JPH0549337B2 - - Google Patents

Info

Publication number
JPH0549337B2
JPH0549337B2 JP58199609A JP19960983A JPH0549337B2 JP H0549337 B2 JPH0549337 B2 JP H0549337B2 JP 58199609 A JP58199609 A JP 58199609A JP 19960983 A JP19960983 A JP 19960983A JP H0549337 B2 JPH0549337 B2 JP H0549337B2
Authority
JP
Japan
Prior art keywords
pore volume
pores
group
total
vinyl monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58199609A
Other languages
Japanese (ja)
Other versions
JPS6090040A (en
Inventor
Koji Itagaki
Takeshi Ito
Hiromi Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP19960983A priority Critical patent/JPS6090040A/en
Publication of JPS6090040A publication Critical patent/JPS6090040A/en
Publication of JPH0549337B2 publication Critical patent/JPH0549337B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は合成吸着剤に関するものである。 非極性もしくは微極性の架橋高分子のうちで比
表面積及び細孔容積を発達させたものは合成吸着
剤として用いられ、スチレン−ジビニルベンゼン
共重合体を母体としたものには比表面積が900
m2/gにも達するものも知られている。例えばダ
イヤイオンHP10,20,30,40,50((株)三菱化
成工業商標)及びアンバーライトXAD2,4(ロ
ーム&ハース社登録商標)等の商標で既に製造、
市販されている。 これらの合成吸着剤への物質の吸着は主に吸着
剤内部の細孔表面でのフアンデルワールス力に基
づく物理吸着と考えられ、それ故に活性炭と異な
り、メタノール、エタノール、アセトンの如き極
性の高い有機溶媒で吸着剤を洗浄することによ
り、吸着物質の吸着剤からの溶離が可能である。
またゼオライト等の無機系の吸着剤は再生剤にア
ルカリを使用すると吸着剤の溶解が生ずる為、ア
ルカリ等の使用は困難であるが、架橋高分子であ
る合成吸着剤はいかなる溶媒に対しても不溶であ
るのでアルカリ等による溶離も可能である。合成
吸着剤はこの様な特性を利用して、医薬品の吸着
精製、香料及び天然色素等の吸着精製、更にはパ
ルプ廃水の脱色や、一般廃水中のCOD成分の吸
着除去等に多用されている。 しかしながら、従来の合成吸着剤は、その知ら
れているものの殆んどがスチレン−ジビニルベン
ゼン(不純物としてエチルビニルベンゼンを約20
〜60%含有する)架橋重合体を母体としたもので
あり、その細孔は半径が数Åから数千Åのもの
迄、一粒の粒子内に存在していた。 本発明者らはかる合成吸着剤の吸着挙動を詳細
に検討した結果、通常の有用な有機化合物更に詳
しくは一つの分子内に疎水基と親水基を有する分
子量2000以下の有用な有機化合物例えばセフアロ
スポリンCやペニシリンG等を水中から該合成吸
着剤に吸着するのに必要な細孔の半径は高々数10
〜300Å、特に好ましくは20〜200Åであること及
び300Å以上特に500Å以上の細孔は不必要な分子
量一万以上の巨大有機分子例えば蛋白質やフミン
酸等の不可逆的な吸着を起こし、合成吸着剤の有
機汚染を引き起こしている可能性が大きいことを
見い出した。かかる有機汚染は長期にわたる使用
により、細孔の閉塞を引き起こし、ひいては目的
化合物の吸着容量を低減させることが知られてい
る。 本発明者はかかる知見に基づき、半径300Å以
上の細孔の少ない又は全くない合成吸着剤の製造
方法を鋭意検討した結果、本発明に到達した。 すなわち、本発明の要旨は、細孔半径300Å以
上の孔の占める細孔半径が全細孔容積の10%未満
であり、かつ半径200Å以下の孔の占める細孔容
積が70%以上であるような細孔を有することを特
徴する球状の多孔質芳香族系架橋共重合体よりな
る分子内に疎水基と親水基を有する分子量2000以
下の有機化合物を吸着する合成吸着剤及びその製
造法に存する。 以下に本発明を詳細に説明する。 本発明の合成吸着剤は特定の方法により合成さ
れる。すなわち、(a)架橋剤である芳香族ポリ
ビニルモノマーと、(b)芳香族モノビニルモノ
マー及び(c)一般式()で示される脂肪族ビ
ニルモノマーから成る単量体を特定割合で含有す
る混合物を、生成する共重合体を良好に膨潤させ
る様な良溶媒及び重合開始剤の存在下に水中にて
懸濁重合させることにより製造される。 芳香族ポリビニル化合物(a)としてはジビニ
ルベンゼン、トリビニルベンゼン、ジビニルトル
エン等が有用である。 芳香族モノビニルモノマー(b)としてはスチ
レン、エチルビニルベンゼン、ビニルトリエン、
ビニルナフタリン等が有用である。 脂肪族ビニルモノマー(c)は一般式()で
示されるビニルモノマーから選ばれる。 一般式() 但し、R=H,CH3 X=COOR′,CN R′=H,(−CH2(−oH(但しnは1〜4) −CH2CH2OH (但しm,は2〜4) 具体的には例えばアクリロニトリル、メタクリ
ロニトリル、メタクリル酸、メチルメタクリレー
ト、エチルアクリレート、2−ヒドロキシエチル
メタクリレート、n−ブチルメタクリレート等の
モノビニルモノマー或いはエチレングリコールジ
メタクリレート、トリメチロンプロパントリメタ
クリレート等が有用である。 合成吸着剤はその細孔表面での物理吸着によ
り、被吸着物質が水中から吸着するので、その比
表面積は大きい方が好ましく、少くとも300m2
g以上の比表面積が好ましい。かかる比表面積と
本発明の目的とする特定半径の細孔を有する為に
はビニルモノマーの組成が重要である。すなわ
ち、芳香族ポリビニル化合物(a)の量は少なく
とも全ビニルモノマーに対して40重量%以上、好
ましく45〜80重量%である。 芳香族モノビニルモノマー(b)としては、ジ
ビニルベンゼン中に不純物とし含有されるエチル
ビニルベンゼンが主たるものとして挙げられ、そ
の他にスチレン等があるが、その量は全ビニルモ
ノマーに対して10〜54重量%である。 脂肪族ビニルモノマー(c)の量は細孔径をコ
ントロールするので重要であり、本発明の目的と
する細孔半径を与える為には全ビニモノマーに対
して1〜10重量%である。 本発明で言う合成吸着剤の細孔は、重合過程に
於いて重合液滴中に生成した不溶性の架橋共重合
体の微小な粒子が凝集し、その間隙が細孔として
残ることにより生成するものと考えられる。従つ
て細孔を決定する因子としては前述の架橋剤であ
る芳香族ポリビニルモノマーの含量、ポリマーの
相溶性を決定する為の芳香族モノビニルモノマー
と脂肪族モノビニルモノマーの含量の他に、重合
液滴中に有効な間隙を生成せしめる為の重合不活
性な媒体の存在が必要である。かかる媒体は前述
した不溶性の微小な粒子の凝集段階を決定する。
それ故、かかる媒体の選択は細孔径を制御する観
点から非常に重要であり、本発明の合成吸着剤を
製造する為には、媒体は製造された共重合体を良
好に膨潤させる様な溶媒に限られる。特に本発明
に於いて有用な溶媒は、トルエン、ベンゼン、エ
チルベンゼン等の芳香族炭化水素に限られる。そ
の他のメチルイソプチルカルビノールやイソオク
タン等の共重合体を膨潤しない溶媒は与える細孔
径が大き過ぎる為好ましくない。またこれらの溶
媒と前記芳香族炭化水素の混合物も同様の理由に
より好ましくない。 かかる芳香族炭化水素の量は全ビニルモノマー
に対して70〜150重量%、好ましくは80〜150重量
%である。70%未満では細孔の容積及び比表面積
が小さく、合成吸着剤の用途に向かない。150%
以上では半径300Å以上の細孔を多く与えるので
好ましくない。 本発明に於てはモノマー混合物の重合は公知の
懸濁重合の技術によつて行なわれる。具体的には
モノマー混合物に対して0.1〜5重量%の重合開
始剤を加え、懸濁安定剤及び助剤の入つた水中に
て60〜90℃でかくはんしながら4〜20時間重合を
行なうことによりなされる。 重合開始剤としては過酸化ベンゾイル、過酸化
ラウロイル、アゾビスイソプチロニトリル、アゾ
ビスイソバレロニトリル等公知のラジカル重合開
始剤が使用可能である。 懸濁安定剤としてはカルボキシメチルセルロー
スのNa塩、ポリアクリル酸ソーダ、でんぶん、
ポリビニルアルコール等公知のが使用可能であ
る。 助剤としてはモノマーの水中への溶解を防ぐ為
の水溶性無機塩や懸濁安定効果を増す為の微粒状
の水難溶性無機塩が挙げられ、これらは公知のも
のが使用可能である。 重合後、得られた球状多孔質共重合体は通常の
処理方法に従つて、例えば水洗後有機溶媒洗浄
や、水との共沸により残存モノマーや不活性有機
溶媒を除かれる。 かくして、本発明の目的とする比表面積が300
m2/g以上で、細孔半径300Å以上の孔の占める
細孔容積が全細孔容積の10%未満であり、細孔半
径200Å以下の孔の占める細孔容積が全細孔容積
の70%以上である多孔質球状の芳香族架橋共重合
体が得られる。本発明の架橋共重合体は分子内に
疎水基と親水基を有する分子量2000以下の有機化
合物をよく吸着し、一方、リグニンのような巨大
有機化合物は殆んど吸着しない。従つて例えば抗
生物質のような有用な有機化合物を水中から吸着
分離するのに好適な合成吸着剤である。なお、本
発明に於ける全細孔容積の測定は合成吸着剤の水
分の測定により、また半径300Å以下の細孔の容
積はガス吸着法により測定した。(参照:「触媒工
学講座4巻、触媒基礎測定法」73頁、米田幸夫
編、地人書館昭和39年発行) 具体的な測定法は次の通りである。 本発明方法に従つてビニルモノマー混合物80g
を重合し、重合終了後、球状の共重合体を別
し、充分に水洗した後、カラムに移し5のアセ
トン及び5の脱塩水を各々2時間かけて通液す
ることにより洗浄した。この樹脂の全体積を測定
した後、10mlの樹脂を正確に秤りとり、直径20cm
のバスケツトを有するセントルに入れ3000回転で
5分間遠心分離することにより、付着水分を除い
た。この細孔内に水を含んだ樹脂の湿潤重量PW
を測定した後、10mmHgの圧力下恒量になるまで
80℃にて8時間乾燥し、乾燥重量Pdを測定した。
更にこの乾燥した樹脂を用いて、ガス吸着法によ
る比表面積の測定及び細孔物性の測定を行なつ
た。 尚、水分、全細孔容積、膨潤度の算出は以下の
様にし行なつた。 全細孔容積VT(ml/g)=PW−Pd/PW−Pd 水分(%)=PW−Pd/PW×100 膨潤度(ml/g)=10/Pd 以下実施例により本発明を更に詳細に説明する
が、本発明はその要旨を超えない限り以下の実施
例に制約されるものではない。 合成吸着剤の合成 実施例−1 純度56.7%(他はエチルビニルベンゼン)のジ
ビニルベンゼン70.5g、メタクリル酸メチル4g、
スチレン5.5g及び過酸化ベゾイル0.8g、トルエン
80gよりなる均一混合溶液をポリビニルアルコー
ル0.4gを含む脱塩水700ml中に加え、かくはんし
ながら窒素下にて80℃−8時間加熱することによ
り重合を行ない、球状の共重合体を得た。 実施例 2〜7,9〜11 第1表に締結モノマー及び有機溶媒を用いた以
外は実施例−1と同様に処理して球状の架橋共重
合体を得た。
The present invention relates to synthetic adsorbents. Non-polar or slightly polar cross-linked polymers with developed specific surface area and pore volume are used as synthetic adsorbents, and those based on styrene-divinylbenzene copolymer have a specific surface area of 900.
Some are known to reach m 2 /g. For example, they are already manufactured under trademarks such as Diaion HP10, 20, 30, 40, 50 (trademark of Mitsubishi Chemical Industries, Ltd.) and Amberlite XAD2, 4 (registered trademark of Rohm & Haas).
It is commercially available. The adsorption of substances to these synthetic adsorbents is thought to be mainly physical adsorption based on van der Waals forces on the pore surface inside the adsorbent, and therefore, unlike activated carbon, highly polar substances such as methanol, ethanol, and acetone By washing the adsorbent with an organic solvent, it is possible to elute the adsorbed substance from the adsorbent.
In addition, using an alkali as a regenerant for inorganic adsorbents such as zeolite will cause the adsorbent to dissolve, making it difficult to use alkalis, but synthetic adsorbents that are cross-linked polymers are resistant to any solvent. Since it is insoluble, elution with alkali or the like is also possible. Utilizing these properties, synthetic adsorbents are widely used for adsorption purification of pharmaceuticals, fragrances and natural pigments, decolorization of pulp wastewater, adsorption removal of COD components in general wastewater, etc. . However, most of the known conventional synthetic adsorbents are styrene-divinylbenzene (with about 20% ethylvinylbenzene as an impurity).
It is based on a crosslinked polymer (containing ~60%), and its pores, with radius ranging from several angstroms to several thousand angstroms, exist within each particle. As a result of a detailed study of the adsorption behavior of such synthetic adsorbents, the present inventors found that ordinary useful organic compounds, more specifically useful organic compounds with a molecular weight of 2000 or less that have a hydrophobic group and a hydrophilic group in one molecule, such as cephalosporin C. The radius of the pores required to adsorb penicillin G, etc. from water to the synthetic adsorbent is at most several tens of pores.
~300 Å, particularly preferably 20 to 200 Å, and pores of 300 Å or more, particularly 500 Å or more, cause unnecessary irreversible adsorption of large organic molecules with a molecular weight of 10,000 or more, such as proteins and humic acids, and may cause synthetic adsorbents. It was found that there is a large possibility that this is causing organic pollution. It is known that such organic contamination causes clogging of pores after long-term use, which in turn reduces the adsorption capacity of target compounds. Based on this knowledge, the present inventors have intensively studied methods for producing a synthetic adsorbent having few or no pores with a radius of 300 Å or more, and have arrived at the present invention. That is, the gist of the present invention is such that the pore radius occupied by pores with a radius of 300 Å or more is less than 10% of the total pore volume, and the pore volume occupied by pores with a radius of 200 Å or less is 70% or more. A synthetic adsorbent for adsorbing an organic compound with a molecular weight of 2000 or less and having a hydrophobic group and a hydrophilic group in the molecule, which is made of a spherical porous aromatic crosslinked copolymer characterized by having large pores, and a method for producing the same. . The present invention will be explained in detail below. The synthetic adsorbent of the present invention is synthesized by a specific method. That is, a mixture containing a specific proportion of monomers consisting of (a) an aromatic polyvinyl monomer as a crosslinking agent, (b) an aromatic monovinyl monomer, and (c) an aliphatic vinyl monomer represented by the general formula (). It is produced by suspension polymerization in water in the presence of a good solvent and a polymerization initiator that will cause the resulting copolymer to swell well. Divinylbenzene, trivinylbenzene, divinyltoluene, etc. are useful as the aromatic polyvinyl compound (a). Aromatic monovinyl monomers (b) include styrene, ethylvinylbenzene, vinyltriene,
Vinylnaphthalene and the like are useful. The aliphatic vinyl monomer (c) is selected from vinyl monomers represented by the general formula (). General formula () However, R=H, CH 3 X=COOR', CN R'=H, (-CH 2 (- o H (however, n is 1 to 4) −CH2CH2OH _ (However, m is 2 to 4) Specifically, for example, monovinyl monomers such as acrylonitrile, methacrylonitrile, methacrylic acid, methyl methacrylate, ethyl acrylate, 2-hydroxyethyl methacrylate, n-butyl methacrylate, ethylene glycol dimethacrylate, trimethacrylate, etc. Methylone propane trimethacrylate and the like are useful. Synthetic adsorbents adsorb substances to be adsorbed from water through physical adsorption on their pore surfaces, so the specific surface area should preferably be large, at least 300 m 2 /
A specific surface area of g or more is preferred. The composition of the vinyl monomer is important in order to have such a specific surface area and pores with a specific radius aimed at by the present invention. That is, the amount of the aromatic polyvinyl compound (a) is at least 40% by weight or more, preferably 45 to 80% by weight, based on the total vinyl monomers. The main aromatic monovinyl monomer (b) is ethylvinylbenzene, which is contained as an impurity in divinylbenzene.Other examples include styrene, but the amount thereof is 10 to 54% by weight based on the total vinyl monomer. %. The amount of the aliphatic vinyl monomer (c) is important because it controls the pore diameter, and is 1 to 10% by weight based on the total vinyl monomer in order to provide the pore radius targeted by the present invention. The pores of the synthetic adsorbent referred to in the present invention are generated when minute particles of an insoluble crosslinked copolymer formed in polymer droplets during the polymerization process aggregate, and the gaps between them remain as pores. it is conceivable that. Therefore, the factors that determine the pore size include the content of the aromatic polyvinyl monomer that is the crosslinking agent mentioned above, the content of the aromatic monovinyl monomer and aliphatic monovinyl monomer that determines the compatibility of the polymer, and the polymer droplet content. The presence of a polymerizable inert medium is necessary to create an effective interstitial space. Such a medium determines the agglomeration stage of the previously mentioned insoluble microparticles.
Therefore, the selection of such a medium is very important from the viewpoint of controlling the pore size, and in order to produce the synthetic adsorbent of the present invention, the medium must be a solvent that can favorably swell the produced copolymer. limited to. Solvents particularly useful in the present invention are limited to aromatic hydrocarbons such as toluene, benzene, and ethylbenzene. Other solvents that do not swell the copolymer, such as methyl isobutyl carbinol and isooctane, are not preferred because they provide too large a pore size. Mixtures of these solvents and the aromatic hydrocarbons are also not preferred for the same reason. The amount of such aromatic hydrocarbons is from 70 to 150% by weight, preferably from 80 to 150% by weight, based on the total vinyl monomers. If it is less than 70%, the pore volume and specific surface area are small, making it unsuitable for use as a synthetic adsorbent. 150%
This is not preferable because it gives rise to many pores with a radius of 300 Å or more. In the present invention, the monomer mixture is polymerized by known suspension polymerization techniques. Specifically, 0.1 to 5% by weight of a polymerization initiator is added to the monomer mixture, and polymerization is carried out for 4 to 20 hours while stirring at 60 to 90°C in water containing a suspension stabilizer and an auxiliary agent. It is done by. As the polymerization initiator, known radical polymerization initiators such as benzoyl peroxide, lauroyl peroxide, azobisisobutyronitrile, and azobisisovaleronitrile can be used. Suspension stabilizers include carboxymethyl cellulose sodium salt, sodium polyacrylate, starch,
Known materials such as polyvinyl alcohol can be used. Examples of the auxiliary agent include water-soluble inorganic salts to prevent the monomer from dissolving in water and finely divided water-insoluble inorganic salts to increase the suspension stabilizing effect, and known ones can be used. After polymerization, residual monomers and inert organic solvents are removed from the obtained spherical porous copolymer by conventional treatment methods, such as washing with water followed by organic solvent washing or azeotroping with water. Thus, the specific surface area targeted by the present invention is 300
m 2 /g or more, the pore volume occupied by pores with a pore radius of 300 Å or more is less than 10% of the total pore volume, and the pore volume occupied by pores with a pore radius of 200 Å or less is 70% of the total pore volume. % or more of porous spherical aromatic crosslinked copolymer is obtained. The crosslinked copolymer of the present invention well adsorbs organic compounds having a molecular weight of 2000 or less and having a hydrophobic group and a hydrophilic group in the molecule, while hardly adsorbing large organic compounds such as lignin. Therefore, it is a synthetic adsorbent suitable for adsorbing and separating useful organic compounds such as antibiotics from water. In the present invention, the total pore volume was measured by measuring the water content of the synthetic adsorbent, and the volume of pores with a radius of 300 Å or less was measured by a gas adsorption method. (Reference: "Catalyst Engineering Course Vol. 4, Catalyst Basic Measurement Methods," p. 73, edited by Yukio Yoneda, published by Chijinshokan in 1962) The specific measurement method is as follows. 80 g of vinyl monomer mixture according to the method of the invention
After polymerization, the spherical copolymer was separated, thoroughly washed with water, and then transferred to a column and washed by passing acetone (5) and demineralized water (5) through each column for 2 hours. After measuring the total volume of this resin, accurately weigh out 10 ml of resin and measure 20 cm in diameter.
The adhering moisture was removed by placing the sample in a centrifuge with a basket and centrifuging at 3,000 rpm for 5 minutes. Wet weight PW of the resin containing water in this pore
After measuring, under a pressure of 10mmHg until a constant weight is reached.
It was dried at 80°C for 8 hours and the dry weight Pd was measured.
Furthermore, using this dried resin, the specific surface area and pore physical properties were measured by gas adsorption method. The moisture content, total pore volume, and degree of swelling were calculated as follows. Total pore volume V T (ml/g) = P W - P d / P W - P d Moisture (%) = P W - P d / P W ×100 Swelling degree (ml/g) = 10/Pd or less The present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Synthesis Example of Synthetic Adsorbent-1 70.5g of divinylbenzene with a purity of 56.7% (others are ethylvinylbenzene), 4g of methyl methacrylate,
5.5g styrene, 0.8g bezoyl peroxide, toluene
A homogeneous mixed solution consisting of 80 g was added to 700 ml of demineralized water containing 0.4 g of polyvinyl alcohol, and polymerization was carried out by heating at 80° C. for 8 hours under nitrogen while stirring to obtain a spherical copolymer. Examples 2 to 7, 9 to 11 Spherical crosslinked copolymers were obtained in the same manner as in Example 1 except that the binding monomers and organic solvents shown in Table 1 were used.

【表】 実施例 8 実施例−1に於けるメタクリル酸メチルの代わ
りにメタクリル酸4gを使用し、且つ重合浴に56g
の食塩を加えた以外は実施例−1と同様に処理し
て球状の架橋共重合を得た。 比較例 1〜5 下記第2表に示した各成分を用いたいがい実施
例1と同様に処理して球状の架橋共重合体を得
た。
[Table] Example 8 4 g of methacrylic acid was used instead of methyl methacrylate in Example-1, and 56 g was added to the polymerization bath.
A spherical crosslinked copolymer was obtained in the same manner as in Example 1, except that 100% of common salt was added. Comparative Examples 1 to 5 Spherical crosslinked copolymers were obtained in the same manner as in Example 1 using the respective components shown in Table 2 below.

【表】 以上の実施例及び比較例により得られた樹脂に
つき、前述の方法に従つて比表面積、全細孔容
積、細孔分布等を測定した。 また重合した樹脂の全体積より重合収率を算定
した。結果を第3,4表に示す。
[Table] The specific surface area, total pore volume, pore distribution, etc. of the resins obtained in the above Examples and Comparative Examples were measured according to the methods described above. Furthermore, the polymerization yield was calculated from the total volume of the polymerized resin. The results are shown in Tables 3 and 4.

【表】【table】

【表】 * 市販品
樹脂の吸着性能評価 (1) 低分子量有用化合物吸着の例 セフアロスポリンC(分子量414)の吸着性能比
較 セフアロスポリンCの2000ppm溶液(塩酸で
pH2.5に調整)100mlに合成吸着剤5.00mlを加え、
25℃で5時間しんとう後、上橙液を採り、260mμ
の吸光度を測定した。別途セフアロスポリンCの
濃度を変えて吸光度を測定することにより作成し
た検量線より、その上橙液中のセフアロスポリン
濃度(A)を求めた。同様にして資料として用い
たセフアロスポリンC2000ppm溶液中のセフアロ
スポリンC濃度(AO)も正確に求めた。 これらの値より、次式により樹脂1当りのセ
フロスポリンCの吸着量gを求めた。セフアロス
ポリンC吸着量(g/)=(AO−A)×0.1/5.0 この値は平衡濃度が各々の場合により異なるの
で別途セアロスポリンCの濃度をかえて作成した
等温吸着線図より、セフアロスポリンC2000ppm
に於ける平衡吸着量を求めた。 結果を第5表にまとめた。 尚、吸光度測定には1cmの石英セルを用い、ダ
ブルビーム分光光度計Model200−20(日立製作
所)を使用した。
[Table] * Evaluation of adsorption performance of commercially available resins (1) Example of adsorption of low molecular weight useful compounds Comparison of adsorption performance of cephalosporin C (molecular weight 414) 2000 ppm solution of cephalosporin C (with hydrochloric acid)
Add 5.00ml of synthetic adsorbent to 100ml (adjusted to pH 2.5),
After incubating at 25℃ for 5 hours, collect the upper orange liquid and make a 260mμ
The absorbance was measured. The concentration of cephalosporin (A) in the orange solution was determined from a calibration curve that was separately prepared by varying the concentration of cephalosporin C and measuring the absorbance. In the same manner, the cephalosporin C concentration (AO) in the cephalosporin C 2000 ppm solution used as a data was also accurately determined. From these values, the adsorption amount g of cefrosporin C per resin was determined using the following formula. Cephalosporin C adsorption amount (g/) = (AO-A) x 0.1/5.0 Since the equilibrium concentration differs in each case, this value was determined from an isothermal adsorption diagram separately created by changing the concentration of Cephalosporin C at 2000ppm
The equilibrium adsorption amount was determined. The results are summarized in Table 5. In addition, a 1 cm quartz cell was used for absorbance measurement, and a double beam spectrophotometer Model 200-20 (Hitachi, Ltd.) was used.

【表】【table】

【表】 (2) 高分子量不用物非吸着の例 リグニン(推定平均分子量2万〜10万)の吸着
実験 リグニンを100ppm含有する水溶液(pH=
10.0)250mlに含有吸着剤5.00mlを加え、室温に
て12時間しんとう液後、上橙液を採り、350mμの
吸光度Aを測定した。別途、原液の吸光度
(AO)を求めた。 これらの値より、次式によりリグニンの吸着率
(%)を求めた。結果を第6表に示した。 リグニン吸着量(%)=(AO−A/AO)×100
[Table] (2) Example of non-adsorption of high molecular weight wastes Adsorption experiment of lignin (estimated average molecular weight 20,000 to 100,000) Aqueous solution containing 100 ppm lignin (pH=
10.0) Add 5.00 ml of the adsorbent contained in 250 ml, and after stirring at room temperature for 12 hours, the upper orange solution was taken and the absorbance A at 350 mμ was measured. Separately, the absorbance (AO) of the stock solution was determined. From these values, the adsorption rate (%) of lignin was determined using the following formula. The results are shown in Table 6. Lignin adsorption amount (%) = (AO-A/AO) x 100

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 細孔半径300Å以上の孔の占める細孔容積が
全細孔容積の10%未満であり、細孔半径200Å以
下の孔の占める細孔容積が全細孔容積の70%以上
である細孔を有し、且つ比表面積が300m2/g以
上である多孔質球状の芳香族架橋共重合体からな
る分子内に疎水基と親水基を有する分子量2000以
下の有機化合物を吸着する合成吸着剤。 2 (a) 芳香族ポリビニルモノマー、 (b) 芳香族モノビニルモノマー、及び (c) 下記式()で示される脂肪族ビニルモノマ
(式中、Rは水素原子又はメチル基を示し、X
はCOOP′基又はCN基を示す。またR′は水素原
子、(−CH2(−oH基〔但しnは1〜4〕、−CH2
CH2OH基、 基又は H基〔但しm,は夫々2〜4〕を示す)より
なり、且つその組成が全ビニルモノマーに対する
重量%で(a)=40〜80、(b)=10〜54及び(c)
=1〜10であるビニルモノマー混合物を、生成す
る共重合体の良溶媒である芳香族炭化水素70〜
150重量%(対全ビニルモノマー)及び重合開始
剤の存在下で、水中で懸濁重合を行なうことを特
徴とする細孔半径300Å以上の孔の占める細孔容
積が全細孔容積の10%未満であり、細孔半径200
Å以下の孔の占める細孔容積が全細孔容積の70%
以上である細孔を有し且つ比表面積が300m2/g
以上である多孔質球状の芳香族架橋共重合体であ
り、分子内に疎水基と親水基を有する分子量2000
以下の有機化合物を吸着する合成吸着剤の製造方
法 3 特許請求の範囲第2項記載の合成吸着剤の製
造方法に於て、ビニルモノマーの組成が全ビニル
モノマーに対する重量%で(a)=45〜80、(b)
=10〜54、(c)=1〜10であり、且つ生成する共
重合体の良溶媒である芳香族炭化水素が80〜150
の重量%(対全ビニルモノマー)であることを特
徴とする方法。
[Claims] 1. The pore volume occupied by pores with a pore radius of 300 Å or more is less than 10% of the total pore volume, and the pore volume occupied by pores with a pore radius of 200 Å or less is 70% of the total pore volume. % or more and a specific surface area of 300 m 2 /g or more, an organic compound with a molecular weight of 2000 or less and having a hydrophobic group and a hydrophilic group in the molecule. Synthetic adsorbent for adsorption. 2 (a) aromatic polyvinyl monomer, (b) aromatic monovinyl monomer, and (c) aliphatic vinyl monomer represented by the following formula () (In the formula, R represents a hydrogen atom or a methyl group, and
represents a COOP' group or a CN group. R' is a hydrogen atom, (-CH 2 (- o H group [however, n is 1 to 4], -CH 2
CH2OH group, base or (a) = 40 to 80, (b) = 10 to 54, and (c)
= 1 to 10, an aromatic hydrocarbon which is a good solvent for the copolymer to be produced is 70 to 10.
The pore volume occupied by pores with a pore radius of 300 Å or more is 10% of the total pore volume, which is characterized by carrying out suspension polymerization in water in the presence of 150% by weight (based on the total vinyl monomer) and a polymerization initiator. The pore radius is less than 200
The pore volume occupied by pores smaller than Å is 70% of the total pore volume.
It has pores with a specific surface area of 300 m 2 /g or more.
It is a porous spherical aromatic crosslinked copolymer with a molecular weight of 2000 and has a hydrophobic group and a hydrophilic group in the molecule.
Method 3 for producing a synthetic adsorbent that adsorbs the following organic compounds In the method for producing a synthetic adsorbent according to claim 2, the composition of the vinyl monomer is (a) = 45% by weight based on the total vinyl monomer. ~80, (b)
= 10 to 54, (c) = 1 to 10, and the aromatic hydrocarbon that is a good solvent for the copolymer to be produced is 80 to 150.
% by weight (based on total vinyl monomer).
JP19960983A 1983-10-25 1983-10-25 Synthetic adsorbent and preparation thereof Granted JPS6090040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19960983A JPS6090040A (en) 1983-10-25 1983-10-25 Synthetic adsorbent and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19960983A JPS6090040A (en) 1983-10-25 1983-10-25 Synthetic adsorbent and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6090040A JPS6090040A (en) 1985-05-21
JPH0549337B2 true JPH0549337B2 (en) 1993-07-26

Family

ID=16410703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19960983A Granted JPS6090040A (en) 1983-10-25 1983-10-25 Synthetic adsorbent and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6090040A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243948A (en) * 1988-08-03 1990-02-14 Kao Corp Adsorbent
JP4904808B2 (en) * 2005-12-27 2012-03-28 アイシン精機株式会社 Door control device and sensor unit
JP5212854B2 (en) * 2007-03-29 2013-06-19 地方独立行政法人北海道立総合研究機構 Odor reduction method for starch production wastewater
JP5097506B2 (en) * 2007-11-05 2012-12-12 日東電工株式会社 Method for producing porous resin particles having a hydroxyl group
JP5626132B2 (en) 2011-06-07 2014-11-19 株式会社日本自動車部品総合研究所 Object detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139788A (en) * 1977-05-10 1978-12-06 Asahi Chem Ind Co Ltd Protein adsorbent
JPS549183A (en) * 1977-06-24 1979-01-23 Asahi Chem Ind Co Ltd Adsorbent for blood purification
JPS5411088A (en) * 1977-06-29 1979-01-26 Asahi Chem Ind Co Ltd Separating method for organic compounds adsorbed on protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139788A (en) * 1977-05-10 1978-12-06 Asahi Chem Ind Co Ltd Protein adsorbent
JPS549183A (en) * 1977-06-24 1979-01-23 Asahi Chem Ind Co Ltd Adsorbent for blood purification
JPS5411088A (en) * 1977-06-29 1979-01-26 Asahi Chem Ind Co Ltd Separating method for organic compounds adsorbed on protein

Also Published As

Publication number Publication date
JPS6090040A (en) 1985-05-21

Similar Documents

Publication Publication Date Title
USH915H (en) Controlled macroporous copolymer properties by removal of impurities in the diluent
US5460725A (en) Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture
US5244926A (en) Preparation of ion exchange and adsorbent copolymers
SK52493A3 (en) Crosslinked methacrylic anhydride copolymers
JPH0524922B2 (en)
JP5280604B2 (en) Post-modification of porous support
JP2003301016A (en) Manufacturing method of monodisperse anion-exchange gel and monodisperse anion-exchange gel
EP0062088A1 (en) A method for preparing an ion-exchange resin in the form of large spheroidal beads from seed beads
JP2000140653A (en) Production of monodisperse gelatinous anion exchanger
US7112620B2 (en) Hemocompatible polymer systems & related methods
JPH0549337B2 (en)
KR100332859B1 (en) High density, large surface area adsorbent
KR100579675B1 (en) Process for the Preparation of Monodisperse, Gelatinous Cation Exchangers
JP3262814B2 (en) Highly crosslinked pearl-like activatable hydrophilic support material, method for modifying the support material, method for adsorbing biologically active substance from aqueous liquid or method for mass exclusion chromatography
JPH02280833A (en) Compounding and separating agent and its preparation
US6221287B1 (en) Process for the preparation of crosslinked spherical polymers
JP2004518016A (en) Method for producing gel-like cation exchanger
JP3301628B2 (en) Cation exchange resin having phosphoric acid group and method for producing the same
WO2005103124A1 (en) Thermally regenerable, salt sorbents
JPH04248819A (en) Porous resin and its production
US6251314B1 (en) Process for the preparation of microencapsulated polymers
US5447983A (en) Method for producing a large size crosslinked polymer bead
JPS6143092B2 (en)
JPS6274904A (en) Production of support for affinity chromatography
JPS60150838A (en) Cation exchange body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees