JPS63184044A - Apparatus for inspecting inner peripheral surface of cylindrical container - Google Patents

Apparatus for inspecting inner peripheral surface of cylindrical container

Info

Publication number
JPS63184044A
JPS63184044A JP1676587A JP1676587A JPS63184044A JP S63184044 A JPS63184044 A JP S63184044A JP 1676587 A JP1676587 A JP 1676587A JP 1676587 A JP1676587 A JP 1676587A JP S63184044 A JPS63184044 A JP S63184044A
Authority
JP
Japan
Prior art keywords
frame
container
half mirror
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1676587A
Other languages
Japanese (ja)
Inventor
Toshio Hara
利雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1676587A priority Critical patent/JPS63184044A/en
Publication of JPS63184044A publication Critical patent/JPS63184044A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To accurately inspect the inner peripheral surface of a cylindrical container within a short time, by integrally moving a photoelectric sensor, an annular continuous light source and a hollow cylindrical frame body along the center line of the cylindrical container. CONSTITUTION:The light from an annular continuous light source 1 passes through the first hollow hole 11a of a hollow cylindrical frame body 11 and a part of the light from the light source 1 is reflected in the center line direction of the frame body 11 by a half mirror 2 and condensed by a condensing lens system 3 to impinge against a reflecting mirror 4. The light reflected by the reflecting mirror 4 passes through the second hollow hole 11b of the frame body 11 to impinge against the inner peripheral surface of a cylindrical container to be inspected as spot luminous flux. This spot luminous flux is diffused and reflected by the inner peripheral surface and a part thereof reaches the mirror 2 through the reverse route and a part thereof transmits through the mirror 2 to be incident to a spot type photoelectric sensor 6. Subsequently, the frame body 11 is rotationally driven by a drive source not shown in a drawing through a toothed belt wheel 15 and a toothed belt 17 and a moving stand 13 is driven in an up-and-down direction by a drive part 18 not shown in a drawing in detail and the inner peripheral surface of the frame body 11 is optically inspected by the sensor 6.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、筒状容器の内周面をスポット光で連続的に
走査し、その反射光をスポット型光電センサで受光して
その内周面を光学的に検査する装置に関する。
The present invention relates to a device that continuously scans the inner circumferential surface of a cylindrical container with spot light and receives the reflected light with a spot-type photoelectric sensor to optically inspect the inner circumferential surface.

【従来の技術】[Conventional technology]

一従来例について、第2図と第3図とを参照しながら説
明する。第2図はこの従来例の側面図、第3図はこの従
来例による観測画像図である。 第2図において、円環状光源31からの光が、円環板状
の拡散透光フィルタ32を通って、検査対象である円筒
状容器40の内面にほぼあらゆる方向から照射する。そ
して、容器40の内面からの反射光を、広角レンズを装
着したビデオカメラ33で受光して観測する。 その観測画像が第3図で示される。40aの円環状部分
は、円筒状容器40の内周面の観測画像であり、40b
の円形部分は、同じくその底面の観測画像である。 別の従来例について、その側面図である第4図を参照し
ながら説明する。第4図において、41は光源、42は
拡散透光フィルタ、43はハーフミラ−144はビデオ
カメラ、50は検査対象としての円筒状容器である。 ハーフミラ−43は、光源41の主方向と45度の角度
で設置され、この光源41とハーフミラ−43との中間
に拡散透光フィルタ42が設置される。そして、ビデオ
カメラ44の光軸と容器50の中心線とはほぼ一致して
おり、かつハーフミラ−43と45度をなすように配置
される。 光源41からの光は、拡散透光フィルタ42)ハーフミ
ラ−43を経て、かなり広い範囲の拡散光となって容器
50の内面を上方から照射する。したがって、容器50
の内面各点からの反射光を、ハーフミラ−43を経てビ
デオカメラ44で受光し、容器50の内面の観測画像を
得ることができる。その観測画像は第3図と同様である
One conventional example will be described with reference to FIGS. 2 and 3. FIG. 2 is a side view of this conventional example, and FIG. 3 is an observation image diagram of this conventional example. In FIG. 2, light from an annular light source 31 passes through an annular plate-shaped diffused light transmitting filter 32 and irradiates the inner surface of a cylindrical container 40 to be inspected from almost all directions. Then, the reflected light from the inner surface of the container 40 is received and observed by a video camera 33 equipped with a wide-angle lens. The observed image is shown in Figure 3. The annular portion 40a is an observation image of the inner peripheral surface of the cylindrical container 40, and the annular portion 40b
The circular part is also an observed image of its bottom surface. Another conventional example will be described with reference to FIG. 4, which is a side view thereof. In FIG. 4, 41 is a light source, 42 is a diffused light transmitting filter, 43 is a half mirror, 144 is a video camera, and 50 is a cylindrical container to be inspected. The half mirror 43 is installed at an angle of 45 degrees with respect to the main direction of the light source 41, and a diffused light transmitting filter 42 is installed between the light source 41 and the half mirror 43. The optical axis of the video camera 44 and the center line of the container 50 substantially coincide with each other, and are arranged at an angle of 45 degrees with the half mirror 43. The light from the light source 41 passes through a diffused light transmitting filter 42) and a half mirror 43, and becomes diffused light over a fairly wide range, and irradiates the inner surface of the container 50 from above. Therefore, the container 50
The reflected light from each point on the inner surface of the container 50 is received by the video camera 44 through the half mirror 43, and an observation image of the inner surface of the container 50 can be obtained. The observed image is similar to that shown in Fig. 3.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

以上説明したように、従来の技術では、方式に多少の差
はあるものの、共通して言えることは、筒状容器のほぼ
中心線と光軸を一致させてビデオカメラを設置し、容器
の内面を上方から、内周面と底面とを一括して観測する
。 したがって、底面だけに主眼をおいた観測なら、それな
りに問題ないが、内周面の観測に対しては、■内周面の
深さ方向の位置によって観測画像に倍率の差が大きくな
り、とくに底面近傍の内周面の画像は極端に縮小され、
また斜めの方向から観測するため、欠陥の検出精度ひい
ては検出確度が悪くなる、■底面からの二次反射光のた
め、良好な観測画像が得にくい□などの問題点がある。 なお、■について補足すると、市場の要求である1mm
以下の検出精度に対して、従来例では通常、3〜5mm
以上の傷でないと検出できない。 この発明の目的は、従来の技術がもつ以上の問題点を解
消し、筒状容器の内周面を正確、精密。 かつ短時間に検査することができる装置を提供すること
にある。
As explained above, in the conventional technology, although there are some differences in the methods, the common thing is that the video camera is installed with the optical axis almost aligned with the center line of the cylindrical container, and the inside surface of the container is The inner circumferential surface and the bottom surface are observed simultaneously from above. Therefore, if the observation focuses only on the bottom surface, there will be no problem, but when observing the inner surface, there will be a large difference in magnification in the observed image depending on the position of the inner surface in the depth direction. The image of the inner peripheral surface near the bottom is extremely reduced,
In addition, since the observation is performed from an oblique direction, there are problems such as the defect detection accuracy and even the detection accuracy deteriorates, and (2) it is difficult to obtain a good observation image due to secondary reflection light from the bottom surface. In addition, to add on to ■, 1mm is the market requirement.
Conventional examples usually have a detection accuracy of 3 to 5 mm.
It cannot be detected unless the damage is more severe than the above. The purpose of this invention is to solve the problems of the conventional technology and to accurately and precisely form the inner circumferential surface of a cylindrical container. Another object of the present invention is to provide a device that can perform inspections in a short time.

【問題点を解決するための手段】[Means to solve the problem]

前記の目的を達成するために、この発明は、(1)  
筒状容器の内周面をこの容器のほぼ中心線上に設置され
た、前段に集光レンズを具備するスポット型光電センサ
によって光学的に検査する装置において、 (2)  前記容器と前記光電センサとの中間位置に中
心部をもち前記容器のほぼ中心線と直交する円環面をも
つ円環状の連続光源と、 この光源の中心部で、その円環面と45度の角度をなす
ハーフミラ−と、 前記容器のほぼ中心線に対し中心部で斜めに交差する反
射鏡と、 この反射鏡と前記ハーフミラ−との中間位置に設けられ
、このハーフミラ−から前記反射鏡へ進む光束を絞るた
めの光束絞り手段と を備え、 (3)前記ハーフミラ−と、前記反射鏡と、前記光束絞
り手段とを中空筒状の枠体の内部に設け、(4)  こ
の枠体は前記容器のほぼ中心線のまわりに回動可能に支
持され、 (5)かつ、この中心線にそって前記ハーフミラ−に入
射する光束の反射光束が前記枠体の周壁と当たる箇所に
第1の中空穴が、また前記反射鏡に入射する光束の反射
光束が前記枠体の周壁と当たる箇所に第2の中空穴がそ
れぞれ開けられ、(6)前記光電センサと、前記光源と
、前記枠体とは、一体的に前記容器のほぼ中心線にそっ
て移動可能に支持される、 という構成をとる。 また、実施態様として、円環状の連続光源からハーフミ
ラと光束絞り手段とを経て入射され反射鏡で反射された
光束が、前記入射光束と同じ向きの成分をもつように構
成する。 また別の実施態様として、枠体の反射鏡側端部が、前記
枠体の周壁外方に張り出したフランジ付閉鎖面であるよ
うに構成する。 さらにまた別の実施態様として、枠体が、等角速度で回
転され、同時に枠体が、光電センサと円環状連続光源と
ともに等速度で移動されるように構成する。 なお、また別の実施態様として、光電センサが、センサ
本体と集光レンズとからなるように構成する。
In order to achieve the above object, the present invention provides (1)
In an apparatus for optically inspecting the inner circumferential surface of a cylindrical container with a spot-type photoelectric sensor installed approximately on the center line of the container and equipped with a condensing lens at the front stage, (2) the container and the photoelectric sensor; a circular continuous light source having a center at an intermediate position and a toric surface substantially perpendicular to the center line of the container; and a half mirror forming an angle of 45 degrees with the toric surface at the center of the light source. , a reflecting mirror that obliquely intersects at the center with respect to the approximate center line of the container, and a light beam provided at an intermediate position between this reflecting mirror and the half mirror to narrow down the light beam traveling from the half mirror to the reflecting mirror. (3) the half mirror, the reflecting mirror, and the light flux diaphragm are provided inside a hollow cylindrical frame; (4) the frame is located approximately at the center line of the container; (5) and a first hollow hole is provided at a location where the reflected light flux of the light flux incident on the half mirror hits the peripheral wall of the frame body along this center line; Second hollow holes are respectively opened at locations where the reflected light flux of the light flux incident on the mirror hits the peripheral wall of the frame body, and (6) the photoelectric sensor, the light source, and the frame body are integrally connected to the frame body. It has a configuration in which it is supported movably along approximately the center line of the container. Further, as an embodiment, the light flux incident from the annular continuous light source via the half mirror and the light flux diaphragm means and reflected by the reflecting mirror is configured to have a component in the same direction as the incident light flux. In another embodiment, the end of the frame on the side of the reflecting mirror is a closed surface with a flange that projects outward from the peripheral wall of the frame. In yet another embodiment, the frame is rotated at a constant angular velocity, and at the same time the frame is moved at a constant velocity together with the photoelectric sensor and the annular continuous light source. In addition, as another embodiment, the photoelectric sensor is configured to include a sensor body and a condensing lens.

【作 用】[For use]

以上説明したような構成であるから、この発明の作用は
次のようになる。 円環状連続光源からの光は、中空筒状枠体の第1中空孔
を通り、円環面と45度をなすハーフミラ−に当たる。 このハーフミラ−で、光源からの光の一部は枠体の中心
線方向に反射され、光束絞り手段で絞られて反射鏡に当
たる。この反射鏡で反射された光は、枠体の第2中空孔
を通り、検査すべき筒状容器の内周面にスポット光束と
なって当てられる。このスポット光束は、内周面で拡散
反射され、この拡散反射光の一部が前述したのと逆の経
路をへてハーフミラ−に達する。このハーフミラ−を、
一部の光はそのまま透過して直進し、スポット型光電セ
ンサに入射する。その結果、容器内周面のスポット光束
の当たった箇所の状態を光学的に検出し、これに基づい
て表面状態を検査することができる。 なお実施態様によれば、円環状の連続光源からハーフミ
ラと光束絞り手段とをへて入射され反射鏡で反射された
光束が、前記入射光束と同じ向きの成分をもつように構
成されているから、容器の底面近傍の内周面まで余すこ
となく走査、検出することができる。 別の実施態様によれば、枠体の反射鏡側端部が、前記枠
体の周壁外方に張り出したフランジ付き閉鎖面であるよ
うに構成されているから、容器の底面からの二次的反射
光を遮蔽し、所要箇所からだけの反射光に限定すること
ができる。 さらに別の実施態様によれば、枠体が、等角速度で回転
され、同時に枠体が、光電センサと円環状連続光源とと
もに等速度で移動されるように構成されているから、容
器の内周面を連続的にくまなく走査し、全゛内周面の状
態を検出し検査することができる。
Since the configuration is as explained above, the operation of the present invention is as follows. The light from the annular continuous light source passes through the first hollow hole of the hollow cylindrical frame and hits the half mirror that forms an angle of 45 degrees with the toric surface. In this half mirror, a part of the light from the light source is reflected in the direction of the center line of the frame, and is condensed by the light flux diaphragm means to impinge on the reflecting mirror. The light reflected by this reflecting mirror passes through the second hollow hole of the frame and is applied as a spot light beam to the inner peripheral surface of the cylindrical container to be inspected. This spot light beam is diffusely reflected on the inner circumferential surface, and a portion of this diffusely reflected light reaches the half mirror via a path opposite to that described above. This half mirror,
A portion of the light passes through the sensor, travels straight, and enters the spot-type photoelectric sensor. As a result, it is possible to optically detect the state of the portion of the inner circumferential surface of the container that is hit by the spot light beam, and to inspect the surface state based on this. According to the embodiment, the light flux that is incident from the annular continuous light source through the half mirror and the light flux diaphragm means and reflected by the reflecting mirror is configured to have a component in the same direction as the incident light flux. , it is possible to thoroughly scan and detect the inner peripheral surface near the bottom of the container. According to another embodiment, the reflector side end of the frame is configured to be a flanged closed surface projecting outward from the peripheral wall of the frame, so that secondary light from the bottom of the container It is possible to block reflected light and limit it to only reflected light from required locations. According to a further embodiment, the frame is configured to be rotated at a constant angular velocity, and at the same time the frame is moved at a constant velocity together with the photoelectric sensor and the annular continuous light source, so that the inner periphery of the container is By continuously scanning the entire surface, the condition of the entire inner peripheral surface can be detected and inspected.

【実施例】【Example】

この発明の一実施例を、側断面図を示す第1図を参照し
ながら説明する。 この実施例は概略的に言えば、光源、光電センサを含む
光学系と、この光学系の支持機構とがらなっている。 第1図で、光学系は、円環状の連続光源1、ハーフミラ
−2)絞りレンズ系3、反射鏡4、集光レンズ5、およ
び光電センサ6がら構成される。 光電センサ6と、集光レンズ5と、絞りレンズ系3との
各光軸は共通し、この共通な光軸は、円環状の連続光源
1の円環面の中心を通り、かっこの円環面と直交する。 ハーフミラ−2は、その中心部を光源1の円環面の中心
と一致させ、かつ円環面と45度の角度で設置される。 反射鏡4は、先の共通な光軸の方向から入射する光を反
射し、この反射光が入射光の向きの成分をもつ□垂直上
方からの入射光を斜め下方に反射させる□ような角度で
傾斜して設置される。 なお、光電センサ6は点状の光束を検出するスポット型
である。絞りレンズ系3は光束の直径を絞る機能をもつ
もので、この実施例では、各1個の凸レンズと凹レンズ
とからなっている。 次に、支持機構は、中空円筒状の枠体11と、ラジアル
玉軸受12と、はぼ円筒状の移動台13とからなる。 枠体11は、光学系の内の、ハーフミラ−2)絞りレン
ズ系3、反射鏡4、集光レンズ5をその内部に保持し、
外周面に歯付ベルト車15を設ける。 そして、枠体11の周壁には、第1穴11aと第2本1
1bが設けられ、また枠体11の下端部は周壁より外方
に張り出したフランジllcをもつ閉鎖面となっている
。なお、第1穴の位置は、枠体11の中心線方向の光が
ハーフミラ−2によって反射されたとき、その反射光が
周壁と当たる箇所であり、第2穴の位置は、枠体11の
中心線方向の光が反射鏡4によって反射されたとき、そ
の反射光が周壁と当たる箇所である。 また、移動台13は、その内部に円環状の光源lを保持
し、上面に取付枠14を設ける。なお、光電センサ6は
この取付枠14の先端部には設けられる。 そして、枠体11と移動台13とは、ラジアル玉軸受1
2によって結合される。つまり、ラジアル玉軸受12の
内輪内周に枠体11の外周が、ラジアル玉軸受12の外
輪外周に移動台13の内周が、それぞれ嵌着される。し
たがって、枠体11は、移動台13によってその中心線
のまわりに回動可能に支持される。 なお、歯付ベルト車15は、歯付ベル目7(二点鎖線表
示)を介して図示してない駆動源によって回転駆動され
る。また、移動台13は、詳しくは図示してない駆動部
18(二点鎖線表示)によって、図で上下方向に駆動さ
れ、もちろん、この上下駆動によって枠体11、歯付ベ
ルト車15、歯付ベル目7も一体となり同時に上下に移
動される。 さて、検査対象である筒状容器10は、そのほぼ中心線
と枠体11の中心線とを一致させて配置する。 そして、移動台13の上下移動によって、枠体11の中
心線方向から入射した光が反射鏡4によって反射された
ものが、第2穴11bを通って筒状容器10の内周面の
軸方向の全長にわたって走査できるようになっている。 以上説明したような構成であるから、この実施例の作用
は次のようになる。 円環状の連続光源lからの光は、中空円筒状の枠体11
の第1穴11aを通り、円環面と45度をなすハーフミ
ラ−2に当たる。このハーフミラ−2で、光源1からの
光の一部は反射され枠体11の中心線にそって進み、絞
りレンズ系3で絞られて反射鏡4に当たる。この反射鏡
4で反射された光は、斜め下方に進んで枠体11の第2
穴11bを通り、検査すべき筒状容器10の内周面にス
ポット光束となって当てられる。このスポット光束は、
内周面で拡散反射され、この拡散反射光の一部が前述し
たのと逆の経路をへてハーフミラ−2に達する。このハ
ーフミラ−2を、一部の光はそのまま透過して直進し、
集光レンズ5をへてスポット型光電センサ6に入射する
。その結果、容器10の内周面のスポット光束の当たっ
た箇所の状態を光学的に検出。 検査することができる。 ところで、この実施例では、枠体11の中心線にそって
上方から入射した光は、反射鏡4によって斜め下方に進
むから、筒状容器10の底面近傍の内周面まで余すこと
なく走査できる。しかし、反射鏡4の傾斜角は必ずしも
このようである必要はなく、例えば筒状容器10の底面
近傍の内周面の状態を検出する必要がない場合には、反
射光が水平方向ないしは斜め上方向に進むようにしてあ
ってもよいわけである。 また、筒状容器11の下端面のフランジllcは、とく
に容器11の底面からの二次的反射光を遮蔽し、所要箇
所からだけの反射光に限定することができるため、より
正確な検出、検査をおこなうことができる。 しかも枠体11は、その中心線のまわりに回転駆動され
、かつその中心線方向に、光源1.光電センサ6ととも
に移動されるから、回転を一定角速度でおこない、この
角速度に対応した一定線速度で移動をおこなうことによ
って、容器10の全内周面をスポット光束によって連続
的にくまなく走査することができ、その結果、全内周面
の状態を光学的に検出、検査することができる。 また第1図において、光電センサ6の前段に集光レンズ
5が枠体11の側に設置されている。この集光レンズ5
は、もちろん筒状容器10の内周面のスポット像を鋭く
光電センサ6に導くためである。 この集光レンズ5の代わりに、別の小形の集光レンズを
光電センサ6に一体化して組み込んでもよい。つまり、
光電センサ6の前面に接合装着するわけである。
An embodiment of the present invention will be described with reference to FIG. 1, which shows a side sectional view. Roughly speaking, this embodiment consists of an optical system including a light source and a photoelectric sensor, and a support mechanism for this optical system. In FIG. 1, the optical system includes an annular continuous light source 1, a half mirror 2) an aperture lens system 3, a reflecting mirror 4, a condensing lens 5, and a photoelectric sensor 6. The photoelectric sensor 6, the condensing lens 5, and the aperture lens system 3 have a common optical axis, and this common optical axis passes through the center of the toric surface of the annular continuous light source 1, and passes through the center of the toric surface of the annular continuous light source 1. perpendicular to the plane. The half mirror 2 has its center aligned with the center of the toric surface of the light source 1, and is installed at an angle of 45 degrees with the toric surface. The reflecting mirror 4 reflects the light incident from the direction of the common optical axis, and has an angle such that this reflected light has a component in the direction of the incident light □ It reflects the incident light from vertically upward diagonally downward □ It is installed at an angle. Note that the photoelectric sensor 6 is of a spot type that detects point-like luminous flux. The diaphragm lens system 3 has the function of narrowing down the diameter of the luminous flux, and in this embodiment is composed of one convex lens and one concave lens. Next, the support mechanism includes a hollow cylindrical frame 11, a radial ball bearing 12, and a hollow cylindrical moving table 13. The frame body 11 holds therein the half mirror 2) aperture lens system 3, the reflecting mirror 4, and the condensing lens 5 of the optical system,
A toothed belt wheel 15 is provided on the outer peripheral surface. The peripheral wall of the frame 11 is provided with a first hole 11a and a second hole 11a.
1b, and the lower end of the frame 11 is a closed surface with a flange llc projecting outward from the peripheral wall. The position of the first hole is where the reflected light hits the peripheral wall when the light in the direction of the center line of the frame 11 is reflected by the half mirror 2, and the position of the second hole is where the reflected light hits the peripheral wall of the frame 11. This is the location where when the light in the center line direction is reflected by the reflecting mirror 4, the reflected light hits the peripheral wall. Furthermore, the movable table 13 holds an annular light source l therein, and is provided with a mounting frame 14 on its upper surface. Note that the photoelectric sensor 6 is provided at the tip of the mounting frame 14. The frame body 11 and the moving table 13 are connected to the radial ball bearing 1
Combined by 2. That is, the outer periphery of the frame 11 is fitted into the inner periphery of the inner ring of the radial ball bearing 12, and the inner periphery of the movable base 13 is fitted into the outer periphery of the outer ring of the radial ball bearing 12, respectively. Therefore, the frame 11 is supported by the movable table 13 so as to be rotatable around its center line. The toothed belt pulley 15 is rotationally driven by a drive source (not shown) via a toothed bell eye 7 (indicated by a two-dot chain line). Furthermore, the movable table 13 is driven vertically in the figure by a drive unit 18 (indicated by a two-dot chain line), which is not shown in detail. The bell eye 7 is also moved up and down simultaneously. Now, the cylindrical container 10 to be inspected is placed so that its centerline substantially coincides with the centerline of the frame body 11. As the moving table 13 moves up and down, the light incident from the center line direction of the frame 11 is reflected by the reflecting mirror 4 and passes through the second hole 11b in the axial direction of the inner peripheral surface of the cylindrical container 10. The entire length of the image can be scanned. Since the configuration is as explained above, the operation of this embodiment is as follows. The light from the annular continuous light source l passes through the hollow cylindrical frame 11.
It passes through the first hole 11a and hits the half mirror 2 which forms a 45 degree angle with the toric surface. A part of the light from the light source 1 is reflected by the half mirror 2, travels along the center line of the frame 11, is focused by the aperture lens system 3, and hits the reflecting mirror 4. The light reflected by the reflecting mirror 4 travels diagonally downward to the second part of the frame 11.
The light beam passes through the hole 11b and is applied as a spot light beam to the inner peripheral surface of the cylindrical container 10 to be inspected. This spot luminous flux is
It is diffusely reflected on the inner peripheral surface, and a part of this diffusely reflected light reaches the half mirror 2 through the opposite path to that described above. A part of the light passes through this half mirror 2 and goes straight,
The light passes through the condensing lens 5 and enters the spot type photoelectric sensor 6 . As a result, the state of the portion of the inner peripheral surface of the container 10 that is hit by the spot beam is optically detected. Can be inspected. By the way, in this embodiment, since the light incident from above along the center line of the frame 11 travels diagonally downward by the reflecting mirror 4, it can be scanned completely to the inner peripheral surface near the bottom of the cylindrical container 10. . However, the angle of inclination of the reflecting mirror 4 does not necessarily have to be like this. For example, if it is not necessary to detect the state of the inner peripheral surface near the bottom of the cylindrical container 10, the reflected light may be tilted horizontally or diagonally upward. It is also possible to move in the same direction. In addition, the flange llc on the lower end surface of the cylindrical container 11 can particularly block secondary reflected light from the bottom surface of the container 11 and limit the reflected light only from the required locations, resulting in more accurate detection and Tests can be carried out. Moreover, the frame body 11 is rotated around its center line, and the light sources 1 and 1 are rotated in the direction of the center line. Since it moves together with the photoelectric sensor 6, it rotates at a constant angular velocity and moves at a constant linear velocity corresponding to this angular velocity, so that the entire inner peripheral surface of the container 10 can be continuously and thoroughly scanned by the spot light beam. As a result, the condition of the entire inner peripheral surface can be optically detected and inspected. Further, in FIG. 1, a condenser lens 5 is installed on the side of the frame 11 in front of the photoelectric sensor 6. This condensing lens 5
Of course, this is to sharply guide a spot image on the inner peripheral surface of the cylindrical container 10 to the photoelectric sensor 6. Instead of this condensing lens 5, another small condensing lens may be integrated into the photoelectric sensor 6. In other words,
This means that it is bonded and attached to the front surface of the photoelectric sensor 6.

【発明の効果】【Effect of the invention】

以上説明したように、この発明においては、円環状連続
光源からの光は、中空筒状枠体の第1中空孔を通り、円
環面と45度をなすハーフミラ−に当たる;このハーフ
ミラ−で、光源からの光の一部は反射され光束絞り手段
で絞られて反射鏡に当たる:この反射鏡で反射された光
は、枠体の第2中空孔を通り、検出すべき筒状容器の内
周面にスポット光束となって当てられる;このスポット
光束は、内周面で拡散反射され、この拡散反射光の一部
が前述したのと逆の経路をへてハーフミラ−に達する;
このハーフミラ−を、一部の光はそのまま透過して直進
し、集光レンズをへてスポット型光電センサに入射する
;その結果、容器内周面のスポット光束の当たった箇所
の状態を光学的に検出、検査することができる。 したがって、この発明によれば、従来の技術に比べ次の
ようなすぐれた効果がある。 (1)  容器内周面の所要箇所の表面状態を正確、精
密に検査することができる。 (2)構造と動作が簡単で、とくに動力用や信号用電線
が、ある範囲だけの直線移動をするので捩れのおそれが
なく、配線処理が簡単になる。 (3)実施態様によれば、容器の底面近傍の内周面まで
余すことなく完全に走査し、検出することができる。 (4)  別の実施態様によれば、容器底面からの二次
反射光を遮蔽し所要箇所からだけの反射光に限定するこ
とができるから、さらに正確な検査ができる。 (5)  さらに別の実施態様によれば、回転駆動速度
と移動速度とを適宜選択することによって、容器内周面
を連続的にくまなく、かつ短時間に走査し検出、検査す
ることができる。
As explained above, in this invention, the light from the annular continuous light source passes through the first hollow hole of the hollow cylindrical frame and hits the half mirror that makes an angle of 45 degrees with the toric surface; in this half mirror, A part of the light from the light source is reflected and narrowed by the beam diaphragm and hits the reflecting mirror.The light reflected by this reflecting mirror passes through the second hollow hole in the frame and reaches the inner periphery of the cylindrical container to be detected. The spot light beam is applied to the surface as a spot light beam; this spot light beam is diffusely reflected on the inner peripheral surface, and a part of this diffusely reflected light reaches the half mirror through the opposite path to that described above;
A portion of the light passes through this half mirror as it is and travels straight, passes through the condenser lens and enters the spot type photoelectric sensor; as a result, the state of the spot on the inner circumferential surface of the container that is hit by the spot light beam can be detected optically. can be detected and inspected. Therefore, the present invention has the following superior effects compared to the conventional technology. (1) It is possible to accurately and precisely inspect the surface condition of required locations on the inner peripheral surface of the container. (2) The structure and operation are simple. In particular, the power and signal wires move in a straight line only within a certain range, so there is no risk of twisting, and wiring processing is simplified. (3) According to the embodiment, it is possible to completely scan and detect the inner peripheral surface near the bottom of the container. (4) According to another embodiment, it is possible to block the secondary reflected light from the bottom of the container and limit it to the reflected light only from the required locations, allowing for more accurate inspection. (5) According to yet another embodiment, by appropriately selecting the rotational drive speed and the movement speed, the inner circumferential surface of the container can be continuously scanned over and detected and inspected in a short time. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る一実施例の側断面図、第2図は
一従来例の側面図、 第3図はこの従来例による観測画像図、第4図は別の従
来例の側面図である。 符号説明 1:光源、2:ハーフミラ−,3:絞りレンズ系、4:
反射鏡、5:集光レンズ、6:光電センサ、10:筒状
容器、11:枠体、11a:第1穴、11b:第2穴、
11c:フランジ、13:移動台、15:歯付ベルト車
、17:歯付ベルト、18:駆動部。 第2目 第3記 第4図
Fig. 1 is a side sectional view of an embodiment according to the present invention, Fig. 2 is a side view of a conventional example, Fig. 3 is an observation image diagram of this conventional example, and Fig. 4 is a side view of another conventional example. It is. Code explanation 1: Light source, 2: Half mirror, 3: Aperture lens system, 4:
Reflector, 5: Condensing lens, 6: Photoelectric sensor, 10: Cylindrical container, 11: Frame, 11a: First hole, 11b: Second hole,
11c: flange, 13: moving table, 15: toothed belt pulley, 17: toothed belt, 18: drive unit. Item 2, Item 3, Figure 4

Claims (1)

【特許請求の範囲】 1)筒状容器の内周面をこの容器のほぼ中心線上に設置
された、前段に集光レンズを具備するスポット型光電セ
ンサによって光学的に検査する装置において、前記容器
と前記光電センサとの中間位置に中心部をもち前記容器
のほぼ中心線と直交する円環面をもつ円環状の連続光源
と、この光源の中心部で、その円環面と45度の角度を
なすハーフミラーと、前記容器のほぼ中心線に対し中心
部で斜めに交差する反射鏡と、この反射鏡と前記ハーフ
ミラーとの中間位置に設けられ、このハーフミラーから
前記反射鏡へ進む光束を絞るための光束絞り手段とを備
え、前記ハーフミラーと、前記反射鏡と、前記光束絞り
手段とを中空筒状の枠体の内部に設け、この枠体は前記
容器のほぼ中心線のまわりに回動可能に支持され、かつ
この中心線にそって前記ハーフミラーに入射する光束の
反射光束が前記枠体の周壁と当たる箇所に第1の中空穴
が、また前記反射鏡に入射する光束の反射光束が前記枠
体の周壁と当たる箇所に第2の中空穴がそれぞれ開けら
れ、前記光電センサと、前記光源と、前記枠体とは、一
体的に前記容器のほぼ中心線にそって移動可能に支持さ
れたことを特徴とする筒状容器内周面の検査装置。 2)特許請求の範囲第1項記載の方法において、円環状
の連続光源からハーフミラと光束絞り手段とを経て入射
され反射鏡で反射された光束が、前記入射光束と同じ向
きの成分をもつことを特徴とする筒状容器内周面の検査
装置。 3)特許請求の範囲第1項または第2項記載の方法にお
いて、枠体の反射鏡側端部が、前記枠体の周壁外方に張
り出したフランジ付き閉鎖面であることを特徴とする筒
状容器内周面の検査装置。 4)特許請求の範囲第1項ないし第3項のいずれかの項
に記載の方法において、枠体が、等角速度で回転され、
同時に枠体が、光電センサと円環状連続光源とともに等
速度で移動されることを特徴とする筒状容器内周面の検
査装置。 5)特許請求の範囲第1項ないし第4項のいずれかの項
に記載の方法において、光電センサが、センサ本体と集
光レンズとからなることを特徴とする筒状容器内周面の
検査装置。
[Scope of Claims] 1) An apparatus for optically inspecting the inner circumferential surface of a cylindrical container using a spot-type photoelectric sensor installed approximately on the center line of the container and equipped with a condensing lens at the front stage, wherein the container a circular continuous light source having a center at an intermediate position between the light source and the photoelectric sensor and a toric surface substantially orthogonal to the center line of the container; a half mirror forming a shape, a reflecting mirror obliquely intersecting at the center with respect to the approximate center line of the container, and a light beam provided at an intermediate position between the reflecting mirror and the half mirror, and traveling from the half mirror to the reflecting mirror. The half mirror, the reflecting mirror, and the beam diaphragm are provided inside a hollow cylindrical frame, and the frame is arranged around approximately the center line of the container. A first hollow hole is rotatably supported along the center line of the half mirror at a location where the reflected light flux of the light flux incident on the half mirror hits the peripheral wall of the frame body, and a first hollow hole is provided at a location where the reflected light flux of the light flux incident on the half mirror hits the peripheral wall of the frame; A second hollow hole is formed at a location where the reflected light beam hits the peripheral wall of the frame, and the photoelectric sensor, the light source, and the frame are integrally arranged substantially along the center line of the container. A device for inspecting the inner peripheral surface of a cylindrical container, characterized in that it is movably supported. 2) In the method described in claim 1, the light flux that enters from the annular continuous light source via the half mirror and the light flux diaphragm means and is reflected by the reflecting mirror has a component in the same direction as the incident light flux. An inspection device for the inner peripheral surface of a cylindrical container, characterized by: 3) The method according to claim 1 or 2, wherein the end of the frame on the side of the reflector is a flanged closed surface projecting outward from the peripheral wall of the frame. Inspection device for the inner circumferential surface of shaped containers. 4) In the method according to any one of claims 1 to 3, the frame is rotated at a constant angular velocity,
An apparatus for inspecting the inner circumferential surface of a cylindrical container, characterized in that a frame is moved at a constant speed together with a photoelectric sensor and an annular continuous light source. 5) Inspection of the inner circumferential surface of a cylindrical container in the method according to any one of claims 1 to 4, characterized in that the photoelectric sensor consists of a sensor body and a condensing lens. Device.
JP1676587A 1987-01-27 1987-01-27 Apparatus for inspecting inner peripheral surface of cylindrical container Pending JPS63184044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1676587A JPS63184044A (en) 1987-01-27 1987-01-27 Apparatus for inspecting inner peripheral surface of cylindrical container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1676587A JPS63184044A (en) 1987-01-27 1987-01-27 Apparatus for inspecting inner peripheral surface of cylindrical container

Publications (1)

Publication Number Publication Date
JPS63184044A true JPS63184044A (en) 1988-07-29

Family

ID=11925316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1676587A Pending JPS63184044A (en) 1987-01-27 1987-01-27 Apparatus for inspecting inner peripheral surface of cylindrical container

Country Status (1)

Country Link
JP (1) JPS63184044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169669A (en) * 2008-12-25 2010-08-05 Kao Corp Method and apparatus for inspecting cylindrical object
JP2011089826A (en) * 2009-10-21 2011-05-06 Aisin Seiki Co Ltd Internal surface defect inspection apparatus of screw hole or hole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169669A (en) * 2008-12-25 2010-08-05 Kao Corp Method and apparatus for inspecting cylindrical object
JP2011089826A (en) * 2009-10-21 2011-05-06 Aisin Seiki Co Ltd Internal surface defect inspection apparatus of screw hole or hole

Similar Documents

Publication Publication Date Title
JPS62168125A (en) Apparatus and method for lighting object for vision system
JPH03502601A (en) A device that optically scans the surface of an object
JPH0329318B2 (en)
WO2009133847A1 (en) Observation device and observation method
US4465374A (en) Method and apparatus for determining dimensional information concerning an object
JP2012502316A (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
JPH09243573A (en) Surface inspection apparatus
JPH0882753A (en) Inside surface image photographing device
US11047675B2 (en) Method and apparatus for inspection of spherical surfaces
JPS63184044A (en) Apparatus for inspecting inner peripheral surface of cylindrical container
JPH10311801A (en) Surface defect inspecting device
JPH08323477A (en) Device for detecting seam center in manufacturing welded tube and manufacture of welded tube
JPS61133843A (en) Surface inspector
JPS6353493B2 (en)
JPS63263453A (en) Film inspecting device for glass substrate
JPH05323198A (en) Lighting device
US10444140B1 (en) Theta-theta sample positioning stage with application to sample mapping using reflectometer, spectrophotometer or ellipsometer system
JPH04297810A (en) Optical tester
JP2842861B2 (en) How to measure anamorphic lens
JP3102362U (en) Mirror inspection equipment
JPH1144650A (en) Visual inspection apparatus for cylindrical work
JPH0131958Y2 (en)
JPS6023689Y2 (en) Micro-irregularity detection device
JPH09178452A (en) Surface observing optical system
JP2023547139A (en) Device and method for inspecting the inner surface of a hollow body