JPS63187074A - Double effect absorption type refrigerator - Google Patents

Double effect absorption type refrigerator

Info

Publication number
JPS63187074A
JPS63187074A JP1618587A JP1618587A JPS63187074A JP S63187074 A JPS63187074 A JP S63187074A JP 1618587 A JP1618587 A JP 1618587A JP 1618587 A JP1618587 A JP 1618587A JP S63187074 A JPS63187074 A JP S63187074A
Authority
JP
Japan
Prior art keywords
solution
regenerator
temperature regenerator
absorber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1618587A
Other languages
Japanese (ja)
Inventor
相沢 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1618587A priority Critical patent/JPS63187074A/en
Publication of JPS63187074A publication Critical patent/JPS63187074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重効用吸収式冷凍機に係り、特に結晶の発生
を未然に防止するに好適な二重効用吸収式冷凍機に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dual-effect absorption refrigerator, and particularly to a dual-effect absorption refrigerator suitable for preventing the generation of crystals.

〔従来の技術〕[Conventional technology]

二重効用吸収式冷凍機は、第1図に示すように、蒸発器
1.吸収器2.低温再生器3.凝縮器4゜高温再生器5
.低温熱交換器6.高温熱交換器7およびこれらをつな
ぐ配管、?8液ポンプ8.冷媒ポンプ9から成っており
、蒸発器1において冷水10から熱を奪って蒸発した冷
媒は、吸収器2において冷却水11によって冷却された
?H溶液に吸収される。冷媒を吸収して薄くなった溶液
は溶液ポンプ8により吸収器2から送り出され、低温熱
交換器6を出た所で2分され、一方は高温熱交換器7を
経て高温再生器5に至り、他方は低温再生器3に送り込
まれる。両再生器において濃縮された溶液のうち、高温
再生器5からの戻り液は、高温熱交換器7を出た所で低
温再生器3からの戻り液と合流し、低温熱交換器6を出
て再び吸収器2に戻る。高温再生器5で発生した蒸気は
、低温再生器3の管内を通過する時、管外の溶液を加熱
濃縮してドレンとなり、低温再生器3の管外で発生した
蒸気と共に凝縮器4に流入する。また、蒸発器1では、
伝熱性能を向上させるため、冷媒ポンプ9で冷媒を蒸発
器管群にスプレーしている。
As shown in FIG. 1, the dual-effect absorption refrigerator consists of an evaporator 1. Absorber 2. Low temperature regenerator 3. Condenser 4゜High temperature regenerator 5
.. Low temperature heat exchanger6. High temperature heat exchanger 7 and piping connecting these? 8 liquid pump 8. It consists of a refrigerant pump 9, and the refrigerant that takes heat from the cold water 10 and evaporates in the evaporator 1 is cooled by the cooling water 11 in the absorber 2. Absorbed in H solution. The solution, which has become diluted by absorbing the refrigerant, is sent out from the absorber 2 by a solution pump 8, and is divided into two parts upon exiting the low-temperature heat exchanger 6, one of which passes through the high-temperature heat exchanger 7 and reaches the high-temperature regenerator 5. , the other is sent to the low temperature regenerator 3. Of the solutions concentrated in both regenerators, the return liquid from the high-temperature regenerator 5 joins with the return liquid from the low-temperature regenerator 3 at the point where it exits the high-temperature heat exchanger 7, and exits the low-temperature heat exchanger 6. and returns to the absorber 2 again. When the steam generated in the high-temperature regenerator 5 passes through the tube of the low-temperature regenerator 3, it heats and concentrates the solution outside the tube, becomes drain, and flows into the condenser 4 together with the steam generated outside the tube of the low-temperature regenerator 3. do. In addition, in the evaporator 1,
In order to improve heat transfer performance, a refrigerant pump 9 sprays refrigerant onto the evaporator tube group.

上記の二重効用吸収式冷凍機においては、サイクル内濃
度が負荷条件、温度条件などにより変化するので、あら
ゆる運転状態において結晶が生じないようにする必要が
あると共に、機械停止時には、十分な稀釈運転すること
により、外気冷却による結晶が生じないようにする必要
がある。この結晶の発生は、溶液の濃度と密接な関係に
あり、濃度の高い溶液が低温になると最も結晶が生じ易
い状態となる。
In the above-mentioned dual-effect absorption refrigerator, the concentration in the cycle changes depending on load conditions, temperature conditions, etc., so it is necessary to prevent crystals from forming under all operating conditions, and to ensure sufficient dilution when the machine is stopped. During operation, it is necessary to prevent crystals from forming due to outside air cooling. The formation of crystals is closely related to the concentration of the solution, and crystals are most likely to form when a highly concentrated solution is at a low temperature.

ところで、サイクル内で最も温度が高くなる箇所は、高
温再生器5または低温再生器3内であるが、この溶液の
濃度を決定する大きな要因として、各再生器内をWi環
する溶液循環量がある。従って、結晶の発生を未然に防
ぐためには、前記溶液循環量を増加することにより再生
器内の濃度を下げて吸収器2との濃度幅を小さくするこ
とが効果的であるが、その反面、溶液循環量が必要以上
に増加すると、再生器内での予熱分が増加してす・イク
ル効率が低下する。
By the way, the highest temperature point in the cycle is inside the high-temperature regenerator 5 or the low-temperature regenerator 3, and a major factor that determines the concentration of this solution is the amount of solution circulating inside each regenerator. be. Therefore, in order to prevent the generation of crystals, it is effective to lower the concentration in the regenerator and narrow the concentration range with the absorber 2 by increasing the amount of solution circulation. If the amount of solution circulated increases more than necessary, the amount of preheating in the regenerator will increase and cycle efficiency will decrease.

そこで、従来は、高温再生器5内の溶液を吸収器2側へ
戻す戻り管路12に、固定開度のオリフィスなどを介設
して、溶液循環量を一定に制御する方式を採用している
Therefore, conventionally, a method has been adopted in which an orifice with a fixed opening degree is inserted in the return pipe 12 that returns the solution in the high-temperature regenerator 5 to the absorber 2 side to control the solution circulation amount at a constant level. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、戻り管路12に固定開度のオリフィス
などを介設することにより、’f4 Ya循環量を一定
に制御するようにしているが、この溶液の循環量は、再
生器内圧力と吸収器内圧力との差、相互の位置関係、配
管や熱交換器の圧力損失などにより決定されるので、循
環量を増加した時に、再生器と吸収器とに圧力差がなく
て、循環量を増加させられず、結晶の発生を許してしま
う問題があった。
In the above conventional technology, the 'f4 Ya circulation amount is controlled to be constant by providing an orifice with a fixed opening degree in the return pipe line 12, but the circulation amount of this solution is determined by the pressure inside the regenerator. This is determined by the difference between the pressure inside the regenerator and the absorber, the mutual positional relationship, and the pressure loss of piping and heat exchangers. There was a problem in that the amount could not be increased and crystals were allowed to form.

一方、結晶の問題に関しては、特開昭55−11615
号に開示されたものがあるが、これは結晶が生じたらそ
れを解晶するものであって、結晶の発生を未然に防止す
ることはできない。
On the other hand, regarding the crystal problem, Japanese Patent Application Laid-Open No. 55-11615
There is a method disclosed in No. 1, but this method decomposes crystals when they are formed, and cannot prevent the formation of crystals.

本発明の目的は、あらゆる運転状態および機械停止後の
稀釈運転時においてサイクル効率を低下させることなく
結晶の発生を未然に防止できる二重効用吸収式冷凍機を
提供することにある。
An object of the present invention is to provide a dual-effect absorption refrigerating machine that can prevent crystal formation under all operating conditions and during dilution operation after stopping the machine without reducing cycle efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、蒸発器、吸収器、低温再生器、凝縮器、高
温再生器およびこれらをつなぐ配管、ポンプ、熱交換器
などから成る二重効用吸収式冷凍機において、高温再生
器の溶液を吸収器側へ戻すための戻り管路に、再生器内
の溶液循環量を制御する制御弁を設けると共に、前記制
御弁を側路するバイパス管路を設け、そのバイパス管路
にこれを開閉する開閉弁を設け、稀釈運転などにて再生
器と吸収器との圧力差が小さくなって溶液循環量が低下
した時、前記制御弁の開度がそれに応じて大きくなり、
かつ前記開閉弁が開くように構成することで、達成され
る。
The above purpose is to absorb the solution in the high-temperature regenerator in a dual-effect absorption chiller consisting of an evaporator, absorber, low-temperature regenerator, condenser, high-temperature regenerator, piping that connects these, a pump, a heat exchanger, etc. A control valve for controlling the amount of solution circulated within the regenerator is provided in the return pipe for returning to the regenerator, and a bypass pipe is provided to bypass the control valve, and an opening/closing system for opening and closing the bypass pipe is provided. A valve is provided, and when the pressure difference between the regenerator and the absorber decreases during dilution operation etc. and the solution circulation rate decreases, the opening degree of the control valve increases accordingly,
This is achieved by configuring the on-off valve to open.

〔作 用〕[For production]

冷凍機の運転時あるいは機械停止後の稀釈運転時におい
て、高温再生器(または低温再生器)と吸収器との圧力
差が小さくなって溶液循環量が低下すると、戻り管路の
制御弁の開度がそれに応じて大きくなると共に、バイパ
ス管路の開閉弁が開く。これにより吸収器側へ戻る溶液
の流量が増加する、つまり再生器内の溶液循環量が増加
して結晶の発生が未然に防IF:、される。また、再生
器と吸収器との圧力差が大きくなって溶液循環量が増大
すると、それに応じて制御弁の開度が小さくなると共に
、開閉弁が閉じる、つまり熔?ei、循環量を必要以上
に増加させないので、サイクル効率の低下を招くことが
ない。
If the pressure difference between the high-temperature regenerator (or low-temperature regenerator) and the absorber decreases during operation of the refrigerator or during dilution operation after the machine is stopped, and the amount of solution circulated decreases, the control valve in the return line may be opened. As the temperature increases accordingly, the on-off valve of the bypass line opens. As a result, the flow rate of the solution returning to the absorber side increases, that is, the amount of solution circulated within the regenerator increases, and the generation of crystals is prevented. Also, when the pressure difference between the regenerator and the absorber increases and the amount of solution circulated increases, the opening degree of the control valve decreases accordingly and the on-off valve closes. ei. Since the amount of circulation is not increased more than necessary, there is no reduction in cycle efficiency.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

図は本発明による二重効用吸収式冷凍機のサイクル系統
図を示している。この冷凍機では、その戻り管路12に
、再生器内の溶液循環量を制御する制御弁13を設けて
いると共に、前記制御弁13を側路するバイパス管路1
4を設け、そのバイパス管路14にこれを開閉する開閉
弁15を設けている。
The figure shows a cycle diagram of a dual-effect absorption refrigerator according to the invention. In this refrigerator, the return pipe 12 is provided with a control valve 13 for controlling the amount of solution circulated within the regenerator, and a bypass pipe 1 bypassing the control valve 13 is provided.
4, and the bypass pipe 14 is provided with an on-off valve 15 for opening and closing the bypass pipe line 14.

前記制御弁13は、例えば高温再生器5と吸収器2との
圧力差が小さくなって溶液循環量が低下した時、それに
応じて弁開度が大きくなるように構成されている。
The control valve 13 is configured such that, for example, when the pressure difference between the high temperature regenerator 5 and the absorber 2 becomes small and the amount of solution circulated decreases, the valve opening degree increases accordingly.

前記開閉弁15は、高温再生器5と吸収器2との圧力差
が小さくなって溶液循環量が低下した時のみ開くように
なされたものであるが、ここでは運転中の高温再生器5
内の溶液濃度が一定値を越えた時に開くようになってい
る。
The on-off valve 15 is designed to open only when the pressure difference between the high-temperature regenerator 5 and the absorber 2 becomes small and the amount of solution circulated decreases.
It opens when the concentration of the solution inside exceeds a certain value.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

冷凍機の運転時において、高温再生器5と吸収器2との
圧力差が小さくなって溶液循環量が低下すると、戻り管
120制御弁13の開度がそれに応じて大きくなる。ま
た溶液循環量の低下により高温再生器5内の溶液濃度が
一定値を越えると、バイパス管路14の開閉弁15が開
(。これにより高温再生器5内の溶液が戻り管路12お
よびバイパス管路14を流通するので吸収器2側へ戻る
流量が増加する、つまり再生器内の溶液循環量が増加し
て結晶の発生が未然に防止される。また、高温再生器5
と吸収器2との圧力差が大きくなって溶液循環量が増大
すると、それに応じて前記制御弁13の開度が小さくな
ると共に、高温再生器5内の溶液濃度が一定値以下にな
ると前記開閉弁15が閉じる。これにより再生器内の溶
液循環量が必要以上に増加しないので、サイクル効率の
低下を招くことがない。
During operation of the refrigerator, when the pressure difference between the high-temperature regenerator 5 and the absorber 2 becomes smaller and the amount of circulating solution decreases, the opening degree of the return pipe 120 control valve 13 increases accordingly. In addition, when the solution concentration in the high temperature regenerator 5 exceeds a certain value due to a decrease in the amount of solution circulated, the on-off valve 15 of the bypass pipe 14 opens (this causes the solution in the high temperature regenerator 5 to return to the pipe 12 and bypass Since it flows through the pipe 14, the flow rate returning to the absorber 2 side increases, that is, the amount of solution circulating in the regenerator increases, and the generation of crystals is prevented.In addition, the high temperature regenerator 5
When the pressure difference between the absorber 2 and the absorber 2 increases and the amount of solution circulated increases, the opening degree of the control valve 13 decreases accordingly, and when the concentration of the solution in the high temperature regenerator 5 falls below a certain value, the opening/closing of the control valve 13 decreases. Valve 15 is closed. This prevents the amount of solution circulating within the regenerator from increasing more than necessary, and therefore does not cause a decrease in cycle efficiency.

なお、上記実施例において、前記開閉弁15を、機械停
止後の稀釈運転が開始された時に開くように構成すれば
、稀釈運転時での結晶の発生を未然に防止することがで
きる。
In the above embodiment, if the on-off valve 15 is configured to open when the dilution operation is started after the machine is stopped, it is possible to prevent crystal formation during the dilution operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、あらゆる運転状態および機械停止後の
稀釈運転時においてサイクル効率を低下させることなく
結晶の発生を未然に防止することができる。
According to the present invention, the generation of crystals can be prevented in all operating conditions and during dilution operation after stopping the machine without reducing cycle efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二重効用吸収式冷凍機の一実施例を示
すサイクル系統図である。 1・・・蒸発器、2・・・吸収器、3・・・低温再生器
、4・・・凝縮器、5・・・高温再生器、6・・・低温
熱交換器、7・・・高温熱交換器、8・・・溶液ポンプ
、9・・・冷媒ポンプ、12・・・戻り管路、13・・
・制御弁、14・・・バイパス管路、15・・・開閉弁
。 代理人 弁理士  秋 本  正 実 第1図
FIG. 1 is a cycle system diagram showing an embodiment of the dual-effect absorption refrigerator of the present invention. 1... Evaporator, 2... Absorber, 3... Low temperature regenerator, 4... Condenser, 5... High temperature regenerator, 6... Low temperature heat exchanger, 7... High temperature heat exchanger, 8... Solution pump, 9... Refrigerant pump, 12... Return pipe line, 13...
- Control valve, 14... bypass pipeline, 15... on-off valve. Agent Patent Attorney Tadashi Akimoto Figure 1

Claims (1)

【特許請求の範囲】 1、蒸発器、吸収器、低温再生器、凝縮器、高温再生器
およびこれらをつなぐ配管、ポンプ、熱交換器などから
成る二重効用吸収式冷凍機において、高温再生器の溶液
を吸収器側へ戻すための戻り管路に、再生器内の溶液循
環量を制御する制御弁を設けると共に、前記制御弁を側
路するバイパス管路を設け、そのバイパス管路にこれを
開閉する開閉弁を設け、稀釈運転などにて再生器と吸収
器との圧力差が小さくなって溶液循環量が低下した時、
前記制御弁の開度がそれに応じて大きくなり、かつ前記
開閉弁が開くように構成したことを特徴とする二重効用
吸収式冷凍機。 2、前記開閉弁は、稀釈運転されると開くようになって
いる特許請求の範囲第1項記載の二重効用吸収式冷凍機
。 3、前記開閉弁は、運転中の高温再生器内の溶液濃度が
一定値を越えた時に開くようになっている特許請求の範
囲第1項記載の二重効用吸収式冷凍機。
[Claims] 1. In a dual-effect absorption refrigerator comprising an evaporator, an absorber, a low-temperature regenerator, a condenser, a high-temperature regenerator, and piping connecting these, a pump, a heat exchanger, etc., the high-temperature regenerator A control valve for controlling the amount of solution circulated in the regenerator is provided in the return pipe for returning the solution to the absorber side, and a bypass pipe is provided to bypass the control valve. An on-off valve is installed to open and close the system, and when the pressure difference between the regenerator and absorber decreases during dilution operation, etc., and the amount of solution circulated decreases,
A dual-effect absorption refrigerator characterized in that the opening degree of the control valve increases accordingly, and the opening/closing valve is opened. 2. The dual-effect absorption refrigerator according to claim 1, wherein the on-off valve opens when dilution operation is performed. 3. The dual-effect absorption refrigerator according to claim 1, wherein the on-off valve is configured to open when the concentration of solution in the high-temperature regenerator during operation exceeds a certain value.
JP1618587A 1987-01-28 1987-01-28 Double effect absorption type refrigerator Pending JPS63187074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1618587A JPS63187074A (en) 1987-01-28 1987-01-28 Double effect absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1618587A JPS63187074A (en) 1987-01-28 1987-01-28 Double effect absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS63187074A true JPS63187074A (en) 1988-08-02

Family

ID=11909455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1618587A Pending JPS63187074A (en) 1987-01-28 1987-01-28 Double effect absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS63187074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053847A (en) * 2012-11-15 2013-03-21 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine

Similar Documents

Publication Publication Date Title
JP6871015B2 (en) Absorption refrigeration system
JPS63187074A (en) Double effect absorption type refrigerator
JPH08114360A (en) Double effective absorption type water cooler/heater
JPH03152362A (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2940787B2 (en) Double effect absorption refrigerator
JPS602540Y2 (en) absorption cold water machine
JPH11304275A (en) Absorption refrigerating machine
JPS6135893Y2 (en)
JP3280085B2 (en) Operation control method in absorption refrigerator
JPS6311570Y2 (en)
JPH04151470A (en) Control device for absorption type cold-hot water heater
JPH0886531A (en) Dual-effect absorption refrigerator as well as hot and chilled water generator
JP2517420B2 (en) Absorption refrigerator
JPS60144574A (en) Diluting device for absorption cold and hot water machine
JPH03105169A (en) Absorption freezer
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH03271663A (en) Absorption cold and hot water tank
JP2003056935A (en) Absorption refrigerating machine
JPS63282460A (en) Absorption refrigerator
JPH01310272A (en) Absorption type air conditioner
JPS61153352A (en) Regulator for quantity of refrigerant for absorption type water chiller and heater
JPS63243663A (en) Diluting device
JPH0577948B2 (en)
JPS58198659A (en) Multiple-effect absorption type cold and hot water machine