JPS63185006A - Heat curing type magnetic fluid - Google Patents

Heat curing type magnetic fluid

Info

Publication number
JPS63185006A
JPS63185006A JP62016869A JP1686987A JPS63185006A JP S63185006 A JPS63185006 A JP S63185006A JP 62016869 A JP62016869 A JP 62016869A JP 1686987 A JP1686987 A JP 1686987A JP S63185006 A JPS63185006 A JP S63185006A
Authority
JP
Japan
Prior art keywords
group
magnetic fluid
magnetic
pattern
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62016869A
Other languages
Japanese (ja)
Other versions
JPH0766887B2 (en
Inventor
Yuichi Ishikawa
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP62016869A priority Critical patent/JPH0766887B2/en
Publication of JPS63185006A publication Critical patent/JPS63185006A/en
Publication of JPH0766887B2 publication Critical patent/JPH0766887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor

Abstract

PURPOSE:To retain a magnetic fluid pattern formed according to the pattern of the magnetic flux of a detected object even outside a magnetic field by fixing the pattern of the magnetic flux by mixing a heat curing type resin in a magnetic fluid wherein the ferromagnetic material particles adsorbing a surface active agent are dispersed in a dispersion medium. CONSTITUTION:Ferromagnetic material fine particles such as magnetite, manganese ferrite or cobalt ferrite adsorbing a surface active agent wherein the main component is an unsaturated fatty acid which has one or more polar groups such as a COOH group, an SO3H group or a PO3H group and is shown by a general formula R-X (R is a hydrocarbon group, a fluorine carbide group or a silicon group, X is the above-mentioned polar group.) or its acid are stably dispersed in a dispersion medium. An equal heat curing type resin is added to this solution and stirred and mixed. By mixing the heat curing type resin, it becomes possible to fix the pattern of the magnetic fluid formed according to the change of the magnetic flux of a detected object and to hold the pattern of the magnetic fluid outside a magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気ディスクや光磁気ディスク等の記録パ
ターンの可視化、あるいは磁気探傷等に好適に利用でき
る熱硬化型磁性流体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermosetting magnetic fluid that can be suitably used for visualization of recording patterns on magnetic disks, magneto-optical disks, etc., magnetic flaw detection, and the like.

〔従来の技術〕[Conventional technology]

例えば従来の磁気探傷用等の媒体として、磁性流体が利
用されている。これは磁性材料で形成された被検体にお
ける欠陥の有無を検査する場合などに、その被検体の表
面に塗布して用いられる。
For example, magnetic fluid is used as a medium for conventional magnetic flaw detection. This is used by applying it to the surface of an object made of a magnetic material, such as when inspecting the object for defects.

被検体の表面もしくは極く浅いところに微細な傷や異物
が介在しているとき、単なる顕微鏡検査では発見が困難
である。ところが被検体に磁場を形成すると、被検体の
欠陥箇所で磁束が漏洩して不均一磁場になる。そこで磁
性流体を塗布すると、その不均一磁場の作用力で、塗布
した磁性流体が漏洩磁束部分に引きつけられて盛り上が
り、他の部分とは異なるパターンを示す。その感度は磁
性流体中の強磁性体粒子を微粒化するほどよくなり、磁
気探傷の精度が向上することが知られている。
When there are minute scratches or foreign substances on the surface of the object or in extremely shallow areas, it is difficult to detect them by simple microscopic examination. However, when a magnetic field is applied to the object, magnetic flux leaks at defective locations on the object, resulting in a non-uniform magnetic field. Therefore, when a magnetic fluid is applied, the applied magnetic fluid is attracted to the leakage magnetic flux area and bulges due to the action of the non-uniform magnetic field, creating a pattern different from other areas. It is known that the sensitivity improves as the ferromagnetic particles in the magnetic fluid become finer, and the accuracy of magnetic flaw detection improves.

もっとも粒子径がサブミクロンから数十オングストロー
ム程度になると、通常用いる顕微鏡では直接に粒子を観
察することはできないが、前記した磁性流体の盛り上が
り部分はその他の部分と光の反射状態が異なるから、欠
陥の存在を明確に観察することができる。
However, when the particle size is from submicron to several tens of angstroms, it is not possible to directly observe the particle with a commonly used microscope, but since the above-mentioned raised part of the magnetic fluid reflects light differently than other parts, defects can be detected. The existence of can be clearly observed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の磁気探傷に用いる磁性流体は文字
通り流体であり、欠陥部分の漏洩磁束で拘束されている
に過ぎないから、被検体の磁場がなくなると同時に流れ
て、当該盛り上がりも消失してしまう。したがって、被
検体を磁場から外すと欠陥部分も不明になるという問題
点があった。
However, the magnetic fluid used in conventional magnetic flaw detection is literally a fluid and is only restrained by the leakage magnetic flux of the defective part, so it flows and the bulge disappears as soon as the magnetic field of the object disappears. Therefore, there is a problem in that when the object to be examined is removed from the magnetic field, the defective part becomes unclear.

この発明は、このような従来の問題点に着目してなされ
たものであり、被検体の磁束のパターンに応じて形成さ
れる磁性流体パターンを固定して、磁場外でも保持する
ことが可能な磁性流体を提供することを目的としている
This invention was made by focusing on such conventional problems, and it is possible to fix the magnetic fluid pattern formed according to the magnetic flux pattern of the subject and maintain it even outside of the magnetic field. The purpose is to provide magnetic fluids.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するこの発明は、分散媒中に、界面活
性剤を吸着させた強磁性体微粒子を分散させてなる磁性
流体に、熱硬化型樹脂を混合した熱硬化型磁性流体であ
る。
The present invention, which achieves the above object, is a thermosetting magnetic fluid in which a thermosetting resin is mixed with a magnetic fluid made by dispersing fine ferromagnetic particles on which a surfactant is adsorbed in a dispersion medium.

〔作用〕[Effect]

この発明の熱硬化型磁性流体を例えば磁気探傷や磁気記
録パターンの検査等に用いる際は、先ず、磁場を形成し
た被検体の表面にそれを塗布する。
When the thermosetting magnetic fluid of the present invention is used for, for example, magnetic flaw detection or inspection of magnetic recording patterns, it is first applied to the surface of the object to be inspected in which a magnetic field has been formed.

すると、被検体の欠陥部や磁気記録により形成される磁
束パターンに応じて磁性流体が吸引され、それらの磁束
パターンに対応する磁性流体の分布パターンができる。
Then, the magnetic fluid is attracted according to the defective part of the object and the magnetic flux patterns formed by magnetic recording, and a distribution pattern of the magnetic fluid corresponding to these magnetic flux patterns is created.

ついで、熱風を吹きつけるなどしてその状態のまま加熱
することにより、その磁性流体中に含まれている熱硬化
型樹脂を硬化させる。これにより磁性流体のパターンを
固定することができる。
Next, the thermosetting resin contained in the magnetic fluid is cured by heating it in that state by blowing hot air or the like. This allows the magnetic fluid pattern to be fixed.

以下、この発明の熱硬化型磁性流体を詳細に説明する。Hereinafter, the thermosetting magnetic fluid of the present invention will be explained in detail.

この発明の強磁性体微粒子の分散媒は、被検体に塗布し
た後は不要であるから、比較的蒸発しやすい有機溶媒か
水など、常温における蒸気圧が4QQmmHg以下のも
のが望ましい。その理由は、この値を越えると蒸発速度
が大き過ぎ、被検体に平均して一様に塗布することが出
来なくなるためである。
Since the dispersion medium for the ferromagnetic fine particles of the present invention is not required after being applied to the subject, it is preferably an organic solvent or water that evaporates relatively easily and has a vapor pressure of 4QQmmHg or less at room temperature. The reason for this is that when this value is exceeded, the evaporation rate is too high and it becomes impossible to uniformly coat the sample on average.

その条件を満たす有機溶媒としては、例えばn−ペンタ
ン、シクロヘキサン、石油エーテル、石油ベンジン、ベ
ンゼン、キシレン、トルエン等の炭化水素ヤ、クロルベ
ンゼン、ジクロルベンゼン。
Examples of organic solvents satisfying this condition include hydrocarbons such as n-pentane, cyclohexane, petroleum ether, petroleum benzine, benzene, xylene, and toluene, chlorobenzene, and dichlorobenzene.

ブロムベンゼン等のハロゲン化炭化水素、およびメタノ
ール、エタノール、n−プロパツール、n−フタノール
、イソブタノール、ベンジルアルコール等のアルコール
類、およびジエチルエーテル。
Halogenated hydrocarbons such as bromobenzene, alcohols such as methanol, ethanol, n-propanol, n-phthanol, isobutanol, benzyl alcohol, and diethyl ether.

ジイソプロピルエーテル等のエーテル、フルフラール等
のアルデヒド、アセトン、エチルメチルケトン等のケト
ン、更に酢酸、無水酢酸等の脂肪酸およびその誘導体や
フェノール類、炭化フン素。
Ethers such as diisopropyl ether, aldehydes such as furfural, ketones such as acetone and ethyl methyl ketone, fatty acids and their derivatives such as acetic acid and acetic anhydride, phenols, and fluorine carbide.

シリコンなどがある。Silicon, etc.

上記のような分散媒中に強磁性体微粒子を安定に分散さ
せるための界面活性剤としては、例えばC0OH基、5
O3H基、PO3H基などの極性基を1個以上有し、一
般式R−X (Rは炭化水素基、炭化フッ素基、シリコ
ン基、Xは前記の極性基)で示される不飽和脂肪酸また
はその塩類を主成分とするもの、その他周知の炭化水素
化合物から選定すれば良い。
Examples of surfactants for stably dispersing ferromagnetic fine particles in the above-mentioned dispersion medium include C0OH group, 5
An unsaturated fatty acid having one or more polar groups such as an O3H group or a PO3H group and represented by the general formula R-X (R is a hydrocarbon group, a fluorocarbon group, a silicon group, and X is the above polar group) or its It may be selected from those containing salts as a main component and other well-known hydrocarbon compounds.

また、界面活性剤として、一般式R−Y(Rは炭化水素
基、Yはカップリング結合基)で示される例えばシラン
カップリング剤やチタンカップリング剤等の化合物から
選定しても良い。この場合は、強磁性体微粒子との結合
力が、上記不飽和脂肪酸等からなる界面活性剤よりも強
く、一層安定した分散状態が得られる。
Further, the surfactant may be selected from compounds represented by the general formula RY (R is a hydrocarbon group, Y is a coupling bonding group), such as a silane coupling agent and a titanium coupling agent. In this case, the bonding force with the ferromagnetic fine particles is stronger than that of the surfactant made of the unsaturated fatty acid or the like, and a more stable dispersion state can be obtained.

上記界面活性剤は、分散媒との親和性等を考慮しつつ、
単独または組み合わせて用いる。すなわち、分散媒が水
の場合は、まずR−X型の例えば石油スルホン酸を第1
の界面活性剤として添加することにより、強磁性体微粒
子と極性基Xとが結合し疎水基Rを外側に向けた単分子
層を形成する。
The above-mentioned surfactant should be selected by taking into account its affinity with the dispersion medium, etc.
Used alone or in combination. That is, when the dispersion medium is water, firstly, R-X type petroleum sulfonic acid is first added.
By adding it as a surfactant, the ferromagnetic fine particles and the polar group X bond to form a monomolecular layer with the hydrophobic group R facing outward.

次いで、同じ(R−X型の例えばオレイン酸を第2の界
面活性剤として添加して、第1の界面活性剤の単分子層
に重ねて2分子層を形成せしめ、親水性の極性基Xで強
磁性体微粒子の表面を覆って安定なコロイド水溶液を得
る。
Next, oleic acid of the same type (R- A stable aqueous colloid solution is obtained by covering the surface of the ferromagnetic particles.

分散媒が有機溶媒の場合は、R−X型もしくはR−Y型
の界面活性剤を単独で用いるか、またはR−Y型の界面
活性剤を第1の界面活性剤として添加した後、更に第2
の界面活性剤としてR−X型のそれを添加する。
When the dispersion medium is an organic solvent, an R-X type or R-Y type surfactant is used alone, or an R-Y type surfactant is added as the first surfactant, and then further Second
RX type surfactant is added as a surfactant.

この発明の強磁性体微粒子としては、公知の湿式法によ
り得られるマグネタイトコロイドを用い得る。また、水
中でマグネタイト粉末をボールミルにより粉砕する、い
わゆる湿式粉砕法で得られるものでもよい。
As the ferromagnetic fine particles of the present invention, magnetite colloids obtained by a known wet method can be used. Alternatively, it may be obtained by a so-called wet pulverization method in which magnetite powder is pulverized in water using a ball mill.

また、マグネタイト以外のマンガンフェライト。Also, manganese ferrite other than magnetite.

コバルトフェライトもしくはこれらと亜鉛、ニッケルと
の複合フェライトやバリウムフェライトなどの強磁性酸
化物または鉄、コバルト、希土類などの強磁性金属を用
いることもできる。
Ferromagnetic oxides such as cobalt ferrite or composite ferrites of these with zinc and nickel, barium ferrite, or ferromagnetic metals such as iron, cobalt, and rare earths can also be used.

この発明の強磁性体微粒子の粒径は、一般の磁性流体に
用いられる0、1μm〜20人の範囲であればよい。も
っとも、強磁性体微粒子の粒径が小さい程、磁気探傷や
磁気記録パターンの検査精度が向上するから、必要に応
じて微細粒子とすることが好ましい。
The particle size of the ferromagnetic fine particles of the present invention may range from 0.1 μm to 20 μm, which is used for general magnetic fluids. However, the smaller the particle size of the ferromagnetic fine particles, the higher the accuracy of magnetic flaw detection and inspection of magnetic recording patterns, so it is preferable to use fine particles as necessary.

この発明の強磁性体微粒子の含有量は、従来一般的に用
いられている体積比で1〜30%の範囲でよいが、後述
する中間媒体を利用して製造することで、更に高濃度の
ものとすることも極めて容易である。
The content of the ferromagnetic fine particles of the present invention may be in the range of 1 to 30% by volume, which is conventionally generally used, but it is possible to achieve an even higher concentration by manufacturing using the intermediate medium described below. It is also extremely easy to make it a reality.

磁性流体を磁気探傷や磁気パターンの検査等に用いる場
合、分散された強磁性体微粒子の粒子が微細で高濃度で
ある程精密な検査を行うことが可能になる。しかし一般
には、強磁性体微粒子の濃度が高い程粒子同志の間隔が
小さくなり凝集し易いから、濃度の向上には限界が生じ
てしまう。
When a magnetic fluid is used for magnetic flaw detection, magnetic pattern inspection, etc., the finer the dispersed ferromagnetic particles are and the higher the concentration, the more precise the inspection can be performed. However, in general, the higher the concentration of ferromagnetic fine particles, the smaller the distance between particles and the easier they are to aggregate, so there is a limit to the improvement of the concentration.

そこでこの発明の磁性流体は、特に高濃度のものを必要
とする際には、強磁性体微粒子に第1の界面活性剤とヘ
キサンなどの低沸点溶媒とを加え、表面を界面活性剤で
被覆した強磁性体微粒子が低沸点溶媒中に分散された中
間媒体を得る工程を経て製造するのがよい。その中間媒
体を例えば遠心分離器にかければ、溶媒が低粘度である
から、その中の分散性の悪い粒子は容易に分離すること
ができる。次に、中間媒体を分散媒に加えて混合物とし
た後その混合物を加熱すれば、低沸点溶媒は容易に蒸発
し、極めて安定に磁性粒子が分散した磁性流体を得るこ
とができる。
Therefore, when the magnetic fluid of this invention requires a particularly high concentration, a first surfactant and a low boiling point solvent such as hexane are added to the ferromagnetic fine particles, and the surface is coated with the surfactant. It is preferable to produce it through a step of obtaining an intermediate medium in which ferromagnetic fine particles are dispersed in a low boiling point solvent. If the intermediate medium is subjected to, for example, a centrifugal separator, the poorly dispersible particles therein can be easily separated because the solvent has a low viscosity. Next, by adding the intermediate medium to the dispersion medium to form a mixture and heating the mixture, the low boiling point solvent can be easily evaporated and a magnetic fluid in which magnetic particles are extremely stably dispersed can be obtained.

上記の工程は、中間媒体から分散性の悪い粒子を分離し
た後、その中間媒体を加熱し、低沸点溶媒を蒸発させて
強磁性体微粒子の粉末とし、しかる後この粉末に分散媒
を加えるようにしてもよい。
In the above process, after separating particles with poor dispersibility from an intermediate medium, the intermediate medium is heated to evaporate the low boiling point solvent to form a powder of ferromagnetic fine particles, and then a dispersion medium is added to this powder. You may also do so.

また、このようにして得た磁性流体に、更に新たに中間
媒体を加えては低沸点溶媒を蒸発させて濃縮することを
繰り返せば、極めて濃度が高く、しかも微細な粒子のみ
が安定に分散している磁性流体が得られる。
Furthermore, if the magnetic fluid obtained in this way is repeatedly concentrated by adding a new intermediate medium and evaporating the low boiling point solvent, it is possible to obtain an extremely high concentration and to stably disperse only fine particles. A ferrofluid with a high temperature is obtained.

上記磁性流体に添加する熱硬化性樹脂は、上記磁性流体
を構成する分散媒との相溶性を考慮しつつ、下記の各合
成樹脂の群の中から選定できる。
The thermosetting resin added to the magnetic fluid can be selected from the following groups of synthetic resins, taking into consideration its compatibility with the dispersion medium constituting the magnetic fluid.

■ 不飽和ポリエステル樹脂 オルトフタル酸系、イソフタル酸系、ビスフェノール系
、脂環式不飽和脂肪酸系、アクリル酸エステル系等。
■ Unsaturated polyester resins such as orthophthalic acid, isophthalic acid, bisphenol, alicyclic unsaturated fatty acid, and acrylic ester.

■ エポキシ樹脂 例えば、 フェノール系のグリシジルエーテル型(主原料:ビスフ
ェノールA、フェノールノボラック、〇−タレゾールノ
ボラック等)。
■ Epoxy resins, such as phenolic glycidyl ether type (main raw materials: bisphenol A, phenol novolac, 〇-talesol novolac, etc.).

アルコール系のグリシジルエーテル型(主原料:ポリプ
ロピレングリコール、水添ビスフェノールA)。
Alcohol-based glycidyl ether type (main raw materials: polypropylene glycol, hydrogenated bisphenol A).

グリシジルエステル型(主原料:ヘキサヒドロ無水フタ
ル酸、ダイマー酸)。
Glycidyl ester type (main raw materials: hexahydrophthalic anhydride, dimer acid).

グリシジルアミン型(主原料ニジアミノジフェニルメタ
ン、イソシアヌル酸、ヒダントイン)。
Glycidylamine type (main raw materials: diamino diphenylmethane, isocyanuric acid, hydantoin).

混合型(主原料:p−アミノフェノール、p−オキシ安
息香酸)。
Mixed type (main raw materials: p-aminophenol, p-oxybenzoic acid).

■ フェノール樹脂 ■ ユリア樹脂 ■ メラミン樹脂 ■ ジアリルフタレート樹脂 ■ シリコーン樹脂 ■ フッ素樹脂 以下に、熱硬化型磁性流体の具体例をその製造工程とと
もに説明する。
■ Phenol resin ■ Urea resin ■ Melamine resin ■ Diaryl phthalate resin ■ Silicone resin ■ Fluorine resin Below, specific examples of thermosetting magnetic fluids will be explained along with their manufacturing process.

〔実施例1〕 まず、硫酸第1鉄と硫酸第2鉄の各1モルを含む水溶液
IJに、6NのNa0Haqを加えてpHを11以上に
した後、60℃で30分間熟成してマグネタイトコロイ
ドを得た(湿式法)。その後、60℃に保ったままこの
マグネタイトスラリーに3NのHClを加えてpHを2
〜3の間に調整する。このマグネタイトスラリーに、コ
ロイド粒子を安定に分散させる第1の界面活性剤として
、石油スルホン酸ナトリウムを70g加え、30分間撹
拌する。
[Example 1] First, 6N Na0Haq was added to an aqueous solution IJ containing 1 mole each of ferrous sulfate and ferric sulfate to adjust the pH to 11 or higher, and the mixture was aged at 60°C for 30 minutes to form a magnetite colloid. was obtained (wet method). Afterwards, 3N HCl was added to this magnetite slurry while keeping it at 60°C to adjust the pH to 2.
Adjust between ~3. To this magnetite slurry, 70 g of sodium petroleum sulfonate is added as a first surfactant for stably dispersing colloidal particles, and the mixture is stirred for 30 minutes.

これを静置し、マグネタイト粒子が凝集し沈降したら、
その上澄を捨てて水を注ぎ、更に水洗する操作を数回繰
り返して、電解質を除去する。水洗が終わればその液を
分液ロートに移す。次に、このロート内の液に低沸点溶
媒としてヘキサンを加え、十分に振とうしてから静置し
、水とヘキサンとを分離させる。
When this is allowed to stand and the magnetite particles aggregate and settle,
Discard the supernatant, pour in water, and repeat the process of rinsing with water several times to remove the electrolyte. After washing with water, transfer the liquid to a separating funnel. Next, hexane is added as a low boiling point solvent to the liquid in the funnel, shaken thoroughly and left to stand to separate water and hexane.

これにより、マグネタイト粒子はヘキサン中に移行し、
表面を界面活性剤で被覆した強磁性体微粒子が低沸点溶
媒中に分散された中間媒体が得られる。次にこの中間媒
体液を、8000Gの遠心力で20分間遠心分離し、大
きなマグネタイト粒子を沈降分離せしめた。上澄み内に
残った強磁性体微粒子の粒子径は100〜150人であ
った。
This causes the magnetite particles to migrate into hexane,
An intermediate medium is obtained in which fine ferromagnetic particles whose surfaces are coated with a surfactant are dispersed in a low boiling point solvent. Next, this intermediate medium solution was centrifuged for 20 minutes at a centrifugal force of 8000 G to separate large magnetite particles by sedimentation. The particle size of the ferromagnetic fine particles remaining in the supernatant was 100 to 150 particles.

このように、いったん低粘度の中間媒体を形成して遠心
分離すれば、強磁性体微粒子の粒度分布を任意に調整す
ることが可能であり、特に微細粒子の濃度を高め得ると
いう利点がある。
In this way, once a low-viscosity intermediate medium is formed and centrifuged, it is possible to arbitrarily adjust the particle size distribution of the ferromagnetic fine particles, and there is an advantage that the concentration of the fine particles can be particularly increased.

その後、その上澄みを取り出してロータリーエバポレー
タに移し、90℃に保ってヘキサンを蒸発除去した。
Thereafter, the supernatant was taken out, transferred to a rotary evaporator, and kept at 90°C to evaporate hexane.

こうして得られた粉末状のマグネタイト微粒子の1gを
とり、ノーマルブタノール10g中に分散させた後、更
に第2の界面活性剤としてイソステアリン酸0.45 
gを加え溶解させた。この溶液に、等容量の熱硬化性樹
脂(タムラ製作所製、5R34G)を加え、撹拌して混
合した。
1 g of the thus obtained powdery magnetite fine particles was taken and dispersed in 10 g of normal butanol, and then 0.45 g of isostearic acid was added as a second surfactant.
g was added and dissolved. To this solution, an equal volume of thermosetting resin (manufactured by Tamura Seisakusho, 5R34G) was added and mixed by stirring.

かくして、有機溶媒のノーマルブタノール液と熱硬化型
樹脂との混合液中に、弾性体微粒子のマグネタイトを、
第1と第2の界面活性剤を介して極めて安定に分散させ
てなる熱硬化型磁性流体が得られた。
In this way, fine elastic particles of magnetite were added to the mixture of organic solvent normal butanol and thermosetting resin.
A thermosetting magnetic fluid was obtained which was extremely stably dispersed via the first and second surfactants.

〔実施例2〕 まず、実施例1と同様に湿式法でマグネタイトコロイド
のスラリーを得た。
[Example 2] First, a slurry of magnetite colloid was obtained by a wet method in the same manner as in Example 1.

次いで、そのスラリーに第1の界面活性剤としてシラン
カップリング剤(東芝シリコーン■製。
Next, a silane coupling agent (manufactured by Toshiba Silicone ■) was added to the slurry as a first surfactant.

TSC−8185)を70g添加し、30分間撹拌する
Add 70g of TSC-8185) and stir for 30 minutes.

以下、実施例1と同様に処理し、表面を第1の界面活性
剤で被覆した強磁性体微粒子が低沸点溶媒中にに分散さ
れた中間媒体を経て、分散媒としてのノーマルブタノー
ル液と熱硬化型樹脂との混合液中に、第1と第2の界面
活性剤を介して弾性体微粒子のマグネタイトを、極めて
安定に分散させてなる熱硬化型磁性流体が得られた。
Thereafter, the treatment was carried out in the same manner as in Example 1, and the ferromagnetic fine particles whose surfaces were coated with the first surfactant were passed through an intermediate medium in which they were dispersed in a low boiling point solvent, and then heated with normal butanol liquid as a dispersion medium. A thermosetting magnetic fluid was obtained in which fine elastic particles of magnetite were extremely stably dispersed in a mixed liquid with a curable resin via the first and second surfactants.

〔実施例3〕 まず、硫酸第1鉄と硫酸第2鉄の各1モルを含む水溶液
izに、6NのNa0Haqを加えてpH811以上に
した後、60’Cで30分間熟成してマグネタイトコロ
イドを得た(湿式法)。その後、60℃に保ったままこ
のマグネタイトスラリーに3NのHClを加えてpHを
2〜3の間に調整する。このマグネクイトスラリ−に、
コロイド粒子を安定に分散させる第1の界面活性剤とし
て、石油スルホン酸ナトリウム70g加え、30分間撹
拌する。
[Example 3] First, 6N Na0Haq was added to an aqueous solution iz containing 1 mol each of ferrous sulfate and ferric sulfate to make the pH 811 or higher, and then aged at 60'C for 30 minutes to form magnetite colloid. obtained (wet method). Thereafter, 3N HCl is added to this magnetite slurry while maintaining the temperature at 60°C to adjust the pH between 2 and 3. In this magnetite slurry,
70 g of sodium petroleum sulfonate is added as a first surfactant for stably dispersing colloidal particles, and the mixture is stirred for 30 minutes.

これを静置し、マグネタイト粒子が凝集し沈降したら、
その上澄を捨てて水を注ぎ、更に水洗する操作を数回繰
り返して、電解質を除去する。水洗が終わればその液を
分液ロートに移す。次に、このロート内の液に低沸点溶
媒としてヘキサンを加え、十分に振とうしてから静置し
、水とヘキサンとを分離させる。
When this is allowed to stand and the magnetite particles aggregate and settle,
Discard the supernatant, pour in water, and repeat the process of rinsing with water several times to remove the electrolyte. After washing with water, transfer the liquid to a separating funnel. Next, hexane is added as a low boiling point solvent to the liquid in the funnel, shaken thoroughly and left to stand to separate water and hexane.

これにより、マグネタイト粒子はヘキサン中に移行し、
表面を界面活性剤で被覆した強磁性体微粒子が低沸点溶
媒中に分散された中間媒体が得られる。次にこの中間媒
体液を、8000Gの遠心力で20分間遠心分離し、大
きなマグネタイト粒子を沈降分離せしめた。上澄み内に
残った強磁性体微粒子の粒子径は100〜150人であ
った。
This causes the magnetite particles to migrate into hexane,
An intermediate medium is obtained in which fine ferromagnetic particles whose surfaces are coated with a surfactant are dispersed in a low boiling point solvent. Next, this intermediate medium solution was centrifuged for 20 minutes at a centrifugal force of 8000 G to separate large magnetite particles by sedimentation. The particle size of the ferromagnetic fine particles remaining in the supernatant was 100 to 150 particles.

この、ように、いったん低粘度の中間媒体を形成して遠
心分離すれば、強磁性体微粒子の粒度分布を任意に調整
することが可能であり、特に微細粒子の濃度を高め得る
という利点がある。
In this way, once a low-viscosity intermediate medium is formed and centrifuged, it is possible to arbitrarily adjust the particle size distribution of the ferromagnetic fine particles, which has the advantage of increasing the concentration of fine particles. .

その後、その上澄みを取り出してロータリーエバポレー
タに移し、90″Cに保ってヘキサンを蒸発除去した。
Thereafter, the supernatant was taken out and transferred to a rotary evaporator, and the hexane was removed by evaporation while maintaining the temperature at 90''C.

こうして得られた粉末状のマグネタイト微粒子の1gと
第2の界面活性剤としてオレイン酸ナトリウム0.45
 gを加え溶解させた1 0m1tの水溶液を混ぜ撹拌
し、マグネタイトを水溶液中に分散させる。この分散液
にアルキッド樹脂(大日本インキ化学工業■製、S−6
95)含有の水溶液を14.7nl加え撹拌し分散させ
る。
1 g of the thus obtained powdered magnetite fine particles and 0.45 sodium oleate as the second surfactant.
Mix and stir 10ml of an aqueous solution in which 100 g of the magnetite was added and dissolved, and the magnetite is dispersed in the aqueous solution. Add alkyd resin (manufactured by Dainippon Ink & Chemicals, S-6) to this dispersion.
Add 14.7 nl of an aqueous solution containing 95) and stir to disperse.

この液を8000Gの遠心力で20分間遠心分離し、不
純物を取り除き熱硬化型磁性流体を作製することができ
た。
This liquid was centrifuged for 20 minutes with a centrifugal force of 8000 G to remove impurities and produce a thermosetting magnetic fluid.

〔実施例4〕 まず、前記実施例3と同様にして表面を界面活性剤で被
覆した強磁性体微粒子が低沸点溶媒中に分散された中間
媒体を得、この中間媒体液を8000Gの遠心力で20
分間遠心分離し、大きなマグネタイト粒子を沈降分離せ
しめ、その上澄みを取り出してエバポレータに移し、9
0℃に保ってヘキサンを蒸発除去する。
[Example 4] First, an intermediate medium in which ferromagnetic fine particles whose surfaces were coated with a surfactant were dispersed in a low boiling point solvent was obtained in the same manner as in Example 3, and this intermediate medium liquid was subjected to a centrifugal force of 8000 G. 20 in
Centrifuge for 9 minutes to sediment and separate large magnetite particles, remove the supernatant and transfer it to an evaporator.
Hexane is removed by evaporation while maintaining the temperature at 0°C.

こうして得られた粉末状のマグネタイト微粒子の1gを
とり、トルエンl 5mJ、ヘキサン30m1の混合溶
媒に溶解させ分散させる。この溶液にシリコーン系熱硬
化樹脂(信越化学工業n製。
1 g of the thus obtained powdery magnetite fine particles is taken and dissolved and dispersed in a mixed solvent of 1 5 mJ of toluene and 30 ml of hexane. Add this solution to a silicone thermosetting resin (manufactured by Shin-Etsu Chemical Co., Ltd.).

MS−841)のトルエン溶融液15m1を加え撹拌す
る。これを8000Gの遠心力で20分間遠心分離し、
不純物を取り除き熱硬化型磁性流体を作製することがで
きた。
Add 15 ml of toluene melt of MS-841) and stir. This was centrifuged at 8000G centrifugal force for 20 minutes,
By removing impurities, we were able to create a thermosetting magnetic fluid.

〔実施例5〕 実施例1〜実施例2で得られた熱硬化型磁性流体による
鋼材の磁気探傷試験を行った。
[Example 5] A magnetic flaw detection test was conducted on steel materials using the thermosetting magnetic fluids obtained in Examples 1 and 2.

被検体として、第1図に模式的に示すように、表面下、
数μmのところに、長さl am・幅10μm程度の既
知の内部欠陥1を有する鋼材2を用いた。
As the specimen, as schematically shown in Fig. 1, below the surface,
A steel material 2 having a known internal defect 1 with a length of about lam and a width of about 10 μm at several micrometers was used.

この被検体2を予め印加磁界13K  GausSの磁
場内に置き、その表面に熱硬化型磁性流体3を刷毛塗り
した。すると、被検体2における内部欠陥1の直上部付
近に生じた漏洩磁束4の作用で、強磁性体微粒子が局部
的に集中して、図示のように熱硬化型磁性流体3が内部
欠陥1にそって盛り上がる現象が認められた。
This test object 2 was placed in advance in a magnetic field with an applied magnetic field of 13 K GausS, and the thermosetting magnetic fluid 3 was applied with a brush onto its surface. Then, due to the action of the leakage magnetic flux 4 generated in the vicinity directly above the internal defect 1 in the test object 2, the ferromagnetic particles are locally concentrated, and the thermosetting magnetic fluid 3 is applied to the internal defect 1 as shown in the figure. A growing phenomenon was observed.

この盛り上がり現象は、被検体2を磁場外に取り出すと
消滅し、磁場内に戻すと再び認められた。
This swelling phenomenon disappeared when the subject 2 was taken out of the magnetic field, and was observed again when it was returned into the magnetic field.

次に、盛り上がり状態を示している熱硬化型磁性流体3
に対して、温度70℃程度の熱風を吹きつけところ、1
分程で熱硬化型磁性流体3が硬化し、内部欠陥1を示し
ている状態をそのまま固定することができた。
Next, thermosetting magnetic fluid 3 showing a swelling state
When hot air with a temperature of about 70°C was blown against the
The thermosetting magnetic fluid 3 was cured in about a minute, and the state showing the internal defect 1 could be fixed as it was.

その硬化した熱硬化型磁性流体3の塗膜を被検体からは
がして、顕微鏡で観察することにより、針状の陰影を示
す内部欠陥状態を正確に検査することができた。
By peeling off the cured coating film of thermosetting magnetic fluid 3 from the test object and observing it with a microscope, it was possible to accurately inspect the state of internal defects showing needle-shaped shadows.

〔発明の効果〕〔Effect of the invention〕

この発明では、磁気を有する被検体の欠陥や磁気記録パ
ターンの検査に用いる磁性流体中に、熱硬化型樹脂を混
合した。そのため、被検体の磁束の変化に応じて形成さ
れる磁性流体のパターンを固定して、磁場外で保持する
ことが可能となり、磁気探傷や磁気記録媒体におけるマ
イクロ検査等の分野に大きな進展をもたらすことができ
る。
In this invention, a thermosetting resin is mixed into a magnetic fluid used for inspecting defects and magnetic recording patterns in magnetic objects. Therefore, it becomes possible to fix the magnetic fluid pattern that is formed in response to changes in the magnetic flux of the object and hold it outside of the magnetic field, bringing great progress in fields such as magnetic flaw detection and micro-inspection of magnetic recording media. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の作用を説明する模式図で
ある。 lは内部欠陥、2は被検体、3は光硬化型磁性流体、4
は漏洩磁束。
FIG. 1 is a schematic diagram illustrating the operation of an embodiment of the present invention. l is an internal defect, 2 is an object to be inspected, 3 is a photocurable magnetic fluid, 4
is leakage magnetic flux.

Claims (6)

【特許請求の範囲】[Claims] (1)分散媒中に、界面活性剤を吸着させた強磁性体微
粒子を分散させてなる磁性流体に、熱硬化型樹脂を混合
したことを特徴とする熱硬化型磁性流体。
(1) A thermosetting magnetic fluid characterized by mixing a thermosetting resin with a magnetic fluid made by dispersing fine ferromagnetic particles adsorbed with a surfactant in a dispersion medium.
(2)分散媒は、蒸気圧が20℃で400mmHg以下
の有機溶液よりなる特許請求の範囲第1項記載の熱硬化
型磁性流体。
(2) The thermosetting magnetic fluid according to claim 1, wherein the dispersion medium is an organic solution having a vapor pressure of 400 mmHg or less at 20°C.
(3)分散媒は、水よりなる特許請求の範囲第1項記載
の熱硬化型磁性流体。
(3) The thermosetting magnetic fluid according to claim 1, wherein the dispersion medium is water.
(4)界面活性剤は、一般式R−X(但し、R:炭化水
素基又は炭化フッ素基又はシリコン基、X:PO_3H
、COOH、SO_3Hなどの極性基またはそれらの塩
)で示される炭化水素化合物よりなる特許請求の範囲第
1項記載の熱硬化型磁性流体。
(4) The surfactant has the general formula R-X (R: hydrocarbon group, fluorocarbon group, or silicon group, X: PO_3H
, a polar group such as COOH, SO_3H, or a salt thereof), the thermosetting magnetic fluid according to claim 1.
(5)界面活性剤は、一般式R−Y(但し、R:炭化水
素基又は炭化フッ素基又はシリコン基、Y:Si(OR
)_3、SiR_2(OR)等)で示されるカップリン
グ剤よりなる特許請求の範囲第1項記載の熱硬化型磁性
流体。
(5) The surfactant has the general formula RY (where R: hydrocarbon group or fluorocarbon group or silicon group, Y: Si (OR
)_3, SiR_2(OR), etc.) The thermosetting type magnetic fluid according to claim 1, which comprises a coupling agent represented by the following formulas: )_3, SiR_2(OR), etc.).
(6)界面活性剤は、一般式R−X(但し、R:炭化水
素基又は炭化フッ素基又はシリコン基、X:PO_3H
、COOH、SO_3Hなどの極性基またはそれらの塩
)で示される炭化水素化合物と、一般式R−Y(但し、
R:炭化水素基又は炭化フッ素基又はシリコン基、Y:
Si(OR)_3、SiR_2(OR)等)で示される
カップリング剤とよりなる特許請求の範囲第1項記載の
熱硬化型磁性流体。
(6) The surfactant has the general formula R-X (where R: hydrocarbon group, fluorocarbon group, or silicon group, X: PO_3H
, COOH, SO_3H, or their salts), and a hydrocarbon compound represented by the general formula RY (however,
R: hydrocarbon group, fluorocarbon group, or silicon group, Y:
The thermosetting magnetic fluid according to claim 1, comprising a coupling agent represented by Si(OR)_3, SiR_2(OR), etc.).
JP62016869A 1987-01-27 1987-01-27 Thermosetting magnetic fluid Expired - Lifetime JPH0766887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016869A JPH0766887B2 (en) 1987-01-27 1987-01-27 Thermosetting magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016869A JPH0766887B2 (en) 1987-01-27 1987-01-27 Thermosetting magnetic fluid

Publications (2)

Publication Number Publication Date
JPS63185006A true JPS63185006A (en) 1988-07-30
JPH0766887B2 JPH0766887B2 (en) 1995-07-19

Family

ID=11928210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016869A Expired - Lifetime JPH0766887B2 (en) 1987-01-27 1987-01-27 Thermosetting magnetic fluid

Country Status (1)

Country Link
JP (1) JPH0766887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188705A (en) * 1990-11-22 1992-07-07 Natl Res Inst For Metals Lattice arrangement structure of magnetic fine particle
JPH04188703A (en) * 1990-11-22 1992-07-07 Natl Res Inst For Metals Composite magnetic material
WO2008111194A1 (en) * 2007-03-14 2008-09-18 National University Corporation Fukushima University Conductive composite material and process for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179423A (en) * 1985-02-05 1986-08-12 Taihoo Kogyo Kk Magnetic suspension

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179423A (en) * 1985-02-05 1986-08-12 Taihoo Kogyo Kk Magnetic suspension

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188705A (en) * 1990-11-22 1992-07-07 Natl Res Inst For Metals Lattice arrangement structure of magnetic fine particle
JPH04188703A (en) * 1990-11-22 1992-07-07 Natl Res Inst For Metals Composite magnetic material
WO2008111194A1 (en) * 2007-03-14 2008-09-18 National University Corporation Fukushima University Conductive composite material and process for producing the same

Also Published As

Publication number Publication date
JPH0766887B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
CA1137296A (en) Magnetic particle dispersions
US5927621A (en) Particle size reduction process
JP2655551B2 (en) Fine surface shape creation method
JPS63239904A (en) Photoset magnetic fluid
US5124060A (en) Magnetic fluid composition
US4438156A (en) Mono-particle magnetic dispersion in organic polymers for magnetic recording
JPS63185006A (en) Heat curing type magnetic fluid
Meng et al. Synthesis of ferrofluids using a chemically induced transition method and their characterization
US20070190179A1 (en) Lipiodol-ferrofluid, and a process for preparation thereof
Cao et al. Investigation into rheological properties of magnetorheological polishing slurry using α-cellulose as an additive agent and its polishing performance
JPS63150302A (en) Photocurable magnetic fluid
KR20080088154A (en) Magnetism nano particle coated silica and method for manufacturing thereof
Kartikowati et al. Aligned Fe 3 O 4 magnetic nanoparticle films by magneto-electrospray method
JPH0642414B2 (en) Conductive magnetic fluid composition and method for producing the same
EP0203205B1 (en) Magnetic recording medium and process for its manufacture
JPS63175402A (en) Photoset magnetic fluid
KR20010033478A (en) Magnetic liquid and method and device for the production thereof
JPH0439346A (en) Photo-setting magnetic fluid composition
Rice et al. A new look at the Bitter method of magnetic imaging
US20230408502A1 (en) Magnetic particle and particle for immunological test
JPS63280403A (en) Conductive magnetic fluid compositing and manufacture thereof
RU2402828C1 (en) Method of preparing magnetosensitive suspension for viewing magnetic fields for recording and magnetic-tape testing
RU2375706C1 (en) Method for preparation of magnetically sensitive liquid for magnetic record fields visualisation and for magnetic-tape testing
JPH0274884A (en) Observation of magnetic recording
JP2913197B2 (en) Method for developing magnetic recording medium