因する。
In order to improve this drawback, as shown in FIG. 3, a value obtained by dividing a constant voltage by resistors 11 and 12 is inputted to the amplifier circuit 15 via a resistor 9. However, since the components of the pressure sensor 1 are semiconductors, the bridge resistor has a temperature coefficient that is much larger than that of the resistor external to the circuit. Therefore, when the change in ambient temperature becomes large, K
The deviation from the zero point voltage in the y4-adjusted amplifier circuit output becomes thicker. This deviation in output voltage is caused by the fact that information due to the temperature change is not provided to the amplifier circuit.

〔発明の目的〕[Purpose of the invention]

この発明はこのような従来の欠点にかんがみ、周囲温度
変化による増幅回路の出力電圧の調整点からのずれを簡
単な方法により減少させることを目的とする。
SUMMARY OF THE INVENTION In view of these conventional drawbacks, it is an object of the present invention to reduce the deviation of the output voltage of an amplifier circuit from the adjustment point due to changes in ambient temperature by a simple method.

〔発明の概要〕[Summary of the invention]

この発明は半導体抵抗によりプリッジ回路を構成し、こ
のプリッジ回路を圧力センサとして適用し、かつこの圧
力センサ自体を温度センサとして利用し、さらにこの圧
力センサへの供給電源電圧を外付は抵抗によって分圧し
た電位を直接増幅回路に与えることにより、あらかじめ
調整された増幅回路出力の零点電圧からのずれを減少さ
せるようKしたものである。
This invention configures a bridge circuit using semiconductor resistors, applies this bridge circuit as a pressure sensor, uses this pressure sensor itself as a temperature sensor, and further divides the power supply voltage to this pressure sensor using an external resistor. By directly applying the voltage applied to the amplifier circuit to the amplifier circuit, the deviation from the zero point voltage of the output of the amplifier circuit, which has been adjusted in advance, is reduced.

〔実施例〕〔Example〕

以下図によってこの発明の一実施例について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

なお第2図および第3図と共通の部分についてはその説
明を省略する。
Note that explanations of parts common to FIGS. 2 and 3 will be omitted.

すなわち第1図において演算増幅器2の出力端と電源端
子す間に分圧抵抗11および12が接続され、これらの
抵抗の接続点が抵抗9を介して演算増幅器10の一方の
入力端に接続されている。
That is, in FIG. 1, voltage dividing resistors 11 and 12 are connected between the output terminal of operational amplifier 2 and the power supply terminal, and the connection point of these resistors is connected to one input terminal of operational amplifier 10 via resistor 9. ing.

ここで第1図に示すこの発明の実施例と第3図に示す従
来例とを比較すると次のようになる。
A comparison between the embodiment of the present invention shown in FIG. 1 and the conventional example shown in FIG. 3 will be as follows.

両図においてVaは増幅回路15の出力電圧の中、零点
電圧Voを調整するために分圧抵抗11.12によって
与えられる電圧で、第1図および第3図ともある温度T
1での零点電圧■0はVo = Va −Ga @ V
offとなる。ここでGaは演算増幅器10のゲイン、
またVoffは温度T、において演算増幅器10を接続
しない状態の圧力センサlの出力端子に現われる電圧す
なわち圧力センサ1のオフセット電圧である。
In both figures, Va is the voltage given by the voltage dividing resistor 11.12 in order to adjust the zero point voltage Vo among the output voltages of the amplifier circuit 15, and Va is the voltage given by the voltage dividing resistor 11.12 in order to adjust the zero point voltage Vo.
The zero point voltage at 1 ■0 is Vo = Va - Ga @ V
It becomes off. Here, Ga is the gain of the operational amplifier 10,
Further, Voff is the voltage appearing at the output terminal of the pressure sensor 1 when the operational amplifier 10 is not connected at the temperature T, that is, the offset voltage of the pressure sensor 1.

そして温度TIから周囲温度がt℃だけ変化したときの
演算増幅器10の出力の零点電圧Vo(t)はV of
t) = V a(t) −G a ・V off(t
)である。
Then, the zero point voltage Vo(t) of the output of the operational amplifier 10 when the ambient temperature changes by t°C from the temperature TI is V of
t) = V a(t) −G a ・V off(t
).

次に圧力センサ1を構成する半導体抵抗の1次の温度係
数をαとすると、第3図の回路においてはVa(jl=
 Va 、 Voff(tl = Voff ・(1+
αt)、また第1図の回路ではVo(t)=Va(1+
αt) t V off (’)=Voff(1+αC
)である。
Next, if the first-order temperature coefficient of the semiconductor resistor that constitutes the pressure sensor 1 is α, then in the circuit of FIG. 3, Va (jl=
Va, Voff (tl = Voff ・(1+
αt), and in the circuit of FIG. 1, Vo(t)=Va(1+
αt) t V off (')=Voff(1+αC
).

また周囲温度の変化によ、る零点電圧Voからのずれの
絶対値すなわちI Vo(t) −Vo Iは第3図の
回路ではIGa−voff・αt1 となり、また第1
図の回路ではVo・αtとなる。
In addition, the absolute value of the deviation from the zero point voltage Vo due to changes in ambient temperature, ie, IVo(t) -VoI, becomes IGa-voff・αt1 in the circuit shown in FIG.
In the circuit shown in the figure, it becomes Vo·αt.

したがって第3図に示す回路においては圧力センサ1の
出力を増幅する演算増幅器lOのゲインGaが大きく、
かつ演算増幅器10の出力の初期零点電圧■0が小さい
ほど温度変化による零点電圧のずれへの効果は太きい。
Therefore, in the circuit shown in FIG. 3, the gain Ga of the operational amplifier lO for amplifying the output of the pressure sensor 1 is large;
In addition, the smaller the initial zero point voltage (20) of the output of the operational amplifier 10, the greater the effect on the shift of the zero point voltage due to temperature change.

たとえば演算増幅器10のゲインGaを20、圧力セン
サlすなわちプリッジ(ロ)路のオフセラ)ME圧Vo
ffを10mV、初期零点電圧vOを200 m Vと
したときの温度変化によるずれは第1図および第3図と
も等しいが、ゲインGaを40としたとぎには第1図の
回路におけるずれは第3図の回路によるずれの2分の1
となる。
For example, if the gain Ga of the operational amplifier 10 is 20, then the pressure sensor l (that is, the pressure sensor l of the bridge (b) path) ME pressure Vo
The deviation due to temperature change when ff is 10 mV and the initial zero point voltage vO is 200 mV is the same in both Figures 1 and 3, but when the gain Ga is set to 40, the deviation in the circuit in Figure 1 is as follows. 1/2 of the deviation due to the circuit in Figure 3
becomes.

〔発明の効果〕〔Effect of the invention〕

この発明は上述のように圧力センサを定電流で駆動する
電源電圧を分圧し、この分′亀圧を増幅回路に直接与え
ることにより、圧力センサK[囲温度の変化によって2
次的に発生する零点電圧を減少させるようKしているの
で、とくに増幅回路の増幅率の高いばあいにはその出力
電圧の調整点からのずれをより少なくすることができる
効果がある。
As described above, this invention divides the power supply voltage that drives the pressure sensor with a constant current, and directly applies this divided voltage to the amplifier circuit.
Since K is set so as to reduce the zero point voltage that occurs next, there is an effect that the deviation of the output voltage from the adjustment point can be further reduced, especially when the amplification factor of the amplifier circuit is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す回路図、第2図およ
び第3図は従来の回路図である。 1・・・圧力センサ、2・・・演算増幅器、3・・・抵
抗、4・・・抵抗、5・・・抵抗、6・・・抵抗、7・
・・抵抗、8・・・抵抗、9・・・抵抗、10・・・演
算増幅器、11・・・抵抗、12・・・抵抗、15・・
・増幅回路、20・・・電源。 特 許 出 願 人   山武ハネウェル株式会社(外
2名)  ”′ 第1図
FIG. 1 is a circuit diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are conventional circuit diagrams. DESCRIPTION OF SYMBOLS 1... Pressure sensor, 2... Operational amplifier, 3... Resistor, 4... Resistor, 5... Resistor, 6... Resistor, 7...
... Resistor, 8... Resistor, 9... Resistor, 10... Operational amplifier, 11... Resistor, 12... Resistor, 15...
- Amplifier circuit, 20... power supply. Patent applicant Yamatake Honeywell Co., Ltd. (2 others) ”’ Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体拡散抵抗のプリッジ回路により構成した半導体圧
力センサと、この圧力センサを定電流駆動する定電流回
路と、上記圧力センサの出力を増幅する増幅回路を備え
た圧力トランデューサにおいて、上記圧力センサを定電
流で駆動する電源電圧を分圧し、この分電圧を上記増幅
回路に直接与えることにより、上記圧力センサに、周囲
温度の変化によって2次的に発生する零点電圧を減少さ
せることを特徴とする圧力トランデューサの零点補償回
路。
The pressure transducer is equipped with a semiconductor pressure sensor configured with a bridge circuit of semiconductor diffused resistors, a constant current circuit that drives the pressure sensor with a constant current, and an amplifier circuit that amplifies the output of the pressure sensor. A pressure sensor characterized by dividing a power supply voltage driven by a current and directly applying the divided voltage to the amplifier circuit to reduce the zero point voltage that occurs secondarily in the pressure sensor due to a change in ambient temperature. Transducer zero point compensation circuit.
JP1867787A 1987-01-30 1987-01-30 Zero point compensation circuit of pressure transducer Pending JPS63187131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1867787A JPS63187131A (en) 1987-01-30 1987-01-30 Zero point compensation circuit of pressure transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1867787A JPS63187131A (en) 1987-01-30 1987-01-30 Zero point compensation circuit of pressure transducer

Publications (1)

Publication Number Publication Date
JPS63187131A true JPS63187131A (en) 1988-08-02

Family

ID=11978238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1867787A Pending JPS63187131A (en) 1987-01-30 1987-01-30 Zero point compensation circuit of pressure transducer

Country Status (1)

Country Link
JP (1) JPS63187131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265831A (en) * 1990-10-25 1992-09-22 Becton Dickinson & Co Apparatus and method for compensating for temperature of pressure transducer at catheter tip
EP0565124A1 (en) * 1992-04-09 1993-10-13 Erich Jaeger GmbH Procedure and circuit for the electrical compensation of temperature-effects on the measured signal of a mechanical-electrical measuring transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265831A (en) * 1990-10-25 1992-09-22 Becton Dickinson & Co Apparatus and method for compensating for temperature of pressure transducer at catheter tip
US5866821A (en) * 1990-10-25 1999-02-02 Becton Dickinson And Company Apparatus for a temperature compensation of a catheter tip pressure transducer
EP0565124A1 (en) * 1992-04-09 1993-10-13 Erich Jaeger GmbH Procedure and circuit for the electrical compensation of temperature-effects on the measured signal of a mechanical-electrical measuring transducer

Similar Documents

Publication Publication Date Title
TWI503648B (en) Bandgap circuit and method for generating a reference voltage
JPS6144360B2 (en)
US5068595A (en) Adjustable temperature dependent current generator
US7764210B2 (en) System and method for converting an input signal
US6198296B1 (en) Bridge sensor linearization circuit and method
US11824503B2 (en) Charge amplifier circuit with a high output dynamic range for a microelectromechanical sensor
JP3391087B2 (en) Common mode voltage regulator for balanced amplifier
JPS63187131A (en) Zero point compensation circuit of pressure transducer
JPH0578203B2 (en)
US6335657B1 (en) MOSFET amplifier circuit
JPH0279606A (en) Wideband amplifier wherein feedback is done to bias circuit by current mirror
JPH0557771B2 (en)
US6784746B1 (en) Circuit and method for correcting thermal deviations of one or more output signals from an amplifier with early effect compensation
JP2021189109A (en) Sensor drive circuit
JPS61157108A (en) Voltage-current converting circuit
JPH04155233A (en) Correction of temperature characteristic for pressure sensor
JP4245102B2 (en) Threshold detection circuit, threshold adjustment circuit, and square circuit
JPS59108411A (en) Current source circuit
JP2927803B2 (en) Constant voltage generator
JPH067375Y2 (en) Output voltage temperature compensated stabilized DC power supply
JPS62213406A (en) Bias circuit
JPH1038611A (en) Temperature-characteristic compensating circuit and galvanomagnetic device driver using the circuit
SU1469544A1 (en) Power amplifier
JPS62134533A (en) Pressure sensor circuit
JPH07154164A (en) Differential amplifier circuit