JPS63182289A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPS63182289A
JPS63182289A JP1145187A JP1145187A JPS63182289A JP S63182289 A JPS63182289 A JP S63182289A JP 1145187 A JP1145187 A JP 1145187A JP 1145187 A JP1145187 A JP 1145187A JP S63182289 A JPS63182289 A JP S63182289A
Authority
JP
Japan
Prior art keywords
single crystal
barrel
melt
crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145187A
Other languages
Japanese (ja)
Inventor
Yasuo Namikawa
靖生 並川
Koji Tada
多田 紘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1145187A priority Critical patent/JPS63182289A/en
Publication of JPS63182289A publication Critical patent/JPS63182289A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of the segregation of impurities and strains and to grow a uniform high-quality single crystal by arranging a specified barrel supported by an auxiliary shaft in a raw material melt, and moving the barrel as the single crystal grows at the time of growing a single crystal by a pulling up method. CONSTITUTION:The auxiliary shaft 6 is provided in a high-frequency heating crystal pulling up device, the barrel 8 made of platinum, etc., having 10-50mm length and the outer diameter within + or -10mm of the difference between the outer diameter and the diameter of the single crystal to be grown is arranged in the raw material melt 2 in the platinum crucible 1 so that the upper end of the barrel is always positioned at the distance 2-15mm below the surface of the melt, and the position of the barrel is made adjustable through a support 7. A seed crystal 4 fixed to the tip of a lifting shaft 3 is dipped in th3 melt 2, a single crystal 5 is pulled up while being rotated, the barrel 8 is lowered in accordance with the lowering of the surface of the melt 2, the natural convection of the melt 2 is controlled by the barrel 8 to keep the solid-liq. interface flat, and the high-quality single crystal 5 is grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法によシ単結晶を育成する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing single crystals by the Czochralski method.

〔従来の技術〕[Conventional technology]

引上げ法は、最も一般的な単結晶の育成方法のうち1つ
である0、その加熱方式には、カーボンヒーターなどに
よる抵拡加熱と、高周波加熱により金属性のるつぼを直
接加熱する方法とかある。高周波加熱の場合、るつぼの
材質としては白金、白金ロジウム、イリジウムなどの高
融点貴金属が一般的に使用される。また、育成する単結
晶の形状制御性をよくするなどの目的からコラクルと呼
ばれるリングt−原料融液面上に浮かべる方式も知られ
ている。また、単結晶を育成する原料融液の組成を均一
にするなどの目的から、るつぼを二重構造にする方式も
知られている。
The pulling method is one of the most common methods for growing single crystals, and its heating methods include resistance heating using a carbon heater, etc., and direct heating of a metal crucible using high frequency heating. . In the case of high-frequency heating, high-melting point noble metals such as platinum, platinum-rhodium, and iridium are generally used as the material for the crucible. Furthermore, for the purpose of improving the shape controllability of the single crystal to be grown, a method called a coracle in which a ring is floated on the raw material melt surface is also known. Furthermore, a method is known in which the crucible has a double structure for the purpose of uniformizing the composition of the raw material melt for growing a single crystal.

引上げ法による単結晶の育成の問題点の1つに、固液界
面形状の制御の困難さがある。ひずみのない単結晶を成
長するためには固液界面が平担であることが望ましいが
、るつぼの加熱による自然対流や引上結晶の回転による
強制対流などの影響で固液界面を平担に保つことは難し
い。
One of the problems with growing single crystals by the pulling method is the difficulty in controlling the shape of the solid-liquid interface. In order to grow a strain-free single crystal, it is desirable that the solid-liquid interface be flat, but it is difficult to flatten the solid-liquid interface due to effects such as natural convection caused by heating the crucible or forced convection caused by the rotation of the pulled crystal. difficult to maintain.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来の単結晶の育成方法の欠点を解消し、自然
対流全抑制することにより固液界面を平担に維持しなが
ら、単結晶の引上げを可能とした単結晶の育成方法を提
供しようとするものである。
The present invention aims to eliminate the drawbacks of conventional single crystal growth methods and provide a single crystal growth method that makes it possible to pull a single crystal while maintaining a flat solid-liquid interface by completely suppressing natural convection. That is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、(1)るつぼの中に入れた原料を高周波加熱
により浴融し、種結晶をひたして回転させながら引上げ
単結晶全育成方法において副軸に支持された円筒を原料
融液中に配置して単結晶の成長に従い移動させることを
特徴とする単結晶の育成方法。(2)上記の円筒の上端
が、原料融液面より2m〜15■下に位置するよりに調
部することを特徴とする上記第(1)項記載の単結晶の
育成方法。(3)上記の円筒の長さが10m〜50mで
あることを特徴とする上記第(1)項または第(2)項
記載の単結晶の育成方法。(4)上記の円筒の外径が、
育成しようとする単結晶の直径に対して±10mの範囲
にあることを特徴とする上記第(3)項記載の単結晶の
育成方法である。
The present invention has the following features: (1) A raw material placed in a crucible is melted in a bath by high-frequency heating, a seed crystal is immersed, and the cylinder is pulled while rotating.In the total single crystal growth method, a cylinder supported by a secondary axis is placed in the raw material melt. A method for growing a single crystal characterized by arranging and moving the single crystal as it grows. (2) The method for growing a single crystal according to item (1) above, characterized in that the upper end of the cylinder is adjusted to be located 2 m to 15 cm below the surface of the raw material melt. (3) The method for growing a single crystal according to item (1) or item (2) above, wherein the length of the cylinder is 10 m to 50 m. (4) The outer diameter of the above cylinder is
The single crystal growing method described in item (3) above is characterized in that the diameter of the single crystal to be grown is within a range of ±10 m.

第1図は本発明を実施するための装置であって、通常の
高周数加熱単結晶引上げ装置に副軸6を設け、支持具7
により固定された円筒8を原料融液2中に沈める。円筒
8の上下の移動は副軸6により行ない、円筒の上端が常
に原料融液面から一定の距離に位置するよりにする。る
つぼ1内の原料融液2に引上げ軸3の先端に取付は九種
結晶4t−ひたし、これを回転させながら単結晶5を引
上げる。この引上げにともない原料融液2の液面は下降
するのでそれに合わせるように円筒8を下降させる。な
お、9はヒーター、10は保温材、11は融液温度を測
定するための熱電対である。
FIG. 1 shows an apparatus for carrying out the present invention, in which a sub-shaft 6 is provided in a normal high-frequency heating single crystal pulling apparatus, and a support 7 is provided.
The cylinder 8 fixed by is submerged in the raw material melt 2. The cylinder 8 is moved up and down by the subshaft 6, so that the upper end of the cylinder is always located at a constant distance from the surface of the raw material melt. A nine-seed crystal 4t is attached to the tip of a pulling shaft 3 into the raw material melt 2 in the crucible 1, and the single crystal 5 is pulled up while rotating it. As the liquid level of the raw material melt 2 falls as it is pulled up, the cylinder 8 is lowered to match it. Note that 9 is a heater, 10 is a heat insulating material, and 11 is a thermocouple for measuring the melt temperature.

〔作用〕[Effect]

第2図に、引上結晶の回転数Wと融液中の対流の関係を
示す。(a)、 (1))、 (C)、 (d)の順に
引上結晶回転数Wか増加している。結晶回転数w1が小
さい場合(a)には、るつぼ側面から中心部に向う自然
対流か優勢であり、固液界面は下に凸となる。このよう
なときに、不純物の偏析やfacet(優先成長面)の
出現、ひずみの発生があり、クラックの原因となる。即
ち、固液界面が下に凸になると、様々な角度を持つ九結
晶面が現われるために、成長速度の速い優先成長面と他
の面との界面に歪が誘起されたシ、不純物か取シ込まれ
たりする。また、結晶回転数W2が増えるに従い、中心
から外側に向う強制対流が大きくなシ、ついには固液界
面が上に凸となる(Ill)。その中間に固液界面が平
担となる結晶回転数W3が存在するが(C)、これらの
対流の様子は、原料融液の深さや育成された結晶重量な
どによっても変化するため、常に最適回転数に保つのは
困難である。本発明では、円WU8を原料融液2中に沈
めることにより、るつぼ側面から中心部に向う自然対流
を抑制する。その結果固液界面近傍で対流が弱くな夛、
固液界面を平担化し、その状態を維持するのが比較的容
易になる。そして、固液界面の平担化により、不純物の
偏析やひずみの発生が抑止され、均質でかつ良質な単結
晶を得ることができる。
FIG. 2 shows the relationship between the rotational speed W of the pulled crystal and convection in the melt. The number of rotations W of the pulled crystal increases in the order of (a), (1)), (C), and (d). When the crystal rotation speed w1 is small (a), natural convection from the side of the crucible toward the center is dominant, and the solid-liquid interface becomes convex downward. At such times, impurity segregation, the appearance of facets (preferential growth surfaces), and the generation of strain may occur, causing cracks. In other words, when the solid-liquid interface becomes convex downward, nine crystal planes with various angles appear, so strain is induced at the interface between the fast-growing preferential growth plane and other planes, and impurities are removed. I get pushed into it. Furthermore, as the crystal rotation speed W2 increases, the forced convection from the center to the outside increases, and the solid-liquid interface finally becomes convex upward (Ill). There is a crystal rotation speed W3 in the middle where the solid-liquid interface becomes flat (C), but the appearance of these convections varies depending on the depth of the raw material melt and the weight of the grown crystal, so it is always optimal. It is difficult to maintain the rotation speed. In the present invention, by submerging the circle WU8 into the raw material melt 2, natural convection from the side of the crucible toward the center is suppressed. As a result, convection is weak near the solid-liquid interface,
It becomes relatively easy to flatten the solid-liquid interface and maintain that state. By flattening the solid-liquid interface, segregation of impurities and generation of strain are suppressed, and a homogeneous and high-quality single crystal can be obtained.

なお、円筒の外径は単結晶の直径に対して±10mの範
囲にあることが好ましい。育成中の結晶を回転させるこ
とは、結晶の温度環境の軸対称性を高めるために不可欠
でおるが、回転にともなう強制対流は固液界面を上に凸
化する傾向があり、その影響を小さくするために円筒の
径を小さくしてるつぼの中心部に向う流れをよシ多く導
入することができる。第3図は円筒径、単結晶径と結晶
回転数の関係を説明するための図である。第3図(II
L)は結晶回転数Waが比較的低いので固液界面を上に
凸にする傾向も弱く、円筒径も比較的大きくてよいが、
第3図(b)のように結晶回転数wbが比較的高い場合
には、固液界面の上に凸化する傾向が強いので円筒径を
比較的小さくして、るつぼ中心部に向う流れをよジ多く
導入することがよい。このように、融液の対流の状況に
合わせて、円筒の径を選択することが好ましい。
Note that the outer diameter of the cylinder is preferably within a range of ±10 m with respect to the diameter of the single crystal. Rotating the growing crystal is essential to increase the axial symmetry of the crystal's temperature environment, but the forced convection that accompanies rotation tends to convex the solid-liquid interface upward, and this effect can be minimized. In order to do this, the diameter of the cylinder can be made smaller to introduce more flow toward the center of the crucible. FIG. 3 is a diagram for explaining the relationship between the cylinder diameter, single crystal diameter, and crystal rotation speed. Figure 3 (II
L) has a relatively low crystal rotation speed Wa, so there is a weak tendency to make the solid-liquid interface convex upward, and the cylinder diameter can be relatively large, but
When the crystal rotation speed wb is relatively high as shown in Figure 3(b), there is a strong tendency for the crystal to convex above the solid-liquid interface, so the cylinder diameter is made relatively small to reduce the flow toward the center of the crucible. It is better to introduce many different types. In this way, it is preferable to select the diameter of the cylinder depending on the convection situation of the melt.

〔実施例〕〔Example〕

第1図の引上装置を用いて、ビスマス・シリコンオキサ
イド81..日10w(以下、B2Oと略記する)単結
晶を育成した。内径100+omφ、深さ150mの円
筒形白金るつぼ中に、酸化ビスマス(Bi203)と酸
化ケイ素(Sin、)をモル比6:1で混合し次原料を
78009チヤージし九。
Using the pulling device shown in FIG. 1, bismuth silicon oxide 81. .. A single crystal was grown at 10 w per day (hereinafter abbreviated as B2O). Bismuth oxide (Bi203) and silicon oxide (Sin, ) were mixed at a molar ratio of 6:1 in a cylindrical platinum crucible with an inner diameter of 100+omφ and a depth of 150 m, and the next raw material was charged at 78,009 m.

高周波加熱により原料t−浴融した後、副軸に取付けた
白金製の円筒を融液中に沈めた。円筒の形状は内径52
1aIIIφ、長さ20■、肉厚α5mである。引上げ
軸に取付けられた種結晶t−原料融液にひたし、回転さ
せながら引上げ、単結晶全育成した。引上げ速度はt 
Owai、/ k、回転数は20rpmから8 r、p
mへと連続的に変化させた。白金製円筒は原料融液面か
ら5mm下に上端が位置するよりに液面の低下に従って
副軸によジ移動させた。
After the raw material was melted in a t-bath by high-frequency heating, a platinum cylinder attached to a subshaft was submerged in the melt. The shape of the cylinder has an inner diameter of 52
It has a diameter of 1aIIIφ, a length of 20mm, and a wall thickness of α5m. A seed crystal T attached to a pulling shaft was immersed in the raw material melt and pulled up while rotating to fully grow a single crystal. The pulling speed is t
Owai, / k, rotation speed from 20 rpm to 8 r, p
It was changed continuously to m. The platinum cylinder was moved by the counter shaft as the liquid level decreased until the upper end was located 5 mm below the surface of the raw material melt.

得られたBSO単結晶は、1径50m+φ、直胴部長さ
60wm、結晶重量1400fであジ、コア、ひずみの
ない良好な品質のものであった。
The obtained BSO single crystal had a diameter of 50 m+φ, a straight body length of 60 wm, a crystal weight of 1400 f, and was of good quality without any zigzag, core, or distortion.

このB2Oを元画像処理素子、ホログラム素子、光学式
電解センサなどの光学素子として充分に使用できる高い
均質性を有していた。
This B2O had high homogeneity so that it could be used as an optical element for original image processing elements, hologram elements, optical electrolytic sensors, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することにより、固液界面の平
担化を容易とし、その結果、育成結晶中の不純物の偏析
やひずみの発生がなく、均一で高い品質の単結晶を得る
ことができた。
By adopting the above configuration, the present invention facilitates flattening of the solid-liquid interface, and as a result, there is no segregation of impurities or generation of distortion in the grown crystal, and it is possible to obtain a uniform, high-quality single crystal. did it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための、結晶引上げ装置の正
断面図、第2図(a)〜(d)は引上結晶の回転数Wと
融液中の対流の関係を説明するための模式図、第3図(
a)、 <b)は、円筒径、単結晶径と結晶回転数の関
係を説明するための図である。 第3図 (ひっ (b、)
Figure 1 is a front cross-sectional view of a crystal pulling apparatus for carrying out the present invention, and Figures 2 (a) to (d) are for explaining the relationship between the rotational speed W of the pulled crystal and convection in the melt. Schematic diagram, Figure 3 (
a) and <b) are diagrams for explaining the relationship between the cylinder diameter, the single crystal diameter, and the crystal rotation speed. Figure 3 (hi (b,)

Claims (4)

【特許請求の範囲】[Claims] (1)るつぼの中に入れた原料を高周波加熱により溶融
し、種結晶をひたして回転させながら引上げ単結晶を育
成方法において副軸に支持された円筒を原料融液中に配
置して単結晶の成長に従い移動させることを特徴とする
単結晶の育成方法。
(1) The raw material placed in a crucible is melted by high-frequency heating, a seed crystal is immersed, and the single crystal is pulled up while rotating. In this method, a cylinder supported by a secondary shaft is placed in the raw material melt and a single crystal is grown. A method for growing a single crystal, characterized by moving the single crystal as it grows.
(2)上記の円筒の上端が、原料融液面より2mm〜1
5mm下に位置するよりに調節することを特徴とする特
許請求の範囲第1項記載の単結晶の育成方法。
(2) The upper end of the above cylinder is 2 mm to 1 mm from the raw material melt surface.
2. The method for growing a single crystal according to claim 1, wherein the single crystal is adjusted to be located 5 mm below.
(3)上記の円筒の長さが10mm〜50mmであるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の単結晶の育成方法。
(3) The method for growing a single crystal according to claim 1 or 2, wherein the length of the cylinder is 10 mm to 50 mm.
(4)上記の円筒の外径が、育成しようとする単結晶の
直径に対して±10mm以内の範囲にあることを特徴と
する特許請求第3項記載の単結晶の育成方法。
(4) The method for growing a single crystal according to claim 3, wherein the outer diameter of the cylinder is within ±10 mm of the diameter of the single crystal to be grown.
JP1145187A 1987-01-22 1987-01-22 Method for growing single crystal Pending JPS63182289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145187A JPS63182289A (en) 1987-01-22 1987-01-22 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145187A JPS63182289A (en) 1987-01-22 1987-01-22 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPS63182289A true JPS63182289A (en) 1988-07-27

Family

ID=11778462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145187A Pending JPS63182289A (en) 1987-01-22 1987-01-22 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPS63182289A (en)

Similar Documents

Publication Publication Date Title
US5330729A (en) Single crystal pulling apparatus
JPH0559874B2 (en)
JPH0357072B2 (en)
JP3121192B2 (en) Method for producing oxide single crystal
JP3132412B2 (en) Single crystal pulling method
TWI301859B (en)
JPS63182289A (en) Method for growing single crystal
JPS6027684A (en) Apparatus for producing single crystal
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JPS5979000A (en) Production of semiconductor single crystal
JPS5930795A (en) Apparatus for pulling up single crystal
WO2014174752A1 (en) Method for producing silicon single crystal
JP2957857B2 (en) Method for producing oxide single crystal
JPH07277875A (en) Method for growing crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JPS58181792A (en) Apparatus for pulling up single crystal silicon
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JPH07277870A (en) Method and device for growing single crystal
JPH04357191A (en) Single crystal production apparatus
JP2003327490A (en) Method for producing oxide single crystal and production apparatus used in the same
JP2008260663A (en) Growing method of oxide single crystal
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JPH0692776A (en) Silicon single crystal pulling up device
JPS63215594A (en) Growth of crystal by double crucible
JP2665779B2 (en) Single crystal pulling device