JPS6318244A - Method and apparatus for measuring fine particle in liquid - Google Patents

Method and apparatus for measuring fine particle in liquid

Info

Publication number
JPS6318244A
JPS6318244A JP61160831A JP16083186A JPS6318244A JP S6318244 A JPS6318244 A JP S6318244A JP 61160831 A JP61160831 A JP 61160831A JP 16083186 A JP16083186 A JP 16083186A JP S6318244 A JPS6318244 A JP S6318244A
Authority
JP
Japan
Prior art keywords
particle
particles
liquid
scattered light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61160831A
Other languages
Japanese (ja)
Inventor
Muneharu Ishikawa
石川 宗晴
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP61160831A priority Critical patent/JPS6318244A/en
Priority to US07/072,228 priority patent/US4830494A/en
Publication of JPS6318244A publication Critical patent/JPS6318244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To achieve a high trapping rate of a particle image, by a method wherein a laser luminous flux employs an oval luminous flux and scattered light from fine particle passing through a particle detection area formed by this flux is received from the direction of the particle passes to measure characteristic of the particle. CONSTITUTION:A sample liquid 22 flowing from an inflow tube 12 flows along a cylinder section 10a of a measuring cell 10 and a part thereof flows out of an outflow tube 13. An oval laser luminous flux 21 is focused at the center of the cylinder section 10a and on an intermediate area of the wall surface of the cylinder. Then, the particle passes through a particle detection area vertical to optical axis of the luminous flux 21 on the flow of the sample liquid 22 within the cylinder. Scattered light 24 from the particle forms an image on a mask surface 26 through a light receiving lens 25 and reaches an photoelectric detector 27 as limited by a slit 26a to measure. Thus, a higher trapping rate of the particle image can be achieved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、液中微粒子III定方決方法装置、さらに詳
細には、流体液中にレーザ光を照射し、液中に浮遊する
微粒子からの散乱光を検出して粒径や粒子数等粒子の特
性を測定する液中微粒子測定方法及び装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining fine particles in a liquid. The present invention relates to a method and apparatus for measuring fine particles in liquid, which detects scattered light of particles and measures particle characteristics such as particle size and number of particles.

[従来の技術] 従来より、測定領域内に光を入射させ、その透過光量や
散乱特性をatlI定することにより同領域内における
粒子の粒径、a等の特性を測定する技術が知られている
[Prior Art] Conventionally, there is a known technique for measuring characteristics such as the particle size and a of particles in the measurement area by making light incident on the measurement area and determining the amount of transmitted light and scattering characteristics. There is.

例えば、純水中の不純物粒子の測定にもこの技術が用い
られているが、純水中の微粒子は径が小さく、またまば
らにしか存在しないため、測定には困難が伴なう、その
ため、従来から微粒子からの散乱強度を増加させるため
にレーザ光源等からの入射光束を小さな領域に集光させ
、高輝度の測定領域を設け、この領域を通過する粒子か
らの散乱光を受光する方法が用いられている。
For example, this technology is used to measure impurity particles in pure water, but since the particles in pure water are small in diameter and only sparsely present, measurement is difficult. Conventionally, in order to increase the intensity of scattering from particles, there has been a method of focusing the incident light beam from a laser light source, etc. on a small area, creating a high-brightness measurement area, and receiving the scattered light from particles passing through this area. It is used.

粒子にレーザ光を照射し、その粒子からの散乱光を解析
する粒子計測器においては、粒子を通過させる測定部分
をいかに設定するかが重要である。
In particle measuring instruments that irradiate particles with laser light and analyze scattered light from the particles, it is important to determine how to set the measurement section through which the particles pass.

特に粒子検出領域を構成する入射レーザ光束の形状1粒
子の通過方向及び粒子からの散乱光を受光する部分に設
けたマスクの設定方法は検出する粒子の散乱光から粒径
を求める場合の流径分解能に直接依存するため種々の工
夫が成されている。
In particular, the shape of the incident laser beam constituting the particle detection area 1. The direction of particle passage and the setting method of the mask provided at the part that receives the scattered light from the particles is the flow diameter when determining the particle size from the scattered light of the particles to be detected. Since it depends directly on the resolution, various efforts have been made.

第6図は粒子の検出効率を高める目的で用いられている
粒子検出領域の設定例を示したものである。四角柱の透
明セル20にレーザ光束21を円筒レンズ30で入射さ
せセルの全断面にわたってシート状の光束を形成する。
FIG. 6 shows an example of setting a particle detection area used for the purpose of increasing particle detection efficiency. A laser beam 21 is incident on a square prism transparent cell 20 through a cylindrical lens 30 to form a sheet-like beam over the entire cross section of the cell.

このセル20に微粒子23を含む試料液(例えば純水)
を流すと、レーザ光束が集光する集光償球(#11目部
全体)21aを通過する粒子から散乱光24が得られる
。この散乱光24は受光レンズ25を経て光電検出器2
7上に結像され、散乱光強度から粒子径を算出し、粒子
特性を求めている。
A sample liquid (for example, pure water) containing fine particles 23 is placed in this cell 20.
, scattered light 24 is obtained from particles passing through the condensing sphere (entire #11 part) 21a where the laser beam is condensed. This scattered light 24 passes through a light receiving lens 25 and is sent to a photoelectric detector 2.
7, the particle diameter is calculated from the intensity of the scattered light, and the particle characteristics are determined.

[発明が解決しようとする問題点] このセルに試料液体を流すと、液中の粒子はその位置に
よらずセル断面を通過するごとにレーザ光を散乱する。
[Problems to be Solved by the Invention] When a sample liquid is caused to flow through this cell, particles in the liquid scatter laser light each time they pass through the cross section of the cell, regardless of their position.

しかし、粒子径がサブミクロンと小さくなると1個の粒
子からの散乱光が弱くなるため上記シート状の光束では
光強度密度が足らず微粒子の検出に適さない、一方レー
ザ光束を円形に集束させる方法では集光点における断面
上の光強度密度を高めることができるが、粒子の通過断
面積を大きくできない。
However, as the particle diameter becomes smaller than submicrons, the scattered light from a single particle becomes weaker, so the sheet-shaped light beam described above has insufficient light intensity density and is not suitable for detecting fine particles.On the other hand, the method of focusing the laser beam in a circular manner Although it is possible to increase the light intensity density on the cross section at the focal point, it is not possible to increase the cross-sectional area through which particles pass.

本発明は、レーザ光強度を減することなく粒子の捕捉率
を上げしかも粒子検出領域の通過距離を短くして粒子の
通過に伴なう散乱光強度変化を急峻にして際立たせるこ
とが可能な液中微粒子1i1定方法及び装置を提供する
ことを目的とする。
The present invention increases the particle capture rate without reducing the laser beam intensity, and shortens the passing distance of the particle detection area, making it possible to sharply change the intensity of scattered light as the particles pass, thereby making it more conspicuous. It is an object of the present invention to provide a method and apparatus for determining fine particles in liquid.

[問題点を解決するための手段] 本発明は、この問題点を解決するために、レーザ光束に
楕円光束を用い、このレーザ光束によって形成された粒
子検出領域を通過する微粒子からの散乱光を粒子の通過
方向から受光して粒子特性を測定する構成を採用した。
[Means for Solving the Problem] In order to solve this problem, the present invention uses an elliptical beam as the laser beam and detects scattered light from fine particles passing through a particle detection area formed by the laser beam. We adopted a configuration that measures particle characteristics by receiving light from the direction in which the particles pass.

[作 用] このような構成では、集光点におけるレーザ光束の光強
度密度を減することなく粒子通過方向に垂直な断面積を
大きくすることができ、効果的な微粒子検出が可能にな
る。
[Function] With such a configuration, the cross-sectional area perpendicular to the particle passing direction can be increased without reducing the light intensity density of the laser beam at the focal point, and effective particle detection becomes possible.

[実施例] 以下、図面に示す実施例に従い本発明の詳細な説明する
[Example] Hereinafter, the present invention will be described in detail according to an example shown in the drawings.

本発明の目的を達成するには、1つは入射光束として楕
円光束を用いること、2つには形成された粒子検出領域
を通過する粒子の散乱光を粒子の通過方向から受光する
ことの条件を満たすようにする。
In order to achieve the object of the present invention, one condition is that an elliptical light beam is used as the incident light beam, and the second condition is that the scattered light of the particles passing through the formed particle detection area is received from the direction in which the particles pass. Make sure to satisfy the following.

第1図に上記条件を満たす粒子検出領域の設定例を示す
、楕円光束lを示す2重の円のうち、外円は光束の光強
度が中心強度のl/e2になる位置を示しており、通常
この外円の直径は光束の径と呼ばれている。一方、内円
は光束の強度が中心強度の 172になる位置を示して
おり、この直径を光束の半値全幅と呼ぶ、楕円光束1に
よって形成された粒子検出領域2を矢印Aで示した方向
に通過する粒子からの散乱光3を受光レンズ25で受け
てスリ7)26a上に結像し、光電検出器27で受けて
電気信号として捉える。この時スリット26aによって
制限され粒子の検出に有効に働く領域は図中の斜線部で
示した半値全幅の領域2とするが、深度F方向の光束1
の厚みが薄いために光強度分布4が急峻になって実質的
な検出領域は深度方向では浅いものとなる。
Figure 1 shows an example of setting a particle detection area that satisfies the above conditions.Of the double circles indicating the elliptical luminous flux l, the outer circle indicates the position where the light intensity of the luminous flux becomes l/e2 of the central intensity. , the diameter of this outer circle is usually called the diameter of the luminous flux. On the other hand, the inner circle indicates the position where the intensity of the luminous flux becomes 172 of the center intensity, and this diameter is called the full width at half maximum of the luminous flux. Scattered light 3 from the passing particles is received by the light receiving lens 25 and formed into an image on the pickpocket 7) 26a, and is received by the photoelectric detector 27 and captured as an electrical signal. At this time, the area limited by the slit 26a and effective for detecting particles is the full width at half maximum area 2 shown by the shaded area in the figure, but the light flux 1 in the depth F direction is
Since the thickness is small, the light intensity distribution 4 becomes steep, and the actual detection area becomes shallow in the depth direction.

この検出領域2の形状及び大きさは、受光レンズ25の
F値、焦点距離1倍率、スリット26aの#A等によっ
て決められる0粒子の通過方向Aを深度F方向に一致さ
せると、粒子の受けるレーザ光強度は有効光束域Eの範
囲に限定することができ、さらに精度の高い検出が可能
になる。
The shape and size of the detection area 2 can be determined by matching the passing direction A of the zero particles, which is determined by the F value of the light receiving lens 25, the focal length 1 magnification, the #A of the slit 26a, etc., with the direction of the depth F. The laser light intensity can be limited to the effective luminous flux range E, allowing for even more accurate detection.

また粒子検出領域の形状は第2図のようにa。The shape of the particle detection area is a as shown in Fig. 2.

b、cの3つの長さで特徴づけられる。a、bは楕円光
束21の集光点における光束の直径をあられし、Cは光
軸方向の長さを示している。光束の光強度工、有効な粒
子検出領域内の試料液体からの散乱光量をWb2通過す
る粒子からの散乱光量をWとすると 工区=− b WbDC工・abC QC1 と表わされる。
It is characterized by three lengths, b and c. a and b indicate the diameter of the elliptical luminous flux 21 at its condensing point, and C indicates the length in the optical axis direction. When the light intensity of the luminous flux is expressed as Wb2 and the amount of scattered light from the sample liquid within the effective particle detection area is W, the amount of scattered light from the passing particles is W, then it is expressed as zone=-b WbDC×abC QC1.

よって粒子からの散乱光量と試料液体からの散乱光量の
比を求めると となり、粒子からの信号のSINを一定にした時、粒子
の捕捉率を上げるにはbcの蹟を大きくすること即ちa
を小さく設定すれば良い。
Therefore, the ratio of the amount of scattered light from the particles to the amount of scattered light from the sample liquid is calculated.When the SIN of the signal from the particles is constant, increasing the particle capture rate requires increasing the bc value, that is, a.
You can set it small.

第3図〜第5図には、本発明装置の実施例が図示されて
おり、同図において符号10で示すものは測定セルであ
り、円筒部10aを有し、この周囲にレーザ光束の入射
窓16.出射窓17.散乱光の受光窓18並びに壁面反
射防止窓19が配置される。′I14定セル10には計
測すべき微粒子23を含んだ純水等の試料液22を流入
させる流入管12並びに試料液22を測定セルlo内か
ら排出させる流出管13が設けられる。
3 to 5 show an embodiment of the device of the present invention, and in the figures, the reference numeral 10 indicates a measuring cell, which has a cylindrical portion 10a, around which a laser beam is incident. Window 16. Exit window 17. A light receiving window 18 for scattered light and a wall antireflection window 19 are arranged. The I14 constant cell 10 is provided with an inflow pipe 12 through which a sample liquid 22 such as pure water containing fine particles 23 to be measured flows in, and an outflow pipe 13 through which the sample liquid 22 is discharged from the measurement cell lo.

楕円レーザ光束21が第5図に示した構成によりつくら
れる。レーザ光源31からのレーザ光がビームエキスパ
ンダー32を経て拡張され、楕円光束を発生させる円筒
レンズ33.集光レンズ34を経て集光点21aに集光
される。この集光点21aの近傍は粒子検出領域35と
なっており、レーザ光束は検出領域の前後bl、b5で
は横に偏平になっているが、検出領域b2 、 b3 
An elliptical laser beam 21 is produced by the configuration shown in FIG. Laser light from a laser light source 31 is expanded through a beam expander 32, and a cylindrical lens 33 generates an elliptical light beam. The light passes through the condenser lens 34 and is condensed onto the condensing point 21a. The vicinity of this condensing point 21a is a particle detection area 35, and the laser beam is horizontally flat in the front and rear of the detection area bl and b5, but in the detection areas b2 and b3
.

b4では縦に偏平な光束となっている。At b4, the light beam is vertically flat.

このようにして形成された楕円レーザ光束21は、入射
窓16を経て集光点21aに集光され。
The elliptical laser beam 21 thus formed passes through the entrance window 16 and is condensed onto a condensing point 21a.

出射窓17を経て出射される。第4図に図示したように
レーザ光軸に垂直に粒子が通過するようにAで示す−様
な流れが形成される。この−様な流れは、円筒部20a
の形状により形成されるが、適当な攪拌手段を用い循環
流を形成することによっても形成される。
The light is emitted through the exit window 17. As shown in FIG. 4, a flow shown by A is formed such that the particles pass perpendicularly to the laser optical axis. This --like flow is caused by the cylindrical portion 20a.
It can also be formed by creating a circulating flow using suitable stirring means.

このような構成で、流入管12から流入した試料液22
は、測定セル10の円筒部10aに沿って流れ、その一
部は流出管13から流出する。この例では、楕円レーザ
光束21は円筒部10aの中心と円筒壁面の中間領域2
1aに集光する0粒子は円筒内の試料液の流れに乗って
レーザ光束の光軸に垂直に粒子検出領域を通過する6粒
子からの散乱光24は受光レンズ25でマスク面26上
に結像されスリ7)26aにより制限された散乱光が光
電検出器27に達して測定される。
With such a configuration, the sample liquid 22 flowing in from the inflow pipe 12
flows along the cylindrical portion 10a of the measurement cell 10, and a portion of it flows out from the outflow pipe 13. In this example, the elliptical laser beam 21 is transmitted between the center of the cylindrical portion 10a and the intermediate region 2 between the cylindrical wall surface.
The zero particles focused on 1a ride on the flow of the sample liquid in the cylinder and pass through the particle detection area perpendicular to the optical axis of the laser beam.The scattered light 24 from the six particles is focused on the mask surface 26 by the light receiving lens 25. The scattered light that is imaged and restricted by the pickpocket 7) 26a reaches the photoelectric detector 27 and is measured.

[効 果] 以上説明したように1本発明では、レーザ光束に楕円光
束を用い、このレーザ光束によって形成された粒子検出
領域を通過する微粒子からの散乱光を粒子の通過方向か
ら受光して粒子特性を測定するようにしているので、レ
ーザ光束の光強度を維持したままで粒子の通過する方向
に垂直な粒子検出領域の断面積を大きくして粒子像の捕
捉率を高めることができて微粒子の検出に適した検出領
域の設定が可能になる。
[Effects] As explained above, in the present invention, an elliptical beam is used as a laser beam, and scattered light from fine particles passing through a particle detection area formed by this laser beam is received from the direction of passage of the particles to detect particles. Since the characteristics of the particle are measured, the cross-sectional area of the particle detection area perpendicular to the direction in which the particles pass can be increased while maintaining the light intensity of the laser beam, increasing the capture rate of particle images. It becomes possible to set a detection area suitable for detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、粒子検出領域の設定例を説明する説明図、第
2図は粒子検出領域の形状を示す説明図、第3図は本発
明装置の実施例の構成を示す斜視図、第4図は第3図装
置の断面図、第5図は楕円光束形成装置の構成図、第6
図はシート状光束を用いた方法の説明図である。
FIG. 1 is an explanatory diagram illustrating an example of setting the particle detection area, FIG. 2 is an explanatory diagram showing the shape of the particle detection area, FIG. 3 is a perspective view showing the configuration of an embodiment of the device of the present invention, and FIG. Figure 3 is a sectional view of the device, Figure 5 is a configuration diagram of the elliptical beam forming device, and Figure 6 is a cross-sectional view of the device.
The figure is an explanatory diagram of a method using a sheet-like light beam.

Claims (1)

【特許請求の範囲】 1)流体液中にレーザ光を照射し、液中に浮遊する微粒
子からの散乱光を検出して粒子特性を測定する液中微粒
子測定方法において、レーザ光束に楕円光束を用い、こ
のレーザ光束によって形成された粒子検出領域を通過す
る微粒子からの散乱光を粒子の通過方向から受光して粒
子特性を測定することを特徴とする液中微粒子測定方法
。 2)粒子の通過する方向に垂直な断面積を大きくし、通
過方向の粒子検出深度を浅くするように楕円光束の縦横
比を設定することを特徴とする特許請求の範囲第1項に
記載の液中微粒子測定方法。 3)流体液中にレーザ光を照射し、液中に浮遊する微粒
子からの散乱光を検出して粒子特性を測定する液中微粒
子測定装置において、 測定すべき微粒子を含んだ試料液を入れる測定セルと、 楕円レーザ光束を発生する手段と、 楕円レーザ光束が集光する測定セル内の粒子検出領域に
レーザ光軸に垂直方向に微粒子を通過させる流れを発生
させる手段と、 前記流れの方向に配置された散乱光を受光する光学系と
を設け、 微粒子からの散乱光を粒子の通過方向から受光して粒子
特性を測定することを特徴とする液中微粒子測定装置。
[Claims] 1) In a method for measuring particles in liquid, in which particle characteristics are measured by irradiating a laser beam into a fluid and detecting scattered light from particles floating in the liquid, an elliptical beam is added to the laser beam. A method for measuring fine particles in liquid, characterized in that the characteristics of the particles are measured by receiving scattered light from the fine particles passing through a particle detection area formed by the laser beam from the direction in which the particles pass. 2) The aspect ratio of the elliptical luminous flux is set so as to increase the cross-sectional area perpendicular to the direction in which the particles pass and to shallow the particle detection depth in the passing direction. Method for measuring fine particles in liquid. 3) In a liquid particle measurement device that measures particle characteristics by irradiating a laser beam into a fluid and detecting the scattered light from particles suspended in the liquid, measurement is performed in which a sample liquid containing the particles to be measured is placed. a cell, means for generating an elliptical laser beam, means for generating a flow that causes particles to pass in a direction perpendicular to the laser optical axis to a particle detection area in the measurement cell where the elliptical laser beam is focused, and in the direction of the flow. What is claimed is: 1. An in-liquid particulate measuring device, comprising: an optical system that receives scattered light from the particulates, and measures particle characteristics by receiving scattered light from the particulates from a direction in which the particles pass.
JP61160831A 1986-07-10 1986-07-10 Method and apparatus for measuring fine particle in liquid Pending JPS6318244A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61160831A JPS6318244A (en) 1986-07-10 1986-07-10 Method and apparatus for measuring fine particle in liquid
US07/072,228 US4830494A (en) 1986-07-10 1987-07-09 Method and apparatus for measuring particles in a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160831A JPS6318244A (en) 1986-07-10 1986-07-10 Method and apparatus for measuring fine particle in liquid

Publications (1)

Publication Number Publication Date
JPS6318244A true JPS6318244A (en) 1988-01-26

Family

ID=15723352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160831A Pending JPS6318244A (en) 1986-07-10 1986-07-10 Method and apparatus for measuring fine particle in liquid

Country Status (1)

Country Link
JP (1) JPS6318244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205216A (en) * 1990-10-03 1993-04-27 Kabushiki Kaisha Tokyo Kikai Seisakusho Inking unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518909A (en) * 1978-07-25 1980-02-09 Berber Viktor A Particle size measuring and analysing apparatus of particles within fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518909A (en) * 1978-07-25 1980-02-09 Berber Viktor A Particle size measuring and analysing apparatus of particles within fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205216A (en) * 1990-10-03 1993-04-27 Kabushiki Kaisha Tokyo Kikai Seisakusho Inking unit

Similar Documents

Publication Publication Date Title
US4830494A (en) Method and apparatus for measuring particles in a fluid
US10768086B2 (en) Method for determining the average particle size of particles which are suspended in a liquid and flowing medium, by means of dynamic light scattering, and a device therefore
JP2641927B2 (en) Particle measurement device
US5793478A (en) Apparatus for measuring particle properties
JPH0266427A (en) Particulate measuring device by direct scattered-light detection
EP0383460B1 (en) Apparatus for measuring particles in liquid
US7362421B2 (en) Analysis of signal oscillation patterns
JP4050748B2 (en) Particle measuring device
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPS6318244A (en) Method and apparatus for measuring fine particle in liquid
JPH0786455B2 (en) Particle measuring method and apparatus
JPH06213795A (en) Floating particle measuring equipment
JPS61288139A (en) Fine particle detecting device
JPH02168138A (en) Measuring apparatus for particulate
JPS6318243A (en) Method and apparatus for measuring fine particle in liquid
JPH0498145A (en) Counting device for particulates in fluid
JPH01140044A (en) Measuring method and apparatus for particulate in liquid
US5212393A (en) Sample cell for diffraction-scattering measurement of particle size distributions
JPH032544A (en) Rain drop measuring instrument
JPH0136109Y2 (en)
JPS60161548A (en) Apparatus for measuring scattered light of flowing fine particulate material
JPH0510868A (en) Particle concentration measuring device
JPS6258139A (en) Method and apparatus for measuring particle
JPS6244649A (en) Particle analyzing device