JPS63182030A - Production of porous polymer particle for adsorbing bilirubin - Google Patents

Production of porous polymer particle for adsorbing bilirubin

Info

Publication number
JPS63182030A
JPS63182030A JP1133087A JP1133087A JPS63182030A JP S63182030 A JPS63182030 A JP S63182030A JP 1133087 A JP1133087 A JP 1133087A JP 1133087 A JP1133087 A JP 1133087A JP S63182030 A JPS63182030 A JP S63182030A
Authority
JP
Japan
Prior art keywords
bilirubin
polymer particles
porous polymer
precipitant
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1133087A
Other languages
Japanese (ja)
Other versions
JPH0724771B2 (en
Inventor
Mitsuo Kono
光雄 河野
Nobuyuki Kimura
木村 修志
Hideyuki Kuroda
英行 黒田
Shigeo Miyamori
宮森 茂雄
Norio Nakabayashi
宣男 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP1133087A priority Critical patent/JPH0724771B2/en
Publication of JPS63182030A publication Critical patent/JPS63182030A/en
Publication of JPH0724771B2 publication Critical patent/JPH0724771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the titled polymer particles excellent in adsorbability by subjecting a mixed monomer consisting of 35-100wt.% divinylbenzene and 0-65wt.% glycidyl methacrylate to suspension polymerization in an aqueous medium while using 5-12C monovalent alcohol as a precipitant. CONSTITUTION:A mixed monomer consisting of 35-100wt.% divinylbenzene and 0-65wt.% glycidyl methacrylate is subjected to suspension polymerization in an aqueous medium by using monovalent alcohol wherein the atomic number of carbon is 5-12 and the solubility for water is 7 and below (e.g. 3,5,5- trimethylhexanol or the like) as a precipitant. Porous polymer particles are obtained for example by firstly washing the produced polymer with water and then washing it with methanol and furthermore subjecting it to Soxhlet extraction until it shows constant weight. The polymer particles can be preferably used as an adsorbent of bilirubin. Further as the amount of the precipitant, 80-150pts.wt. is used especially preferably for 100pts.wt. mixed monomer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、急性薬物中毒および劇症肝炎などの症状にお
いて、解毒代謝機能が低下することによって血液中に生
じる高濃度のビリルビンを有効に吸着除去せしめるごツ
ルビン吸着用多孔性重合体粒子の製造方法に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention effectively adsorbs high concentrations of bilirubin, which is produced in the blood due to a decline in detoxification metabolic function in symptoms such as acute drug poisoning and fulminant hepatitis. The present invention relates to a method for producing porous polymer particles for adsorption of turbin.

[従来の技術およびその問題点] 薬物中毒や劇症肝炎のような症状の緊急の治療には、血
液を体外循環して直接吸着剤と接触させ、血中の高濃度
の有害物を吸着除去する直接血液潅流法(以下DHPと
称する)が有効であり、現在吸着剤として石油ピッチ系
の活性炭を利用したDHPが主流となっている。しかし
ながら、活性炭においては小〜中分子量物質の吸着には
優れているが、蛋白結合ビリルビンのような高分子量物
質の吸着除去は困難であり満足すべきものではない。
[Conventional technology and its problems] For emergency treatment of symptoms such as drug poisoning and fulminant hepatitis, blood is circulated extracorporeally and brought into direct contact with an adsorbent to adsorb and remove high concentrations of harmful substances from the blood. A direct blood perfusion method (hereinafter referred to as DHP) is effective, and DHP using petroleum pitch-based activated carbon as an adsorbent is currently the mainstream. However, although activated carbon is excellent in adsorbing small to medium molecular weight substances, it is difficult to adsorb and remove high molecular weight substances such as protein-bound bilirubin and is not satisfactory.

[問題を解決するための手段] 上記のような現状に鑑み、本発明者らは、優れたビリル
ビン吸着性を有するビリルビン吸着剤を製造すべく、鋭
意研究を重ねた結果、本発明を完成するに至ったもので
ある。
[Means for Solving the Problem] In view of the above-mentioned current situation, the present inventors have completed the present invention as a result of extensive research in order to produce a bilirubin adsorbent having excellent bilirubin adsorption properties. This is what led to this.

すなわち、本発明のビリルビン吸着用多孔性重合体粒子
の製造方法は、ジビニルベンゼン(以下、DVBと称す
る)35〜100重量%とグリシジルメタクリレート(
以下、GMAと称する)O〜65重量%の混合上ツマ−
を、炭素原子数5〜12の一価アルコールを沈殿剤とし
て水性媒体中で懸濁重合せしめることを特徴とするもの
であり、懸濁重合によって得られた多孔性重合体粒子は
、適宜の精製工程、例えば初めに水、次いでメタノール
で洗浄し、更にアセトンで恒量になるまでソックスレー
抽出し、粒子中に残存している沈殿剤および七ツマ−を
除去する工程を経て、吸着用多孔性重合体粒子とするこ
とができる。
That is, the method for producing porous polymer particles for adsorbing bilirubin of the present invention includes 35 to 100% by weight of divinylbenzene (hereinafter referred to as DVB) and glycidyl methacrylate (
(hereinafter referred to as GMA)
is characterized by suspension polymerization in an aqueous medium using a monohydric alcohol having 5 to 12 carbon atoms as a precipitant, and the porous polymer particles obtained by suspension polymerization are subjected to appropriate purification. After a process, for example, first washing with water and then methanol, and further Soxhlet extraction with acetone to a constant weight to remove the precipitant and sulfuric acid remaining in the particles, the porous polymer for adsorption is prepared. It can be a particle.

本発明でいう沈殿剤とは、「モノマーとは完全に相溶す
るが、重合により生成したポリマーには親和性を示さな
い溶媒」を意味し、該溶媒の共存下でモノマーを懸濁重
合すると、その多くは直径1μm以下の著しく微細なポ
リマー−次粒子を生成し、これが凝集体となって、一般
にマクロレティキュラー型多孔性樹脂と呼ばれる多孔性
重合体を形成する。
The precipitant as used in the present invention means a "solvent that is completely compatible with the monomer but has no affinity for the polymer produced by polymerization", and when monomers are suspended in the coexistence of the solvent, Most of them produce extremely fine secondary polymer particles with a diameter of 1 μm or less, which aggregate to form a porous polymer generally called a macroreticular porous resin.

本発明において、DVB/GMAの混合比率はDVB 
(重量%)/GMA(重量%)−35〜10010〜6
5の範囲であることが必要であり、65〜9515〜3
5の範囲であることが好ましい。DVBの混合比率が3
5重量%未満であると、得られる多孔性重合体粒子はビ
リルビン吸着に適した多孔化とならず、吸着量が著しく
減少するため好ましくない。
In the present invention, the DVB/GMA mixing ratio is DVB/GMA.
(wt%)/GMA (wt%) -35~10010~6
Must be in the range of 5, 65-9515-3
It is preferable that it is in the range of 5. DVB mix ratio is 3
If it is less than 5% by weight, the resulting porous polymer particles will not have pores suitable for bilirubin adsorption, and the amount of adsorption will significantly decrease, which is not preferable.

本発明に用いることのできるDVBとしては、高純度な
りVBはもちろんのことでおるが、一般に工業用として
供給されている工業用DVB (エチルビニルベンゼン
およびその他の種々の飽和化合物との混合物を含み、D
VBti!度約55重量%)も本発明において好ましく
用いることができる。
The DVB that can be used in the present invention includes not only high-purity VB, but also industrial DVB that is generally supplied for industrial use (including mixtures with ethylvinylbenzene and various other saturated compounds). ,D
VBti! about 55% by weight) can also be preferably used in the present invention.

なお、工業用DVBを用いる場合のGMAとの混合モノ
マー比は、含有するDVBIが上記混合比率の範囲とな
るようにするのが好ましい。
In addition, when using industrial DVB, it is preferable that the mixed monomer ratio with GMA is such that the DVBI contained falls within the above mixing ratio range.

上記DVB/GMA系多孔性重合体の多孔化に際して用
いることのできる沈殿剤としては、炭素原子数5〜12
の一価アルコールであり、炭素原子数5未満の一価アル
コールは水に対する溶解性が大きく(たとえば炭素原子
数4のn−ブタノールは水100mI中に30℃で7.
7g溶解する)懸濁重合の際分散媒水相中へ溶解し、七
ツマー相中のアルコール量が減少して目的とする多孔化
とならず、また炭素原子数12より大のアルコール(た
とえばテトラデカノールなど)はDVB/GMAモノマ
ーへの溶解性が劣るため均一な多孔化が得られなかった
り、粒子強度が低下したりすることがおるので好ましく
ない。したがって、本発明においては、炭素原子数8〜
9の一価アルコールが特に好ましく用いることができる
The precipitant that can be used to make the above DVB/GMA porous polymer porous has 5 to 12 carbon atoms.
Monohydric alcohols with less than 5 carbon atoms have a high solubility in water (for example, n-butanol with 4 carbon atoms has a 7.
During suspension polymerization, the amount of alcohol in the hexamer phase decreases and the desired porosity cannot be achieved, and alcohols with a carbon number greater than 12 (e.g. Decanol, etc.) is not preferred because it has poor solubility in the DVB/GMA monomer and may not provide uniform porosity or may reduce particle strength. Therefore, in the present invention, the number of carbon atoms is 8 to
The monohydric alcohol No. 9 can be particularly preferably used.

なお、炭素原子数5の一価アルコールでも、水に対する
溶解度の大きなアルコール(たとえばter、−アミル
アルコールは水100mJ!中30°Cで143溶解す
る)は、炭素原子数4未満の一価アルコールと同様に目
的とする多孔化が得られないことがあるので、−価アル
コールとしては、炭素原子数が上記特定範囲である上に
、水に対する溶解度(水100rrl中30℃における
溶解9数)が、7以下、好ましくは5以下、特に好まし
くは3以下であることが、なおざらに好ましい。
Even monohydric alcohols with 5 carbon atoms have high solubility in water (for example, ter, -amyl alcohol dissolves at 30°C in 100 mJ of water), and monohydric alcohols with less than 4 carbon atoms have high solubility in water. Similarly, since the desired porosity may not be obtained, the -hydric alcohol should have a carbon atom number within the above specified range and a water solubility (dissolution of 9 at 30°C in 100 rrl of water). It is even more preferred that it be 7 or less, preferably 5 or less, particularly preferably 3 or less.

本発明において用いることのできる沈殿剤の具体例とし
ては、n−アミルアルコール、n−オクチルアルコール
、4−メチル−2−ペンタノール、3.5.5−トリメ
チルヘキサノール、ラウリルアルコール、2−エチルヘ
キシルアルコール、ジ。
Specific examples of precipitants that can be used in the present invention include n-amyl alcohol, n-octyl alcohol, 4-methyl-2-pentanol, 3.5.5-trimethylhexanol, lauryl alcohol, and 2-ethylhexyl alcohol. , Ji.

イソブチルカルビノールなどであり、特に炭素原子数8
〜9のn−オクチルアルコール、3,5゜5−トリメチ
ルヘキサノールなどが好ましい。
Isobutyl carbinol, etc., especially those with 8 carbon atoms
-9 n-octyl alcohol, 3,5°5-trimethylhexanol and the like are preferred.

本発明において、ビリルビン吸着用多孔性重合体粒子は
、上記モノマーに沈殿剤を存在させ、水性媒体中で懸濁
重合することによって製造することができるが、用いる
沈殿剤の量は、DVB/GMA系七ツマ−100重量部
に対し、65〜180重量部、特に80〜150重量部
が好ましい。
In the present invention, the porous polymer particles for adsorbing bilirubin can be produced by adding a precipitant to the monomer and carrying out suspension polymerization in an aqueous medium. It is preferably 65 to 180 parts by weight, particularly 80 to 150 parts by weight, per 100 parts by weight of the seven-spotted salt.

沈殿剤が65重量部より少ないとビリルビン吸着剤とし
て好適な多孔化が得られなくなり、180重量部より多
くなると、多孔化が過度となり、強度の小さな粒子とな
るので好ましくない。また、懸濁重合法は、それ自体特
殊なものではなく、従来公知の方法で行うことができる
。なお、本懸濁重合において、水性媒体中へ少量のNa
Clを加えておくと、GMAの水相への溶出によって生
成されるエマルジョン粒子で多孔粒の表面が汚染される
という欠点が低減され、得られた多孔粒の分離および精
製が容易におこなえる利点がある。また、重合温度を段
階的に昇温すると、初めから高温で反応させた場合に比
較して重合時間は長くなるが、得られた重合体粒子に残
存するストレスが低減され、粒子表面に発生する亀裂の
防止にプラスの働きをする。しかしながら、これら2つ
の手法は、本発明にとって必須の要件を構成するもので
はない。生成した重合体粒子は、適宜な精製方法、たと
えば、初めに水、次いでメタノールで洗浄し、さらにア
セトンで恒量になるまでソックスレー抽出し、粒子中に
残存している沈殿剤およびモノマーを除去することによ
り、多孔性重合体粒子を得ることができる。
If the amount of the precipitant is less than 65 parts by weight, suitable porosity as a bilirubin adsorbent cannot be obtained, and if it is more than 180 parts by weight, the porosity becomes excessive, resulting in particles with low strength, which is not preferable. Further, the suspension polymerization method itself is not special, and can be carried out by conventionally known methods. In addition, in this suspension polymerization, a small amount of Na is added to the aqueous medium.
Adding Cl reduces the disadvantage that the surface of the porous particles is contaminated with emulsion particles generated by elution of GMA into the aqueous phase, and has the advantage that the resulting porous particles can be easily separated and purified. be. In addition, when the polymerization temperature is raised stepwise, the polymerization time becomes longer than when the reaction is carried out at a high temperature from the beginning, but the stress remaining in the obtained polymer particles is reduced, and the stress generated on the particle surface is reduced. It has a positive effect on preventing cracks. However, these two techniques do not constitute essential requirements for the present invention. The resulting polymer particles may be purified using a suitable purification method, such as first washing with water and then methanol, and further Soxhlet extraction with acetone to constant weight to remove any precipitants and monomers remaining in the particles. By this method, porous polymer particles can be obtained.

以上のようにして得られた本発明多孔性重合体粒子はビ
リルビン吸着用途に好ましく用いることができ、特に高
濃度ごプルビン代謝異常患者のビリルビン吸着に効果的
に用いることができる。
The porous polymer particles of the present invention obtained as described above can be preferably used for adsorbing bilirubin, and can be particularly effectively used for adsorbing bilirubin in patients with high-concentration pulvin metabolic disorders.

[実施例] 本発明を以下の実施例に基づいて、ざらに詳細に説明す
る。
[Examples] The present invention will be roughly described in detail based on the following examples.

実施例1゜ ウォーターバスに設置した撹拌翼およびコンデンサー付
きのINのせパラプルフラスコに、イオン交換水450
9を仕込み、撹拌下(140〜160rpm>で分散剤
[ポリビニルアルコール(日本合成化学工業社製、ゴー
セノールGH−23)6%水溶液]7.5gとNaC+
189を加えて溶解させ、水相を形成させた。これに、
DVB (DVB含有率55%(7)工業用DVB)2
4yおよびGMA67のモノマー混合物、沈殿剤(3゜
5.5−トリメチルヘキサノール’)30’jj13よ
び重合開始剤(BPO:ベンゾイルパーオキサイド)0
.37を加えて混合溶解した油相を同じく撹拌下で加え
、外温を60℃から90℃に段階的に昇温しつつ、7時
間かけて重合反応をおこなった。
Example 1゜450 ion-exchanged water was added to an IN paraple flask equipped with a stirring blade and a condenser installed in a water bath.
9, and while stirring (140-160 rpm), add 7.5 g of dispersant [6% aqueous solution of polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., Gohsenol GH-23)] and NaC +
189 was added and dissolved to form an aqueous phase. to this,
DVB (DVB content 55% (7) industrial DVB) 2
Monomer mixture of 4y and GMA67, precipitant (3°5.5-trimethylhexanol') 30'jj13 and polymerization initiator (BPO: benzoyl peroxide) 0
.. The oil phase in which 37 was added and mixed and dissolved was added under stirring, and the polymerization reaction was carried out over 7 hours while the external temperature was raised stepwise from 60°C to 90°C.

反応液は100メツシユの篩で濾過し、得られた重合体
粒子は初めに水、次いでメタノールで充分に洗浄し、ざ
らにアセトンにより恒量になるまでソックスレー抽出を
おこなって精製し、風乾してビリルビン吸着用多孔性重
合体粒子とした。
The reaction solution was filtered through a 100-mesh sieve, and the resulting polymer particles were first thoroughly washed with water and then methanol, purified by Soxhlet extraction with acetone until a constant weight, and air-dried to obtain bilirubin. Porous polymer particles for adsorption were used.

上記で得られた多孔性重合体粒子について、ビリルビン
吸着率を下記の方法で測定したところ、90.3%でお
り、極めて優れた性能のものであった。
When the bilirubin adsorption rate of the porous polymer particles obtained above was measured by the method described below, it was 90.3%, which was an extremely excellent performance.

ビリルビン吸着率測定法;下記(a)〜(C)の手順で
ビリルビン吸着率を測定する。
Bilirubin adsorption rate measurement method: The bilirubin adsorption rate is measured according to the following procedures (a) to (C).

(a>高ヒ刀ルピン値模擬血清の作成 ビリルビン15mgにジメチルスルホキシド1.0m、
Il 、0.1M炭酸ナトリウム2.0mgを加え溶解
し、これに、0.−134Mリン酸緩衡液(pH7,4
>を用いて調製したアルブミン標準液(5,59/dN
 )を加えて、pH7,4に調整して、ビリルビン標準
液(15my/dU )を調製する。
(a> Preparation of serum simulating high lupine level 15 mg of bilirubin, 1.0 m of dimethyl sulfoxide,
Add and dissolve 2.0 mg of 0.1M sodium carbonate, and to this, 0.1M sodium carbonate is added and dissolved. -134M phosphate buffer (pH 7.4
>Albumin standard solution (5,59/dN
) and adjust the pH to 7.4 to prepare a bilirubin standard solution (15 my/dU).

(b)多孔性粒子の親水処理 乾燥した多孔粒は水との親和性に乏しく、水溶液中に浸
漬しても、細孔中の空気と水溶液の置換が起こり難いた
め、初めにエタノール中に多孔粒を入れ、脱気後、水で
充分に洗い流し、0.134Mリン酸緩衡液(pH7,
4>に−夜浸漬する。
(b) Hydrophilic treatment of porous particles Dried porous particles have poor affinity with water, and even when immersed in an aqueous solution, it is difficult to replace the air in the pores with the aqueous solution. After adding the grains and degassing, rinse thoroughly with water and add 0.134M phosphoric acid buffer (pH 7,
4> - Soak overnight.

(C)ビリルビン吸着率の測定 上記(a)の模擬血清5mgに、(b)の多孔性粒子(
乾燥時重量で>0.1!Jを加え、37℃で2時間振盪
して血清中のビリルビンを多孔性重合体粒子に吸着させ
る。次いで多孔性粒子を濾過し、濾液をフルカリアゾビ
リルビン法に基づくビリルビン測定用試薬(和光紬薬工
業社製、B111rubin  BII−TestWa
KO>を用いて発色させ、600nmの波長における吸
光度を測定し、この値をサンプル値とする。
(C) Measurement of bilirubin adsorption rate 5 mg of the simulated serum of (a) above was added to the porous particles of (b) (
Dry weight >0.1! J and shaken at 37°C for 2 hours to allow bilirubin in the serum to be adsorbed onto the porous polymer particles. Next, the porous particles were filtered, and the filtrate was mixed with a reagent for measuring bilirubin based on the flucariazobilirubin method (manufactured by Wako Tsumugi Kogyo Co., Ltd., B111rubin BII-TestWa).
KO> is used to develop color, the absorbance at a wavelength of 600 nm is measured, and this value is used as the sample value.

別に上記(b)の多孔性粒子を加えないで、(a)の模
擬血清のみで前記同様に処理して吸光度を測定しくコン
トロール値という)、次式によりビルビリン吸着率(%
)を算出する。
Separately, without adding the porous particles of (b) above, treat with only the simulated serum of (a) in the same manner as above and measure the absorbance (referred to as the control value).
) is calculated.

ビリルビン吸着率(%)一 実施例2〜4および比較例1.2 実施例1同様に下記表−1に示したそれぞれの配合組成
(重量部を示す)で、沈殿剤の異なる多孔性重合体粒子
を製造し、同様にビリルビン吸着率を測定した。その結
果を合わせて表−1に示した。
Bilirubin adsorption rate (%) - Examples 2 to 4 and Comparative Examples 1.2 Similar to Example 1, porous polymers with different precipitants were prepared with the respective formulations (parts by weight) shown in Table 1 below. Particles were produced and the bilirubin adsorption rate was measured in the same manner. The results are shown in Table 1.

(以下余白) 上記表−1の結果から明らかなように本発明方法で製造
した実施例2〜実施例4の多孔性重合体粒子は、優れた
ビリルビン吸着特性を示す粒子であった。これに対し、
比較例1に示した沈殿剤(n−1タノール)は、水に対
する溶解度が7゜7(30℃)と大きなため、ビリルビ
ン吸着に適する多孔化をとらず、ビリルビン吸着率は、
極めて低い値となった。また、比較例2に示した沈殿剤
(テトラデカノール)はモノマーに対する溶解度が小さ
く、均一の多孔化が起こらないため、ビリルビン吸着率
は低い値となった。
(The following is a blank space) As is clear from the results in Table 1 above, the porous polymer particles of Examples 2 to 4 produced by the method of the present invention were particles that exhibited excellent bilirubin adsorption properties. In contrast,
The precipitant (n-1 tanol) shown in Comparative Example 1 has a high solubility in water of 7°7 (30°C), so it does not have porosity suitable for bilirubin adsorption, and the bilirubin adsorption rate is
This was an extremely low value. Furthermore, the precipitant (tetradecanol) shown in Comparative Example 2 had low solubility in monomers and did not produce uniform porosity, resulting in a low bilirubin adsorption rate.

実施例5〜8および比較例3 下記表−2に示したそれぞれの配合組成(重量部を示す
)にしたがって、DVB/GMA比の異なる多孔性重合
体粒子を実施例1と同様の方法で製造し、ビリルビン吸
着率を測定した。その結果を合わせて表−2に示した。
Examples 5 to 8 and Comparative Example 3 Porous polymer particles with different DVB/GMA ratios were produced in the same manner as in Example 1 according to the respective compounding compositions (parts by weight shown) shown in Table 2 below. Then, the bilirubin adsorption rate was measured. The results are shown in Table 2.

(以下余白) 上記表−2の結果から明らかなように、本発明方法で製
造した実施例5〜8の多孔性重合体粒子は、優れたビリ
ルビン吸着特性を示す粒子でおった。これに対し、比較
例3の粒子は、DVB/GMA比が26.8/73.2
で、GMAの含有量が本発明の範囲を越えて多いため、
親水性が高くなるとともに、ビリルビン吸着に適した多
孔化とならず、ビリルビン吸着率は低い値となった。
(The following is a blank space) As is clear from the results in Table 2 above, the porous polymer particles of Examples 5 to 8 produced by the method of the present invention were particles that exhibited excellent bilirubin adsorption properties. On the other hand, the particles of Comparative Example 3 had a DVB/GMA ratio of 26.8/73.2.
However, since the content of GMA is higher than the scope of the present invention,
As the hydrophilicity increased, the porosity did not become suitable for bilirubin adsorption, and the bilirubin adsorption rate became a low value.

実施例9〜12 下記表−3に示したそれぞれの配合組成(重量部を示す
)にしたがって、(DVB十〇MA)/沈殿剤(3,5
,5−トリメチルヘキサノール)比を変えた多孔性重合
体粒子を実施例1と同様の方法で製造し、ビリルビン吸
着率を測定した。
Examples 9 to 12 (DVB 100 MA)/precipitant (3,5
, 5-trimethylhexanol) were produced in the same manner as in Example 1, and the bilirubin adsorption rates were measured.

その結果を合わせて表−3に示した。The results are shown in Table 3.

(以下余白) 上記表−3の結果からも明らかなように、本発明方法で
製造した実施例9〜12の多孔性重合体粒子は優れたビ
リルビン吸着特性を示す粒子であった。特に(DVB+
GMA)/沈殿剤比が100/80〜100/150の
範囲で製造した実施例10〜12の粒子は、ビリルビン
吸着用担体として適する多孔化構造を形成し、特に優れ
たビリルビン吸着特性の得られることが認められた。
(Here are blank spaces) As is clear from the results in Table 3 above, the porous polymer particles of Examples 9 to 12 produced by the method of the present invention were particles that exhibited excellent bilirubin adsorption properties. Especially (DVB+
The particles of Examples 10 to 12 produced with a GMA)/precipitating agent ratio in the range of 100/80 to 100/150 formed a porous structure suitable as a carrier for bilirubin adsorption, and exhibited particularly excellent bilirubin adsorption properties. This was recognized.

[発明の効果] 本発明のビリルビン吸着用多孔性重合体粒子の製造方法
は、炭素原子数5〜12の一価アルコールを沈殿剤とし
て、DVBないしDVBとGMAの懸濁重合によって製
造することからなっているので、蛋白結合ビリルビンの
吸着性能に優れた巨大多孔化構造の重合体粒子を形成す
ることができ、特に高濃度ビリルビンの吸着のための多
孔性重合体粒子を容易に製造する方法として極めて優れ
たものである。
[Effects of the Invention] The method for producing porous polymer particles for adsorbing bilirubin of the present invention involves producing them by suspension polymerization of DVB or DVB and GMA using a monohydric alcohol having 5 to 12 carbon atoms as a precipitant. As a result, it is possible to form polymer particles with a giant porous structure that has excellent adsorption performance for protein-bound bilirubin.This method is particularly useful as a method for easily producing porous polymer particles for adsorption of high-concentration bilirubin. It is extremely excellent.

Claims (2)

【特許請求の範囲】[Claims] (1)ジビニルベンゼン35〜100重量%とグリシジ
ルメタクリレート0〜65重量%の混合モノマーを、炭
素原子数5〜12の一価アルコールを沈殿剤として水性
媒体中で懸濁重合せしめることを特徴とするビリルビン
吸着用多孔性重合体粒子の製造方法。
(1) A monomer mixture of 35 to 100% by weight of divinylbenzene and 0 to 65% by weight of glycidyl methacrylate is suspension-polymerized in an aqueous medium using a monohydric alcohol having 5 to 12 carbon atoms as a precipitant. A method for producing porous polymer particles for bilirubin adsorption.
(2)前記混合モノマーがジビニルベンゼン65〜95
重量%およびグリシジルメタクリレート5〜35重量%
の混合比である特許請求の範囲第1項に記載の多孔性重
合体粒子の製造方法。
(2) The mixed monomer is divinylbenzene 65-95
wt% and glycidyl methacrylate 5-35 wt%
The method for producing porous polymer particles according to claim 1, wherein the mixing ratio is:
JP1133087A 1987-01-22 1987-01-22 Process for producing porous polymer particles for bilirubin adsorption Expired - Lifetime JPH0724771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133087A JPH0724771B2 (en) 1987-01-22 1987-01-22 Process for producing porous polymer particles for bilirubin adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133087A JPH0724771B2 (en) 1987-01-22 1987-01-22 Process for producing porous polymer particles for bilirubin adsorption

Publications (2)

Publication Number Publication Date
JPS63182030A true JPS63182030A (en) 1988-07-27
JPH0724771B2 JPH0724771B2 (en) 1995-03-22

Family

ID=11775019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133087A Expired - Lifetime JPH0724771B2 (en) 1987-01-22 1987-01-22 Process for producing porous polymer particles for bilirubin adsorption

Country Status (1)

Country Link
JP (1) JPH0724771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159891A (en) * 2013-03-28 2013-06-19 南京大学 Magnetic amino-modified superhighly-crosslinked resin and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159891A (en) * 2013-03-28 2013-06-19 南京大学 Magnetic amino-modified superhighly-crosslinked resin and preparation method thereof

Also Published As

Publication number Publication date
JPH0724771B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
RU2375302C2 (en) Method of producing spherical activated carbon
Chen et al. Preparation of nano-CaCO3/polystyrene nanocomposite beads for efficient bilirubin removal
US20060058413A1 (en) Adsorbing material for blood and plasma cleaning method and for albumin purification
JP4046378B2 (en) Endotoxin adsorption system
CN108031454A (en) Possesses blood-purifying adsorbing agent of physics specific selectivity and preparation method thereof
US7112620B2 (en) Hemocompatible polymer systems & related methods
CN113509919B (en) Adsorbent for removing endotoxin and inflammatory factor in blood of sepsis patient and preparation method thereof
JPS63182030A (en) Production of porous polymer particle for adsorbing bilirubin
GB2025385A (en) Activated carbon and apparatus for hemoperfusion
CA2729340C (en) Removal of myoglobin from blood and/or physiological fluids
RU2632432C2 (en) Orally administrated adsorbent, therapeutic agent for kidney disease and therapeutic agent for liver disease
JP2586907B2 (en) Bilirubin adsorbent
CN115490867A (en) Adsorption resin and preparation method and application thereof
JP2543698B2 (en) Bilirubin adsorbent
JPS54131586A (en) Adsorbent
JPH0321342A (en) Virus and cell adsorbing and separating agent and method for separation of virus and cell
JPS5829134B2 (en) Adsorption separation agent for blood purification
JP2745418B2 (en) Method for producing porous polymer particles
JPS62149712A (en) Production of porous polymer particle
CN114042441A (en) Method for modifying and immobilizing heparin on surface of hemoperfusion resin microsphere and adsorbent prepared by method
CN115245606B (en) Method for modifying surface of blood perfusion resin microsphere and immobilizing heparin and adsorbent prepared by method
JP3316915B2 (en) Separation resin and production method thereof
JPH0549337B2 (en)
RU2737259C1 (en) Method of synthesis of polymer magnetic separable sorbent
CN113372474B (en) Blood perfusion resin and preparation method and application thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term