JPH04188703A - Composite magnetic material - Google Patents

Composite magnetic material

Info

Publication number
JPH04188703A
JPH04188703A JP2316225A JP31622590A JPH04188703A JP H04188703 A JPH04188703 A JP H04188703A JP 2316225 A JP2316225 A JP 2316225A JP 31622590 A JP31622590 A JP 31622590A JP H04188703 A JPH04188703 A JP H04188703A
Authority
JP
Japan
Prior art keywords
magnetic material
fine particles
composite magnetic
medium
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316225A
Other languages
Japanese (ja)
Other versions
JPH0810652B2 (en
Inventor
Isao Nakatani
功 中谷
清 小澤
▲ひじ▼方 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP2316225A priority Critical patent/JPH0810652B2/en
Publication of JPH04188703A publication Critical patent/JPH04188703A/en
Publication of JPH0810652B2 publication Critical patent/JPH0810652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Colloid Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To easily mold colloid-size ferromagnetic fine particles into a flexible complex shape by dispersing the particles in a cured material of a medium for the fine particles in an assembled state, each said fine particle being yielded by adsorbing molecules each having affinity for the medium and coating the particle with the molecules over the surface thereof. CONSTITUTION:Nitrided metal fine particles 2 having a surface active agent coated layer 1 for example are arranged in the direction of a magnetic field at a predetermined interval, elongated lengthily on a straight line like a string of beads, and the arrangement is adapted to form a triangular lattice across a cross section perpendicularly to the direction of the magnetic field and is fixed in a medium 3. In such an orinted texture, the nitrided metal fine particles 2 are aligned at a predetermined distance by entropic repulsive force of the surface-active agent coated layer 1, the distance being controlled by the kind and molecules of a surface active agent used. Hereby, the fine particles can easily and simply molded into a flexible and complex shape.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、複合磁性材料に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to composite magnetic materials.

さらに詳しくは、この発明は、柔軟性を有し、かつ複雑
な形状に簡便かつ容易に成形加工することのできる新し
い複合磁性材料に関するものである。
More specifically, the present invention relates to a new composite magnetic material that is flexible and can be simply and easily molded into complex shapes.

(従来の技術とその課題) 地球磁場の存在とともに、近年では、永久磁石、モータ
、トランス等を用いた電気・電子製品か増加してきてお
り、また、超伝導磁石等の強い磁界を発生する様々な磁
界発生源か利用されてもいる。
(Conventional technology and its issues) Along with the existence of the earth's magnetic field, the number of electrical and electronic products that use permanent magnets, motors, transformers, etc. has increased in recent years. Magnetic field sources are also used.

その一方で、TV上セツトVTRセット、電話機等のエ
レクトロニクス機器の感度は向上してきており、また、
磁気テープ、磁気カート、テレホンカート、磁気ディス
ク等の磁気記録媒体が、−船釣に、広く用いられるよう
になってきている。
On the other hand, the sensitivity of electronic devices such as TV sets, VTR sets, and telephones has improved, and
Magnetic recording media such as magnetic tapes, magnetic carts, telephone carts, and magnetic disks are becoming widely used in boat fishing.

゛ このような状況にあって、エレクトロニクス機器や
磁気記録媒体などの機能性、耐久性等を保持するために
は、それらの周囲の磁界を簡便かつ有効に遮蔽すること
か必要となってきており、これまでに種々の磁気遮蔽材
料か提供されてきている。
゛ Under these circumstances, in order to maintain the functionality and durability of electronic devices and magnetic recording media, it has become necessary to simply and effectively shield the magnetic fields surrounding them. Until now, various magnetic shielding materials have been provided.

このような磁気遮蔽材料としては、けい素鋼板(Fe−
4%81合金)、パー70イ板(Fe−81%Ni−2
%Mo合金)、アモルファス鉄合金薄帯等が知られてい
る。
As such magnetic shielding material, silicon steel plate (Fe-
4% 81 alloy), par 70 plate (Fe-81% Ni-2
%Mo alloy), amorphous iron alloy ribbon, etc. are known.

これらの磁気遮蔽材料は、透磁性か大きく、静磁界ある
いは低周波の電磁波に対して優れた磁気遮蔽性を示すと
いう利点を有′するものの、金属材料であるために、柔
軟性かなく、しかも複雑な形状に成形加工するには手間
かかかるという欠点かある。また、複雑な部材を一体成
形で製造することも困難であった。特に、パーマロイ板
の場合には、加工歪みにより透砿率が低下するため、成
形加工後に熱処理を施さなければならず、原料か高価で
あることとあいまって、高コストなものになるという欠
点があった。
These magnetic shielding materials have the advantage of having high magnetic permeability and exhibiting excellent magnetic shielding properties against static magnetic fields and low-frequency electromagnetic waves, but because they are metal materials, they lack flexibility and The drawback is that it takes time and effort to mold into complex shapes. It was also difficult to manufacture complex members by integral molding. In particular, in the case of permalloy plates, the permeability decreases due to processing distortion, so heat treatment must be performed after forming, which, combined with the expensive raw materials, results in high costs. there were.

これに対し、最近、アモリックシートと呼ばれる若干の
可とう性を有する磁気遮蔽材料か開発されている。この
アモリックシートは、アモルファス鉄合金からなる細長
い多数の小片を二枚のポリエステルフィルムの間に層状
に挟んで圧着したものであり、たとえばはさみ等での切
断や、打ち抜き加工、曲げ加工等の他、接着剤による接
合を可能としている。
In contrast, a magnetic shielding material with some flexibility called amoric sheet has recently been developed. This Amoric sheet is made by sandwiching and pressing a large number of long and thin pieces of amorphous iron alloy between two polyester films, and it can be cut with scissors, punched, bent, etc. , which allows for bonding using adhesives.

しかしながら、このアモリックシートの場合にも、柔軟
性に富んでいるとはいい難く、また、複雑な形状に加工
することは容易ではない。
However, even in the case of this amoric sheet, it cannot be said that it is highly flexible, and it is not easy to process it into a complicated shape.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来の磁気遮蔽材料の欠点を解消し、柔軟性を有
し、かつ複雑な形状に簡便かつ容易に成形加工すること
のできる、新規な複合磁性材料を提供することを目的と
している。
This invention was made in view of the above circumstances, and it eliminates the drawbacks of conventional magnetic shielding materials, has flexibility, and can be simply and easily molded into complex shapes. , aims to provide a novel composite magnetic material.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、媒質に
対して親和性を有する分子を吸着させて表面被覆したコ
ロイドサイズの強磁性体の微粒子か、その媒質の硬化物
中に集合状態で分散されてなることを特徴とする複合磁
性材料を提供する。また、この発明は、この発明の発明
者らによってすてに提案されているコロイドまたは磁性
流体の技術をすてに提示しているか、これをさらに応用
的に発展させた複合磁性材料を提供する。
(Means for Solving the Problems) The present invention solves the above problems by providing colloid-sized ferromagnetic fine particles whose surface is coated with molecules that have an affinity for a medium, or To provide a composite magnetic material characterized by being dispersed in an aggregated state in a cured product. Furthermore, the present invention provides a composite magnetic material that either completely presents the colloid or magnetic fluid technology that has been proposed by the inventors of the present invention, or further develops this technology in an applied manner. .

すなわち、この発明の発明者らは、新しい窒化金属コロ
イドまたは窒化金属磁性流体は、たとえば鉄カルボニル
(F、e (Co) S)のような金属カルボニルと界
面活性剤をケロシン等の無極性有機溶媒に溶解し、その
溶液中に、たとえばアンモニア(NH3)のような含窒
素化合物を導入し、加熱して溶媒中で窒化鉄等の窒化金
属微粒子を生成させ、界面活性剤の働きにより、生成し
た窒化金属微粒子を非水溶液中に分散させたものからな
っている。
That is, the inventors of the present invention believe that a new metal nitride colloid or metal nitride magnetic fluid can be produced by combining a metal carbonyl, such as iron carbonyl (F, e (Co) S), and a surfactant in a nonpolar organic solvent such as kerosene. A nitrogen-containing compound such as ammonia (NH3) is introduced into the solution, and heated to generate metal nitride particles such as iron nitride in the solvent. It consists of fine metal nitride particles dispersed in a non-aqueous solution.

二の場合、界面活性剤分子は、その親油基を外側にして
窒化金属微粒子表面に吸着し、その結果として窒化金属
微粒子かケロシン等の溶媒に可溶化する。また、この界
面活性剤分子の被覆層は、窒化金属微粒子かそれ自身の
静電磁気力でくっつき合い、凝集するのを防ぐ分子的な
スペーサーとしての役割をするものでもある。このため
、微粒子は一定の距離以上に接近することはない。
In the second case, the surfactant molecules are adsorbed onto the surface of the metal nitride particles with their lipophilic groups on the outside, and as a result, the metal nitride particles are solubilized in a solvent such as kerosene. This coating layer of surfactant molecules also serves as a molecular spacer to prevent metal nitride fine particles from sticking together and aggregating due to their own electrostatic magnetic force. For this reason, fine particles do not approach closer than a certain distance.

この発明の発明者は、このような窒化金属微粒子を界面
活性剤分子によって被覆されたままの状態でたとえばケ
ロシン等のコロイド分散媒から取り出し、これを熱可塑
性樹脂、熱硬化性樹脂等の媒質中に再分散することかで
きることを見出すとともに、次のような配向組織を構成
することを電子顕微鏡観察により確認した。
The inventor of this invention took out such metal nitride fine particles covered with surfactant molecules from a colloidal dispersion medium such as kerosene, and placed them in a medium such as a thermoplastic resin or a thermosetting resin. In addition to discovering that it is possible to redisperse the material, we also confirmed through electron microscopy that it forms the following oriented structure.

すなわち、分散系に磁界を印加したまま樹脂を硬化させ
ると、たとえば第1図に示したように、界面活性剤の被
覆層(1)を有する窒化金属微粒子(2)は、磁界方向
に一定の間隔をおいて数珠状に直線的に連なって長く延
びて配列し、かつ、その配列が磁界方向と垂直方向の断
面において、第2図に例示したような三角格子を形成し
て媒質(3)中に固定される。このような配向組織にお
いては、界面活性剤被覆層(1)のエントロピツクな斥
力により窒化金属微粒子(2)が一定間隔を隔てて並び
、その間隔は使用する界面活性剤の種類と分子量によっ
て制御することができる。
That is, when the resin is cured while a magnetic field is applied to the dispersion system, as shown in FIG. The medium (3) is arranged in a long straight line in the form of beads at intervals, and in a cross section perpendicular to the direction of the magnetic field, forms a triangular lattice as illustrated in Fig. 2. fixed inside. In such an oriented structure, the metal nitride fine particles (2) are arranged at regular intervals due to the entropic repulsion of the surfactant coating layer (1), and the interval can be controlled by the type and molecular weight of the surfactant used. can do.

またこの発明の発明者は、そのような配向組織を有する
複合材料について、たとえば7〜20nmの範囲で均一
な直径をもつ窒化鉄微粒子か3〜5ronの範囲で均一
な間隔を隔てて鎖状に並ぶ場合に、複合材料はその配向
方向にきわめて大きい透磁率を有し、かつ、抗磁力がき
わめて小さい強磁性体となることを見比した。
In addition, the inventor of the present invention has proposed that, regarding a composite material having such an oriented structure, iron nitride fine particles having a uniform diameter in the range of 7 to 20 nm, or iron nitride fine particles having a uniform diameter in the range of 3 to 5 ron, are arranged in a chain shape at uniform intervals in the range of 3 to 5 ron. When aligned, the composite material becomes a ferromagnetic material with extremely high magnetic permeability in the orientation direction and extremely low coercive force.

この発明は、以上の通りの知見に基づいて完成されたも
のである。
This invention was completed based on the above findings.

そこで、次に、この発明の構成についてさらに詳しく説
明する。もちろん、この発明の複合磁性材料は、以下の
窒化鉄微粒子を用いる場合に限定されることはない。金
属、その化合物等の各種のものか対象となる。
Therefore, next, the configuration of the present invention will be explained in more detail. Of course, the composite magnetic material of the present invention is not limited to the case where the following iron nitride fine particles are used. Targets include various types of metals and their compounds.

たとえば窒化鉄微粒子コロイド系においては、窒化鉄微
粒子の粒径か約12nm以上の場合には、微粒子は凝集
し沈澱するか、その粒径が12nm以下の場合には凝集
せず、安定な分散系を形成する。
For example, in a colloidal system of iron nitride particles, if the particle size of the iron nitride particles is approximately 12 nm or more, the particles will aggregate and precipitate, or if the particle size is less than 12 nm, they will not aggregate and form a stable dispersion system. form.

しかしながら、この安定な分散系100重量部に対して
、たとえばアセトン50重量部を添加し振とうすると、
窒化鉄コロイドは安定性を失い、凝集して沈澱する。こ
の場合、アセトンの他、ノオキサン、酢酸アミル、酢酸
メチル等の油および水の両方に溶ける両親媒性液体を添
加してもそのような窒化鉄コロイドの凝集沈澱が起こる
However, if, for example, 50 parts by weight of acetone is added to 100 parts by weight of this stable dispersion and shaken,
Iron nitride colloids lose stability, aggregate and precipitate. In this case, such coagulation and precipitation of iron nitride colloids occurs even when an amphiphilic liquid soluble in both oil and water, such as nooxane, amyl acetate, and methyl acetate, is added in addition to acetone.

この微粒子か凝集した溶液に対してたとえば遠心分離、
あるいは磁界分離を行うことによりその沈澱成分を分離
し収集することかできる。このようにして、任意の粒径
の窒化鉄微粒子に対して、窒化鉄コロイド中の窒化鉄分
散相を分散媒から分離して取り出すことか可能となる。
For example, centrifugation is performed on this fine particle or aggregated solution.
Alternatively, the precipitated components can be separated and collected by magnetic field separation. In this way, it becomes possible to separate and extract the iron nitride dispersed phase in the iron nitride colloid from the dispersion medium for iron nitride fine particles of any particle size.

この沈澱分離し、乾燥させた微粒子には、その表面に界
面活性剤のアミン分子等か吸着しているために、それ自
身でポリ塩化ビニル、ナイロン、ポリエステル、ポリメ
タクリル酸メチル等の極性の小さいポリマーに対して親
和性を示す。
These precipitated and dried fine particles have surfactant amine molecules adsorbed on their surfaces, so they themselves contain less polar materials such as polyvinyl chloride, nylon, polyester, polymethyl methacrylate, etc. Shows affinity for polymers.

したがって、この窒化鉄微粒子に上記のポリマーを添加
し、加熱撹拌することによって窒化鉄微粒子はポリマー
中に容易に分散し、解こうして粘性の大きなゾルを形成
する。
Therefore, by adding the above polymer to the iron nitride fine particles and heating and stirring, the iron nitride fine particles are easily dispersed in the polymer and dissolved to form a highly viscous sol.

この場合、窒化鉄微粒子のポリマーに対する割合を増加
させていくと粘性係数もそれにともなって増大し、ゾル
からゲルに変化するか、窒化鉄微粒子の濃度が80重量
%以下ではゾル状態を保つ。
In this case, as the ratio of iron nitride fine particles to the polymer increases, the viscosity coefficient increases accordingly, and the sol changes to a gel, or if the concentration of iron nitride fine particles is 80% by weight or less, it remains in a sol state.

また、窒化鉄微粒子をエポキシ樹脂やポリスチレン樹脂
などの極性の大きなポリマーに分散させる場合には、上
記とは別の界面活性剤、たとえば脂肪酸の燐酸エステル
、燐酸塩、スルホン酸エステル、スルホン酸塩、または
エチレンオキサイド、プロピレンオキサイド、極性の異
なるアミン等を添加すると効果的である。特に、エポキ
シ樹脂に対しては、トリオレイルフォスフェートや2−
エチルへキシルホスホン酸モノ−2−エチルへキンル等
が好適でもある。
In addition, when dispersing iron nitride fine particles in a highly polar polymer such as an epoxy resin or polystyrene resin, a surfactant other than the above, such as a phosphoric acid ester of a fatty acid, a phosphate, a sulfonic acid ester, a sulfonate, Alternatively, it is effective to add ethylene oxide, propylene oxide, amines with different polarities, etc. In particular, for epoxy resins, trioleyl phosphate and 2-
Mono-2-ethylhexyl ethylhexylphosphonate and the like are also suitable.

コロイドサイズの強磁性体微粒子としては、超常磁性を
示す程度に小さく、かつ、均一な体積を有するものとす
るのか好ましい。
The colloid-sized ferromagnetic fine particles are preferably small enough to exhibit superparamagnetism and have a uniform volume.

このコロイド溶液を一旦冷却硬化させた後、粉砕したも
のを、たとえは第3図に示したように、押し出し成形機
を用いて加熱溶融し混練して液体状ポリマー(4)を作
製し、これを所望の断面形状を有する押し圧し機ダイ(
5)から連続的に押し出す。この後に、空洞(6)をう
かつた電磁石(7)の中を通過させ、たとえは冷却ロー
ル(8)等により冷却硬化させて長手方向に第1図およ
び第2図に例示したような配向組織を有するシート材(
9)を作製する。
After this colloidal solution is once cooled and hardened, the pulverized product is heated and melted and kneaded using an extrusion molding machine, as shown in Fig. 3, to produce a liquid polymer (4). A pressing machine die with the desired cross-sectional shape (
Continuously extrude from 5). After this, it is passed through an electromagnet (7) through a cavity (6), and is cooled and hardened, for example, by a cooling roll (8), so that the oriented structure shown in FIGS. 1 and 2 is formed in the longitudinal direction. Sheet material with (
9).

もちろん、この発明においては、以上のような加工法に
限定されることはなく、たとえば射畠成形法、注型成形
法、圧縮成形法、各種の押し出し成形法、吹き込み成形
法等の様々な加工成形法により、シート状や板状、各種
の複雑形状を有する成形品として複合磁性材料を製造す
ることかできる。複雑な形状に成形加工する場合には、
たとえば、媒質としてエポキシ樹脂を使用し、アミン等
の重合開始剤を添加し、鋳型に注入して磁界を印加しな
がらゆっくりと重合硬化させて複雑形状の複合磁性材料
を製造することもできる。
Of course, the present invention is not limited to the above-mentioned processing methods, and may be applied to various processing methods such as injection molding, cast molding, compression molding, various extrusion molding methods, and blow molding methods. Depending on the molding method, the composite magnetic material can be manufactured as a sheet-like, plate-like, or molded product having various complex shapes. When molding into complex shapes,
For example, it is also possible to manufacture a complex-shaped composite magnetic material by using an epoxy resin as a medium, adding a polymerization initiator such as an amine, injecting it into a mold, and slowly polymerizing and curing while applying a magnetic field.

(実施例) 以下、実施例を示し、この発明の複合磁性材料について
さらに詳しく説明する。
(Example) Hereinafter, the composite magnetic material of the present invention will be explained in more detail with reference to Examples.

実施例I 鉄カルボニル(F e (Co) s)とアミン系界面
活性剤を溶解したケロシンにアンモニアガス(NH3)
を導入し、撹拌しながら加熱して窒化鉄微粒子からなる
磁性流体を作製した。この後に、磁性流体から窒化鉄微
粒子を分離収集した。
Example I Ammonia gas (NH3) was added to kerosene in which iron carbonyl (F e (Co) s) and amine surfactant were dissolved.
was introduced and heated while stirring to produce a magnetic fluid consisting of iron nitride fine particles. After this, iron nitride fine particles were separated and collected from the magnetic fluid.

乾燥後、窒化鉄微粒子をポリメタクリル酸メチル中に分
散させ、−旦、これを冷却硬化させた後に粉砕した。こ
の粉状体を押し出し成形機を用いて加熱溶融および混練
し、第3図に示したような押し出し成形機ダイ(5)か
ら連続的に押し出すとともに、電磁石(7)より磁界を
印加してシート材を作製した。
After drying, the iron nitride fine particles were dispersed in polymethyl methacrylate, which was then cooled and hardened, and then pulverized. This powder is heated, melted and kneaded using an extrusion molding machine, and is continuously extruded from the extrusion molding machine die (5) as shown in Figure 3, while a magnetic field is applied from an electromagnet (7) to form a sheet. The material was made.

得られたシート材は、柔軟性を有する良好な磁気遮蔽材
料であった。
The obtained sheet material was a flexible and good magnetic shielding material.

実施例2 実施例1で作製した窒化鉄微粒子をエポキシ樹脂にトリ
オレイルフォスフェートを添加して分散させた。これを
実施例1と同様にして加工成形し、柔軟性を有するシー
ト状の磁気遮蔽材料か得られた。
Example 2 The iron nitride fine particles produced in Example 1 were dispersed in an epoxy resin by adding trioleyl phosphate. This was processed and molded in the same manner as in Example 1 to obtain a flexible sheet-like magnetic shielding material.

実施例3 原料としてコバルトカルボニル (C02(CO) s)を用い、実施例1と同様にして
窒化コバルト磁性流体を作製し、窒化コバルト微粒子を
分離収集した後に、ポリメタクリル酸メチルに分散させ
た。このコロイド溶液を実施例1と同様にして加工成形
し、柔軟性を有する磁気遮蔽材料が製造された。
Example 3 A cobalt nitride magnetic fluid was produced in the same manner as in Example 1 using cobalt carbonyl (C02(CO) s) as a raw material, and after separating and collecting cobalt nitride fine particles, they were dispersed in polymethyl methacrylate. This colloidal solution was processed and molded in the same manner as in Example 1 to produce a flexible magnetic shielding material.

もちろんこの発明は、以上の例によって限定されるもの
ではない。強磁性体微粒子の種類や大きさ、界面活性剤
および媒質の種類、また、加工成形法等の細部について
は様々な態様が可能であることはいうまでもない。
Of course, the invention is not limited to the above examples. It goes without saying that various embodiments are possible with respect to details such as the type and size of the ferromagnetic fine particles, the type of surfactant and medium, and the processing and molding method.

(発明の効果) 以上詳しく説明した通り、この発明によって、柔軟性を
有し、かつ複雑な形状に簡便かつ容易に成形加工するこ
とのできる複合磁性材料か提供される。
(Effects of the Invention) As described above in detail, the present invention provides a composite magnetic material that has flexibility and can be simply and easily molded into a complex shape.

この複合磁性材料は、 ■ 軟質シート状の場合には、裁断、接合、縫合等によ
り袋状やカーテン状のなどの磁気遮蔽体とすることかで
きる。
When this composite magnetic material is in the form of a soft sheet, it can be made into a bag-like, curtain-like, or other magnetic shielding body by cutting, joining, sewing, etc.

■ 木材や布に含浸させることかできる。■ Can be impregnated into wood or cloth.

■ 金属ウールや炭素繊維を分散させて硬化させること
により、電磁波吸収体を構成することかできる。
■ An electromagnetic wave absorber can be constructed by dispersing and curing metal wool or carbon fiber.

■ 硬化前に磁場を印加することにより、特定の方向に
透磁率の異方性を形成することかでき、指向性を有する
磁性材料とすることができる。
(2) By applying a magnetic field before curing, it is possible to form anisotropy in magnetic permeability in a specific direction, making it possible to create a directional magnetic material.

などの効果を奏する。Effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、各々、この発明の複合磁性材料
における窒化金属微粒子の配向組織を例示した組織図で
ある。 第3図は、この発明の複合磁性材料の製造工程の一部を
例示した断面図である。 1・・・界面活性剤被覆層 2・・窒化金属微粒子 3・・媒  質 4・・・液体状ポリマー 5・・・押し出し機ダイ 6・・・空  洞 7・・・電磁石 8・・・冷却ロール 9・・・シート材 特許出願人 科学技術庁金属材料技術研究所長新  居
   和   嘉 第1図 第  2  図
FIG. 1 and FIG. 2 are organization diagrams each illustrating the orientation organization of metal nitride fine particles in the composite magnetic material of the present invention. FIG. 3 is a cross-sectional view illustrating a part of the manufacturing process of the composite magnetic material of the present invention. 1... Surfactant coating layer 2... Metal nitride fine particles 3... Medium 4... Liquid polymer 5... Extruder die 6... Cavity 7... Electromagnet 8... Cooling Roll 9: Sheet material patent applicant: Kazuyoshi Nii, Director, Metal Materials Technology Research Institute, Science and Technology Agency, Figure 1, Figure 2

Claims (8)

【特許請求の範囲】[Claims] (1)媒質に対して親和性を有する分子を吸着させて表
面被覆したコロイドサイズの強磁性体の微粒子が、その
媒質の硬化物中に集合状態で分散されてなることを特徴
とする複合磁性材料。
(1) Composite magnetism characterized in that colloid-sized ferromagnetic fine particles whose surface is coated by adsorbing molecules that have an affinity for the medium are dispersed in an aggregated state in a cured product of the medium. material.
(2)媒質が有機高分子である請求項(1)記載の複合
磁性材料。
(2) The composite magnetic material according to claim (1), wherein the medium is an organic polymer.
(3)媒質に対して親和性を有する分子の被覆層が一種
類以上の界面活性剤分子からなる請求項(1)記載の複
合磁性材料。
(3) The composite magnetic material according to claim (1), wherein the coating layer of molecules having affinity for the medium comprises one or more types of surfactant molecules.
(4)コロイドサイズの強磁性体の微粒子が超常磁性を
示す程度に小さく、かつ均一な体積を有する請求項(1
)記載の複合磁性材料。
(4) Claim (1) wherein the colloid-sized ferromagnetic particles are small enough to exhibit superparamagnetism and have a uniform volume.
) Composite magnetic material described.
(5)表面被覆したコロイドサイズの強磁性体の微粒子
が磁性流体を構成する請求項(1)記載の複合磁性材料
(5) The composite magnetic material according to claim (1), wherein the surface-coated colloid-sized ferromagnetic particles constitute the magnetic fluid.
(6)コロイドサイズの強磁性体の微粒子が気相液相反
応法により作製された窒化鉄微粒子である請求項(1)
記載の複合磁性材料。
(6) Claim (1) wherein the colloid-sized ferromagnetic particles are iron nitride particles produced by a gas-liquid phase reaction method.
Composite magnetic material described.
(7)集合状態が均一な隙間を介して列をなして並んだ
微粒子配列からなる請求項(1)記載の複合磁性材料。
(7) The composite magnetic material according to claim (1), wherein the composite magnetic material is composed of an array of fine particles arranged in a row with uniform gaps interposed therebetween.
(8)外部磁場を印加して制御された集合状態としてな
る請求項(1)記載の複合磁性材料。
(8) The composite magnetic material according to claim (1), wherein the composite magnetic material becomes a controlled aggregated state by applying an external magnetic field.
JP2316225A 1990-11-22 1990-11-22 Composite magnetic material Expired - Lifetime JPH0810652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316225A JPH0810652B2 (en) 1990-11-22 1990-11-22 Composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316225A JPH0810652B2 (en) 1990-11-22 1990-11-22 Composite magnetic material

Publications (2)

Publication Number Publication Date
JPH04188703A true JPH04188703A (en) 1992-07-07
JPH0810652B2 JPH0810652B2 (en) 1996-01-31

Family

ID=18074702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316225A Expired - Lifetime JPH0810652B2 (en) 1990-11-22 1990-11-22 Composite magnetic material

Country Status (1)

Country Link
JP (1) JPH0810652B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078746A1 (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Corporation High-frequency magnetic core material, its manufacturing method, and antenna with the magnetic core material
JP2013045859A (en) * 2011-08-24 2013-03-04 Samsung Yokohama Research Institute Co Ltd Magnetic dielectric material
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US10114526B2 (en) 2011-12-07 2018-10-30 International Business Machines Corporation Displaying an electronic document
JP2022537260A (en) * 2019-06-17 2022-08-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Particle-based anisotropic composites for magnetic cores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295095A (en) * 1976-02-05 1977-08-10 Fuji Electric Co Ltd Magnetic fluid
JPS59119802A (en) * 1982-12-27 1984-07-11 Seiko Epson Corp Anisotropic composite soft magnetic material
JPS6119103A (en) * 1984-07-06 1986-01-28 Japan Synthetic Rubber Co Ltd Magnetic carrier
JPS63185006A (en) * 1987-01-27 1988-07-30 Nippon Seiko Kk Heat curing type magnetic fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295095A (en) * 1976-02-05 1977-08-10 Fuji Electric Co Ltd Magnetic fluid
JPS59119802A (en) * 1982-12-27 1984-07-11 Seiko Epson Corp Anisotropic composite soft magnetic material
JPS6119103A (en) * 1984-07-06 1986-01-28 Japan Synthetic Rubber Co Ltd Magnetic carrier
JPS63185006A (en) * 1987-01-27 1988-07-30 Nippon Seiko Kk Heat curing type magnetic fluid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078746A1 (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Corporation High-frequency magnetic core material, its manufacturing method, and antenna with the magnetic core material
JP2013045859A (en) * 2011-08-24 2013-03-04 Samsung Yokohama Research Institute Co Ltd Magnetic dielectric material
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US10114526B2 (en) 2011-12-07 2018-10-30 International Business Machines Corporation Displaying an electronic document
US11150785B2 (en) 2011-12-07 2021-10-19 International Business Machines Corporation Displaying an electronic document
JP2022537260A (en) * 2019-06-17 2022-08-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Particle-based anisotropic composites for magnetic cores

Also Published As

Publication number Publication date
JPH0810652B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
Pyun Nanocomposite materials from functional polymers and magnetic colloids
Vékás Ferrofluids and magnetorheological fluids
Hou et al. Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite
US6773765B1 (en) Thermally sprayed, flexible magnet with an induced anisotropy
Nguyen et al. Templated synthesis of magnetic nanoparticles through the self-assembly of polymers and surfactants
CN111724963A (en) Tape casting method and device for directional arrangement of magnetic fillers and product
JPH04188703A (en) Composite magnetic material
JPH0810653B2 (en) Array lattice structure of magnetic particles
Cao et al. Self-assembly of large magnetic nanoparticles in ultrahigh molecular weight linear diblock copolymer films
Zhang et al. Influence of chitosan modification on self-assembly behavior of Fe 3 O 4 nanoparticles
Ebrahimi A short review on Ferrofluids surface modification by natural and biocompatible polymers
JPH03163805A (en) Super paramagnetic compound material
Shen et al. Magnetorheological elastomer films with controlled anisotropic alignment of polystyrene-modified Fe3O4 nanoplates
JPH0425102A (en) Anisotropic permeable composite material
Nishi et al. Magnetoresponsive, anisotropic composite particles reversibly changing their chain lengths by a combined external field
Park et al. Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology
RU2475878C1 (en) Polymer magnetic material containing cobalt nanoparticles
JPH0231401A (en) Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder
Mordina et al. Polymer Materials for Defence & Aerospace Applications
Furlan et al. Use of Magnetic Nanoparticles for the Preparation of Micro‐and Nanostructured Materials
CN1700374B (en) In-situ polymerization method for preparing rare earth permanent magnetic alloy polymer composite magnetic body
HAJIYEVA MAGNETIC NANOCOMPOSITES: PREPARATION AND CHARACTERIZATION OF POLYMER-COATED IRON OXIDE NANOPARTICLES
Son et al. Enhanced magnetic response of fluids using self-assembled petal-like iron oxide particles
KR102096314B1 (en) Magnetic ion exchange resin for reducing TOC(Total Organic Carbon) and manufacturing method the same
JPS59148140A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term