JPH0321342A - Virus and cell adsorbing and separating agent and method for separation of virus and cell - Google Patents

Virus and cell adsorbing and separating agent and method for separation of virus and cell

Info

Publication number
JPH0321342A
JPH0321342A JP1156195A JP15619589A JPH0321342A JP H0321342 A JPH0321342 A JP H0321342A JP 1156195 A JP1156195 A JP 1156195A JP 15619589 A JP15619589 A JP 15619589A JP H0321342 A JPH0321342 A JP H0321342A
Authority
JP
Japan
Prior art keywords
adsorption
cells
granules
virus
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1156195A
Other languages
Japanese (ja)
Other versions
JP2543766B2 (en
Inventor
Sumiaki Tsuru
鶴 純明
Akihiko Yokoo
明彦 横尾
Kenji Ichizuka
市塚 健司
Tsuneo Hiraide
恒男 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP1156195A priority Critical patent/JP2543766B2/en
Priority to SE9000650A priority patent/SE9000650L/en
Priority to US07/486,220 priority patent/US5085781A/en
Priority to DE4006293A priority patent/DE4006293C2/en
Priority to DE4042579A priority patent/DE4042579C2/en
Publication of JPH0321342A publication Critical patent/JPH0321342A/en
Priority to US08/193,760 priority patent/USRE35267E/en
Application granted granted Critical
Publication of JP2543766B2 publication Critical patent/JP2543766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enhance the adsorbability to a virus or cell by forming a calcium phosphate type porous granule having two kinds of open pore structures one of which is composed of open micropores having a specific mean pore size and the other one of which is composed open small voids having a specific mean void size. CONSTITUTION:A slurry in which a crystal particle raw material of a calcium phosphate compound subjected to wet synthesis is suspended is granulated into secondary particles by direct spray drying and these particles are again suspended in a slurry form and subjected to wet molding to mold a block body. This block body is baked at about 500-1300 deg.C and subsequently ground and further classified to obtain a calcium phosphate type porous granule having two kinds of open pore structures one of which is composed of open micropores having a mean pore size of 20-50nm and the other one of which is composed of open small voids having a mean void size of 1-50mum is obtained. This porous granule is useful as a virus and cell adsorbing and separating agent.

Description

【発明の詳細な説明】 「利用分野」 本発明は、ウィルス及び動植物細胞の吸着分離剤並びに
これを用いたウィルス及び動植物細胞の分離方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to an adsorption/separation agent for viruses and animal and plant cells, and a method for separating viruses and animal and plant cells using the same.

「従来技術及びその問題点」 インフルエンザ等をはじめとするウィルス性疾患の予防
及び治療は、古くから医療分野における重要な課題とさ
れてきた。特に、近年、後天性免疫不全症候群(AID
S)ウィルス感染者の急増などが話題になるに到り、そ
の必要性が更に重要視されるようになってきた。現在ま
でに、主に血液中のB型肝炎ウィルスを対象に高分子膜
・中空糸あるいはイオン交換樹脂により分離除去する方
法が提案されている。しかしながら、これらは、分離シ
ステム上、複雑であるばかりでなく、高価な装置になっ
てしまい、実用化までには到っていない。
"Prior Art and its Problems" Prevention and treatment of viral diseases such as influenza have long been an important issue in the medical field. In particular, in recent years, acquired immunodeficiency syndrome (AID)
S) The need for this has become even more important as the rapid increase in the number of people infected with the virus has become a hot topic. To date, methods have been proposed for separating and removing hepatitis B virus mainly in blood using polymer membranes, hollow fibers, or ion exchange resins. However, these separation systems are not only complicated but also expensive equipment, and have not been put into practical use.

近年、リン酸カルシウム系化合物は、その優れた生体親
和性により人工骨、人工歯根などの生体材料として応用
研究が盛んに行われている。また、蛋白質などの生体高
分子を分離精製するための液体クロマトグラフィー用充
填剤として以前から使用されており、最近の技術の進歩
により高性能の充填剤も開発され、分析用としても使用
されるようになってきた. 更に、最近では、特開昭61−235752号公報など
に示されているように細胞に対する特異的吸着能が見出
され、免疫学的応用も検討されつつある。しかしながら
、この公報には、細胞分離剤としてリン酸カルシウム系
顆粒が持つべき微細構造について検討されておらず、操
作時間は短縮されたものの保水性に問題があり、分離性
能はなお改善の余地を残している。
In recent years, calcium phosphate compounds have been extensively studied as biomaterials for artificial bones, artificial tooth roots, etc. due to their excellent biocompatibility. In addition, it has long been used as a packing material for liquid chromatography to separate and purify biopolymers such as proteins, and with recent advances in technology, high-performance packing materials have been developed and are also used for analysis. It's starting to look like this. Furthermore, as shown in Japanese Patent Application Laid-Open No. 61-235752, specific adsorption ability for cells has recently been discovered, and immunological applications are also being considered. However, this publication does not consider the microstructure that calcium phosphate granules should have as a cell separation agent, and although the operation time is shortened, there is a problem with water retention, and there is still room for improvement in separation performance. There is.

また、特開昭63−284号公報には、繊維状アパタイ
トにより保水性を向上させ、分離性能を向上させたこと
が記載されているが、この公報に記載されているものに
限らず、繊維状のものはカラム等の分離器に均一に充填
することが困難であり、また、ロフトによりバラツキが
大きく、顆粒状のものに比べて性能が安定しにくいとい
う欠点を持っている。
Furthermore, JP-A No. 63-284 describes that fibrous apatite improves water retention and separation performance. It is difficult to fill a separator such as a column uniformly in a granular type, and there is a large variation depending on the loft, which has the disadvantage that the performance is less stable than that of a granular type.

一方、特開昭63−16045号公報には、液体クロマ
トグラフィー用充填材としてのリン酸カルシウム系多孔
質顆粒が開示されているが、ウィルスあるいは細胞の吸
着分離剤として有効であるための微細気孔構造について
検討がなされていない. 「発明の目的」 本発明の目的は、リン酸カルシウム系化合物の持つ細胞
に対す為吸着能を向上させ、より高い分離吸着性能及び
充分な保水性を有し、しかも安定性に優れた微細祷造を
有するウィルス及び細胞の吸着分離剤並びにこれを用い
た分離方法を提供することにある。
On the other hand, JP-A No. 63-16045 discloses calcium phosphate-based porous granules as a packing material for liquid chromatography, but the fine pore structure that makes them effective as an adsorption/separation agent for viruses or cells is unknown. No consideration has been made. "Objective of the Invention" The object of the present invention is to improve the adsorption capacity of calcium phosphate compounds for cells, and to create fine particles that have higher separation adsorption performance, sufficient water retention, and excellent stability. An object of the present invention is to provide an adsorption/separation agent for viruses and cells, and a separation method using the same.

「発明の構成」 本発明のウィルス及び細胞の吸着分離剤は、平均孔径2
0〜5 0 0 nmの連続微細気孔と平均孔径1〜5
0μmの連続小気孔の2種類の連続気孔構造を有するリ
ン酸カルシウム系多孔質顆粒であることを特徴とする。
"Structure of the Invention" The virus and cell adsorption/separation agent of the present invention has an average pore size of 2
Continuous micropores of 0-500 nm and average pore diameter of 1-5
It is characterized by being a calcium phosphate-based porous granule having two types of continuous pore structure of 0 μm continuous small pores.

本発明の吸着分離剤は、上記のように2種類の連続気孔
構造を有する多孔質顆粒である。顆粒状の吸着分離剤に
ウィルスを吸着させるには、通過経路を長くするために
顆粒を多孔質にする必要がある。ウィルスの大きさは、
その種類によって異なるが、一般に20〜300nmの
範囲の径を持っている。したがって、ウィルスが通過す
るための気孔径は20nm以上である必要がある。また
、この気孔がウィルスよりあまり大きすぎても吸着の機
会を減少するだけで、無意味となるため、気孔径は50
0nm以下であればよい。一方、この顆粒に充分な保水
性を持たせるためには、ウィルスや細胞の浮遊液が比較
的浸透しやすい1〜50μmの連続小気孔が必要である
The adsorption/separation agent of the present invention is a porous granule having two types of continuous pore structures as described above. In order to adsorb viruses to granular adsorption/separation agents, it is necessary to make the granules porous in order to lengthen the passage route. The size of the virus is
Although it varies depending on the type, it generally has a diameter in the range of 20 to 300 nm. Therefore, the pore diameter for the virus to pass through needs to be 20 nm or more. In addition, if the pores are much larger than the virus, it will only reduce the chance of adsorption and become meaningless, so the pore diameter should be 50
It is sufficient if it is 0 nm or less. On the other hand, in order to provide these granules with sufficient water retention, they must have continuous small pores of 1 to 50 μm through which the suspension of viruses and cells can penetrate relatively easily.

本発明の吸着分離剤においては、顆粒が上記のような2
種類の気孔構造を有すると共に、10〜75%の気孔率
を有することが好ましい。顆粒の気孔率は、保水性と大
きく関係し、10%未満では、ウィルスや細胞の吸着に
必要な保水性が得られず、75%を超えると、顆粒自体
の強度を保持できなくなる. 更に、本発明の吸着分離剤は、平均粒径10〜2000
μmの顆粒であるのが好ましい。細胞の分離用としては
、100μm以上あれば、顆粒の間隙を細胞が通過でき
る。しかし、2000μmを超えると、間隙が大きくな
りすぎ、細胞を吸着できなくなる。また、ウィルスの分
離用としては1μm以上の粒径であれば良いが、実用上
は10μm以上の粒径であることが好ましい。
In the adsorption/separation agent of the present invention, the granules include the above-mentioned 2
It is preferable to have a different pore structure and a porosity of 10 to 75%. The porosity of the granules is closely related to water retention; if it is less than 10%, the water retention required for adsorption of viruses and cells cannot be obtained, and if it exceeds 75%, the granules themselves cannot maintain their strength. Furthermore, the adsorption/separation agent of the present invention has an average particle size of 10 to 2000.
Preferably they are micron granules. For cell separation, if the diameter is 100 μm or more, cells can pass through the gaps between the granules. However, if it exceeds 2000 μm, the gap becomes too large and cells cannot be adsorbed. Further, for the purpose of separating viruses, a particle size of 1 μm or more is sufficient, but for practical purposes, a particle size of 10 μm or more is preferable.

上記のような2種類の気孔構造を有するリン酸カルシウ
ム系多孔質顆粒は、公知の方法で湿式合威したリン酸カ
ルシウム系化合物の結晶粒子を原料として様々な方法で
製造することができる。例えば、この原料粒子を懸濁し
たスラリーを直接噴霧乾燥などにより二次粒子に造粒す
るか、あるいはこのスラリーに粘度調整剤、熱分解性有
機化合物粒子又は繊維等の添加物を加えて噴霧乾燥など
により二次粒子に造粒する。この二次粒子を再びスラリ
ー状に懸濁して湿式或形するか又は加圧による乾式或形
等によりブロック体に戒形する。その際、焼威により熱
分解してl〜50μmの気孔を形威するための有機化合
物を添加してもよい.無添加でも、焼成温度など、他の
条件を調節することにより気.孔径を制御することもで
きる.得られたブロック体を500゜C〜1300℃の
温度範囲で焼戒する,500’C未満では、有機化合物
の熱分解やブロック体の焼結が充分に行われない.また
、焼或を1300℃を超える高温で行うと、焼結体が緻
密化しすぎたり、リン酸カルシウムが分解を起こすおそ
れがある。
Calcium phosphate-based porous granules having two types of pore structures as described above can be produced by various methods using crystal particles of a calcium phosphate-based compound wet-coagulated by a known method as a raw material. For example, a slurry in which raw material particles are suspended is directly granulated into secondary particles by spray drying, or additives such as a viscosity modifier, pyrolyzable organic compound particles, or fibers are added to this slurry and then spray dried. It is granulated into secondary particles by methods such as. These secondary particles are suspended again in the form of a slurry and shaped into a block by either a wet process or a dry process using pressure. At this time, an organic compound may be added to form pores of 1 to 50 μm by thermal decomposition by burning. Even without additives, the temperature can be improved by adjusting other conditions such as firing temperature. Pore diameter can also be controlled. The obtained block body is burned at a temperature in the range of 500°C to 1300°C. If the temperature is less than 500°C, the thermal decomposition of the organic compound and the sintering of the block body will not take place sufficiently. Furthermore, if the sintering is performed at a high temperature exceeding 1300° C., there is a risk that the sintered body will become too dense or that the calcium phosphate will decompose.

このように焼成したブロック体を粉砕後、分級して必要
な粒径の顆粒を得ることができる.この顆粒の20〜5
 0 0 nmの微細気孔は、二次粒子造粒用の原料ス
ラリー中の結晶粒子の大きさ、スラリ一の粘度、添加物
などを適切に調節することによって調整することができ
る。また、1〜50μmの小気孔は、前記のように二次
粒子からブロック体戒形時に戒形方法や添加物を適切に
選択することによって調整することができる。
After pulverizing the thus fired block, it can be classified to obtain granules of the required particle size. 20-5 of this granule
The fine pores of 0.0 nm can be adjusted by appropriately adjusting the size of crystal particles in the raw material slurry for secondary particle granulation, the viscosity of the slurry, additives, etc. Moreover, the small pores of 1 to 50 μm can be adjusted by appropriately selecting the forming method and additives when forming the secondary particles into blocks as described above.

本発明の吸着分離剤に用いるリン酸カルシウムとしては
、Ca/P比が1. 4〜1. 8のものであれば各種
のものを使用することができるが、焼結性や顆粒の強度
を考慮すると、1. 5〜1.67であることが好まし
い。さらに具体的には、ハイドロキシアパタイト、フッ
素アバタイト等の各種のアバタイト、α一及びβ−リン
酸三カルシウム、リン酸四カルシウム並びにこれらの2
種以上の混合物を使用することができる。
The calcium phosphate used in the adsorption/separation agent of the present invention has a Ca/P ratio of 1. 4-1. Various types of 8 can be used, but considering the sinterability and strength of the granules, 1. It is preferable that it is 5-1.67. More specifically, various abatites such as hydroxyapatite and fluoroabatite, α- and β-tricalcium phosphate, tetracalcium phosphate, and these two
Mixtures of more than one species can be used.

本発明の吸着分離剤において、上記のようなリン酸カル
シウム系多孔質顆粒の表面に、例えば生体由来のヒアル
ロン酸、コンドロイチン硫酸、キチン誘導体、フィブロ
ネクチン、オステオネクチンなどの多tJM[、ムコ多
#M類及び蛋白質並びにそれらの誘導体のうちの1種以
上を部分吸着させ、顆粒表面の物理化学的性質あるいは
免疫学的性質を変調して対象細胞群のそれぞれに対する
吸着活性を巧妙に変化させることもできる。これによっ
て、カラムの分離特性を効果的に変化させ、シャープな
溶出パターンを与える分離特性や、分離スペクトルの制
御を行うことができる。さらに、細胞のサブボピュレー
ションの各々に対する吸着効果が変調されて、特定のサ
ブボビュレーションを選択分離することも可能である. 本発明の吸着分離剤は、ウィルス及び特定の動植物細胞
を吸着する。したがって、本発明は、この吸着分離剤を
用いて生物学的液体からウィルス及び細胞を分離する方
法を提供するものである。
In the adsorption/separation agent of the present invention, multi-tJM [, muco-poly#M and It is also possible to partially adsorb one or more proteins or their derivatives and modulate the physicochemical or immunological properties of the granule surface to skillfully change the adsorption activity for each target cell group. Thereby, the separation characteristics of the column can be effectively changed, and the separation characteristics that provide a sharp elution pattern and the separation spectrum can be controlled. Furthermore, it is also possible to selectively isolate a specific subbobulation by modulating the adsorption effect on each subbobulation of the cell. The adsorption/separation agent of the present invention adsorbs viruses and specific animal and plant cells. Therefore, the present invention provides a method for separating viruses and cells from biological fluids using this adsorption separation agent.

生物学的液体としては、血液、血清、尿、唾液あるいは
細胞及び/又はウィルスの浮遊液が挙げられる。本発明
の分離方法は、生物学的液体中のウィルスの除去、特定
細胞の回収、例えば全血又はリンパ細胞からT細胞の回
収などに利用することができる。全血を対象とする場合
には、採血時にヘパリン、クエン酸などの血液凝固阻止
剤を添加し、培養液で1〜10倍に希釈して用いるのが
好ましい.希釈液を用いると、血液の粘性が低下するの
で、分離が促進される。しかし、10倍を超えて希釈す
ると、取り扱い量が多くなり、不都合である. 本発明の吸着分離剤を用いてウィルスあるいは細胞の分
離を行うには、カラム等の分離器にガラスウールなどを
液体の出口側に詰めて吸着分離剤の流出を防止した後、
吸着分離剤を充填し、洗浄後、生物学的液体を流し、こ
の仕物学的液体を充分に浸透させた後、洗浄液を流し、
非吸着仕の細胞を洗い流し、回収すればよい。
Biological fluids include blood, serum, urine, saliva or suspensions of cells and/or viruses. The separation method of the present invention can be used to remove viruses in biological fluids, collect specific cells, for example, collect T cells from whole blood or lymph cells. When whole blood is used, it is preferable to add a blood coagulation inhibitor such as heparin or citric acid at the time of blood collection, and dilute it 1 to 10 times with a culture medium. The use of a diluent reduces the viscosity of the blood, thereby facilitating separation. However, if it is diluted more than 10 times, the amount to be handled will be large, which is inconvenient. To separate viruses or cells using the adsorption/separation agent of the present invention, fill a separator such as a column with glass wool or the like on the liquid outlet side to prevent the adsorption/separation agent from flowing out.
Fill the adsorption separation agent, wash it, then pour in the biological liquid, allow this biological liquid to fully penetrate, and then pour out the cleaning liquid.
Non-adsorbed cells can be washed away and collected.

浮遊液、希釈用培養液又は洗浄液としては、含まれるウ
ィルスあるいは細胞に応じて適宜選択することができる
が、例えば生理食塩水、ハンクス培地(HBSS)、血
清培地(例えばRPMI−1640)、無血清培地など
を用いることができる。
The suspension solution, dilution culture solution, or washing solution can be appropriately selected depending on the virus or cells contained, but examples include physiological saline, Hank's medium (HBSS), serum medium (e.g. RPMI-1640), and serum-free medium. A culture medium etc. can be used.

また、TII胞などのように有用細胞の分離を行う場合
には、含まれる細胞に障害を与えないように室温〜37
゜C程度の温度で分離操作を行うのが好ましい。このよ
うにして回収されたT細胞は、生存率、抗体産生調節機
能などの性質において分離操作前と実質的に同一であっ
た。
In addition, when separating useful cells such as TII cells, it is necessary to
It is preferable to carry out the separation operation at a temperature of about °C. The T cells thus collected were substantially the same as before the isolation procedure in terms of survival rate, antibody production regulatory function, and other properties.

「発明の実施例」 次に、実施例に基づいて本発明をさらに詳しく説明する
が、本発明はこれに限定されるものではない。
"Examples of the Invention" Next, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

なお、下記の実施例及び比較例においては、インフルエ
ンザウィルスPR8を生理食塩水中に浮遊させて用いた
。また、力価の測定は、下記の方法で行った. 力価の測定方法 インフルエンザウィルスが赤血球に付着すると、この赤
血球同士が凝集を起こす.この反応を利用して、ウィル
ス浮遊液を生理食塩水(0.9%塩化ナトリウム水溶液
)で2倍、4倍、8倍、l6倍、・・・と2倍段階希釈
した液と、同量の0. 4%ニワトリ赤血球浮遊液とを
混合して何倍希釈液まで凝集反応を起こすかによって原
液(希釈前の液)の力価(titer)を評価する. 実施例I Ca/P比1.67のハイドロキシアパタイトをI20
0℃で焼成し、気孔率20%、粒径300〜600am
の顆粒を製造した。この顆粒の平均微細気孔径は20n
m、平均小気孔径は2μmであった. 内容積6dのシリンジにガラスウール0. 0 3 g
をほぼlm1になるように詰め、その上に上記の顆粒1
gを充填した.こうして調製したカラムにインフルエン
ザウィルスPR8の浮遊液を流し、カラム通過後のウィ
ルス浮遊液の力価を下記の方法で測定した.結果を第1
表に示す. 実施例2 顆粒の粒径が100〜300μmである以外は実施例l
と同様の顆粒を用い、実施例1と同様に操作し、カラム
通過後のウィルス浮遊液の力価を測定し、結果を第1表
に示す。
In addition, in the following Examples and Comparative Examples, influenza virus PR8 was used suspended in physiological saline. In addition, the titer was measured using the following method. How to measure titer When the influenza virus attaches to red blood cells, the red blood cells agglutinate with each other. Using this reaction, the virus suspension was serially diluted 2 times, 4 times, 8 times, 16 times, etc. with physiological saline (0.9% sodium chloride aqueous solution), and the same amount 0. The titer of the stock solution (liquid before dilution) is evaluated by mixing it with a 4% chicken red blood cell suspension and determining how many times the dilution causes an agglutination reaction. Example I I20 hydroxyapatite with a Ca/P ratio of 1.67
Calcined at 0℃, porosity 20%, particle size 300-600am
granules were produced. The average micropore diameter of this granule is 20n
m, and the average small pore diameter was 2 μm. Add glass wool to a syringe with an internal volume of 6 d. 0 3 g
Fill it to approximately lm1, and add the above granules 1 on top of it.
Filled with g. A suspension of influenza virus PR8 was passed through the column thus prepared, and the titer of the virus suspension after passing through the column was measured by the following method. Results first
It is shown in the table. Example 2 Example 1 except that the particle size of the granules is 100 to 300 μm
Using the same granules, the same procedure as in Example 1 was carried out, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例3 実施例2と同じ顆粒を3g使用した以外は、実施例Iと
同様にしてカラム通過後のウィルス浮遊液の力価を測定
し、結果を第1表に示す。
Example 3 The titer of the virus suspension after passing through the column was measured in the same manner as in Example I, except that 3 g of the same granules as in Example 2 were used, and the results are shown in Table 1.

実施例4 Ca/P比1.67のハイドロキシアパタイトを900
゜Cで焼成し、気孔率45%、粒径100〜300μm
の顆粒を製造した。この顆粒の平均微細気孔径は50n
m,平均小気孔径は4μmであった。
Example 4 Hydroxyapatite with a Ca/P ratio of 1.67 was
Calcined at °C, porosity 45%, particle size 100-300μm
granules were produced. The average micropore diameter of this granule is 50n
m, and the average small pore diameter was 4 μm.

得られた顆粒1gを使用して実施例1と同じ操作を行い
、カラム通過後のウィルス浮遊液の力価を測定し、結果
を第1表に示す。
The same operation as in Example 1 was carried out using 1 g of the obtained granules, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例5 Ca/P比1.67のハイドロキシアパタイトを700
゜Cで焼成し、気孔率60%、粒径100〜300μm
の顆粒を製造した。この顆粒の平均微細気孔径は100
nm,平均小気孔径は6μmであった。
Example 5 Hydroxyapatite with a Ca/P ratio of 1.67 was
Calcined at °C, porosity 60%, particle size 100-300μm
granules were produced. The average micropore diameter of these granules is 100
nm, and the average small pore diameter was 6 μm.

得られた顆粒1gを使用して実施例lと同じ操作を行い
、カラム通過後のウィルス浮遊液の力価を測定し、結果
を第1表に示す。
The same operation as in Example 1 was carried out using 1 g of the obtained granules, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例6 実施例5と同じ顆粒を2g使用して実施例1と同じ操作
を行い、カラム通過後のウィルス浮遊液の力価を測定し
、結果を第1表に示す。
Example 6 The same operation as in Example 1 was carried out using 2 g of the same granules as in Example 5, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例7 Ca/P比1.5のリン酸カルシウムを1100゜Cで
焼威し、気孔率30%、粒径100〜300μmの顆粒
を製造した。この顆粒の平均微細気孔径は300nm、
平均小気孔径は8μmであった。
Example 7 Calcium phosphate with a Ca/P ratio of 1.5 was calcined at 1100°C to produce granules with a porosity of 30% and a particle size of 100 to 300 μm. The average micropore diameter of these granules is 300 nm,
The average small pore diameter was 8 μm.

得られた顆粒1gを使用して実施例1と同じ操作を行い
、カラム通過後のウィルス浮遊液の力価を測定し、結果
を第1表に示す。
The same operation as in Example 1 was carried out using 1 g of the obtained granules, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例8 Ca/P比1. 5のリン酸カルシウムを700゜Cで
焼威し、気孔率60%、粒径100〜300μmの顆粒
を製造した。この顆粒の平均微細気孔径はloonm、
平均小気孔径は10μmであった。
Example 8 Ca/P ratio 1. Calcium phosphate No. 5 was calcined at 700° C. to produce granules with a porosity of 60% and a particle size of 100 to 300 μm. The average micropore diameter of this granule is loonm,
The average small pore diameter was 10 μm.

得られた顆粒1gを使用して実施例Iと同じ操作を行い
、カラム通過後のウィルス浮遊液の力価を測定し、結果
を第1表に示す. 実施例9 実施例8と同じ顆粒を2g使用して実施例1と同じ操作
を行い、カラム通過後のウィルス浮遊液の力価を測定し
、結果を第l表に示す。
The same procedure as in Example I was carried out using 1 g of the obtained granules, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1. Example 9 The same operation as in Example 1 was carried out using 2 g of the same granules as in Example 8, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

実施例10 Ca/P比l.57のリン酸カルシウムを1100℃で
焼威し、気孔率25%、粒径100〜300μmの顆粒
を製造した。この顆粒の平均微細気孔径は50nm、平
均小気孔径は3pmであった.得られた顆粒1gを使用
して実施例lと同じ操作を行い、カラム通過後のウィル
ス浮遊液の力価を測定し、結果を第1表に示す. 比較例I Ca/P比が1.67のリン酸カルシウムを700℃で
焼威して得た、平均孔径50nmの微細気孔のみを有し
、気孔率が50%、粒径が100〜300,umの顆粒
1gを使用して実施例lと同じ操作を行い、カラム通過
後のウィルス浮遊液の力価を測定し、結果を第l表に示
す。
Example 10 Ca/P ratio l. Calcium phosphate No. 57 was calcined at 1100° C. to produce granules with a porosity of 25% and a particle size of 100 to 300 μm. The average micropore diameter of the granules was 50 nm, and the average small pore diameter was 3 pm. The same procedure as in Example 1 was carried out using 1 g of the obtained granules, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1. Comparative Example I Calcium phosphate with a Ca/P ratio of 1.67 was calcined at 700°C, and had only fine pores with an average pore size of 50 nm, a porosity of 50%, and a particle size of 100 to 300 μm. The same procedure as in Example 1 was carried out using 1 g of granules, and the titer of the virus suspension after passing through the column was measured, and the results are shown in Table 1.

比較例2 比較例lと同じ顆粒を2g使用した以外は、比較例lと
同様に操作し、カラム通過後のウィルス浮遊液の力価を
測定し、結果を第1表に示す。
Comparative Example 2 The same procedure as in Comparative Example 1 was used except that 2 g of the same granules as in Comparative Example 1 were used, and the titer of the virus suspension after passing through the column was measured. The results are shown in Table 1.

第1表 表に示した力価は、流出液中のインフルエンザウィルス
の単位体積中の濃度に比例している.したがって、実施
例中最もrIi.tlの悪かった実施例lでも、比較例
l及び2と比べると、ウィルスが半分に減少している.
しかも、実施例6及び9では全ウィルスがほぼ完全に吸
着されて流出せず、本発明のリン酸カルシウム顆粒の吸
着性能の高さを示している。また、実施例5、6、8及
び9から本発明による顆粒は、その量を増加することに
より吸着量も上昇することが可能である.これに対して
、比較例2では、比較例1の2倍の顆粒を使用している
にもかかわらず吸着量は向上していない。
The titers shown in Table 1 are proportional to the concentration of influenza virus per unit volume in the effluent. Therefore, most rIi. Even in Example 1, which had poor tl, the number of viruses was reduced by half compared to Comparative Examples 1 and 2.
Moreover, in Examples 6 and 9, all the viruses were almost completely adsorbed and did not leak out, demonstrating the high adsorption performance of the calcium phosphate granules of the present invention. Further, from Examples 5, 6, 8, and 9, the adsorption amount of the granules according to the present invention can be increased by increasing the amount thereof. On the other hand, in Comparative Example 2, although twice as many granules as in Comparative Example 1 were used, the amount of adsorption did not improve.

実施例11 内容積6dのシリンジにガラスウール0. 0 3 g
をほぼlIIiになるように詰め、その上に実施例1で
製造した顆粒1gを充填した。こうして調製したカラム
にヒト末梢血リンパ細胞5X10”個を浮遊させたハン
クス培地0. 2 dを流し、この浮遊液が顆粒に充分
浸透した後、3III1のハンクス培地を流して非吸着
細胞を流出させて回収した。この回収した細胞に蛍光標
識抗体、抗Leu 4と抗Leul2をラベルした後、
F A C S (fluorescenceacti
vated cell sorter)を用いてT細胞
及びB細胞の陽性率を調べた.結果を第2表に示した。
Example 11 Glass wool was added to a syringe with an internal volume of 6 d. 0 3 g
was packed to approximately lIIIi, and 1 g of the granules produced in Example 1 was filled thereon. 0.2 d of Hank's medium in which 5 x 10" human peripheral blood lymphocytes were suspended was poured into the column prepared in this way, and after this suspension had sufficiently permeated the granules, 3III1 Hank's medium was poured to allow non-adsorbed cells to flow out. After labeling the collected cells with fluorescently labeled antibodies, anti-Leu 4 and anti-Leul 2,
F A C S (fluorescence acti
The positive rate of T cells and B cells was examined using a vated cell sorter. The results are shown in Table 2.

実施例12 Ca/P比1.67のハイドロキシアパクィトを900
″Cで焼成し、気孔率45%、粒径300〜600μm
の顆粒を製造した.この顆粒の平均微細気孔径は50n
m、平均小気孔径は4μmであった. この顆粒1gを用いて実施例1lと同様に操作してT細
胞及びB細胞の陽性率を調べた。結果を第2表に示した
. 実施例13 Ca/P比l.67のハイドロキシアパタイトを700
゜Cで焼威し、気孔率60%、粒径300〜600μm
の顆粒を製造した。この顆粒の平均微細気孔径はl00
nm、平均小気孔径は6μmであった. この顆粒1gを用いて実施例11と同様に操作してT細
胞及びB細胞の陽性率を調べた。結果を第2表に示した
Example 12 Hydroxyapacite with a Ca/P ratio of 1.67 was added to 900
Calcined with ``C, porosity 45%, particle size 300-600μm
granules were produced. The average micropore diameter of this granule is 50n
m, and the average small pore diameter was 4 μm. Using 1 g of these granules, the same procedure as in Example 1l was performed to examine the positive rate of T cells and B cells. The results are shown in Table 2. Example 13 Ca/P ratio l. 67 hydroxyapatite to 700
Calcined at °C, porosity 60%, particle size 300-600μm
granules were produced. The average micropore diameter of these granules is 100
nm, and the average small pore diameter was 6 μm. Using 1 g of these granules, the same procedure as in Example 11 was performed to examine the positive rate of T cells and B cells. The results are shown in Table 2.

比較例3 Ca/ P 比1. 6 7のハイドロキシアバタイト
を700″Cで焼威し、平均孔径50nmの微細気孔の
みを有する気孔率50%、粒径300〜600μmの顆
粒を製造した。
Comparative Example 3 Ca/P ratio 1. Hydroxyabatite No. 67 was burned at 700''C to produce granules with a porosity of 50% and a particle size of 300 to 600 μm, which had only micropores with an average pore size of 50 nm.

この顆粒1gを用いて実施例11と同様に操作してT細
胞及びB細胞の陽性率を調べた.結果を第2表に示した
Using 1 g of these granules, the same procedure as in Example 11 was carried out to examine the positive rate of T cells and B cells. The results are shown in Table 2.

第2表 実施例11,12及びl3においては、この順でB細胞
の吸着量が大きくなっているが、これは顆粒全体の体積
がその順に大きくなっているためと考えられるが、実施
例l2及び13は比較例3よりも体積は小さいにもかか
わらず、良い吸着性能を示している.また、実施例1l
においても、比較例3に比べて高い吸着が行われている
In Examples 11, 12, and 13 of Table 2, the amount of B cells adsorbed increases in this order, which is thought to be because the volume of the entire granule increases in that order, but in Example 12 and No. 13 showed good adsorption performance despite having a smaller volume than Comparative Example 3. In addition, Example 1l
Also in Comparative Example 3, higher adsorption was achieved than in Comparative Example 3.

実施例l4 Ca/P比1.67のハイドロキシアバタイトを120
0℃で焼戒し、気孔率20%、粒径300〜600μm
の顆粒を製造した.この顆粒の平均微細気孔径は20n
m、平均小気孔径は2μmであった. 内容積6allのシリンジにガラスウール0. 0 3
 gをほぼllI1になるように詰め、その上に上記の
顆粒lgを充填してカラムとした. 採血時に血液凝固阻止剤としてクエン酸を13%添加し
た血液IIdを上記力ラムに流し、流出した血液を回収
した.この回収した血液中の細胞に蛍光標識抗体、CD
3 (抗−Leu4)とCD19(抗−Leul2)を
ラベルした後、NH.c/!で赤血球を溶血させ、FA
CSを用いてT1ll胞とB細胞の陽性率を調べた.結
果を第3表に示した.実施例l5 実施例14と同様にして作成したカラムに実施例14と
同様の方法で採血後にハンクス培地で2倍に希釈した血
液2dを流し、さらに実施例14と同様に操作し、結果
を第3表に示した。
Example 14 Hydroxy abatite with a Ca/P ratio of 1.67 was
Baked at 0℃, porosity 20%, particle size 300-600μm
granules were produced. The average micropore diameter of this granule is 20n
m, and the average small pore diameter was 2 μm. Add glass wool to a syringe with an internal volume of 6all. 0 3
The granules were packed to approximately 11 g, and the above granules lg were packed on top to form a column. Blood IId to which 13% citric acid was added as a blood coagulation inhibitor at the time of blood collection was flowed through the above-mentioned force ram, and the flowed blood was collected. Fluorescently labeled antibodies and CD
After labeling with NH.3 (anti-Leu4) and CD19 (anti-Leul2), NH. c/! Hemolyze the red blood cells with
The positive rate of T1ll cells and B cells was investigated using CS. The results are shown in Table 3. Example 15 After blood collection in the same manner as in Example 14, 2d of blood diluted 2 times with Hank's medium was poured into a column prepared in the same manner as in Example 14. It is shown in Table 3.

実施例l6 実施例15と同様にして作戒したカラムに実施例l4と
同様の方法で採血後にハンクス培地で4倍に希釈した血
液4Idを流し、さらに実施例14と同様に操作し、結
果を第3表に示した.第3表 なお、上記の実施例においては、インフルエンザウィル
ス及びリンパ細胞に対する吸着性能を測定したが、本発
明の吸着分離剤は、これらのウィルス及び細胞ばかりで
なく、他のウィルス及び細胞に対しても同様に機能する
Example 16 After blood collection in the same manner as in Example 14, blood 4Id diluted 4 times with Hank's medium was poured into a column prepared in the same manner as in Example 15, and then operated in the same manner as in Example 14, and the results were evaluated. It is shown in Table 3. Table 3 Note that in the above examples, the adsorption performance for influenza viruses and lymph cells was measured, but the adsorption/separation agent of the present invention is effective not only for these viruses and cells but also for other viruses and cells. works similarly.

また、本発明の吸着分離剤は、花粉症の原因となるスギ
花粉などの植物細胞の吸着剤としても使用することがで
きる. 「発明の効果」 以上のように、本発明の吸着分離剤は、ウィルス及び動
植物細胞に対して高い吸着能を示し、これらの吸着分離
に有効である。本発明の吸着分離剤は、B細胞やマクロ
ファージを選択的に吸着し、一方、T細胞には影響を与
えないので、T細胞をサブセットの分布を変えずに高純
度に回収できるため、T細胞の分析だけでなく、免疫学
的研究や臨床検査に利用することができる。臨床検査と
しては、癌、自己免疫疾患、エイズなどに関してT細胞
の分布、機能検査を行うことができる。臨床検査におい
ては、採血後の全血をそのまま検査装置にかけて検査を
行うこともあり、このような場合に、予め本発明の吸着
分離剤によりB細胞やマクロファージを除去しておくこ
とにより、より精度の高いT細胞検査が可能になる。
Furthermore, the adsorption/separation agent of the present invention can also be used as an adsorbent for plant cells such as cedar pollen, which causes hay fever. "Effects of the Invention" As described above, the adsorption/separation agent of the present invention exhibits high adsorption ability for viruses and animal and plant cells, and is effective in adsorption and separation of these. The adsorption/separation agent of the present invention selectively adsorbs B cells and macrophages, but does not affect T cells, so T cells can be recovered with high purity without changing the distribution of subsets. It can be used not only for analysis, but also for immunological research and clinical testing. As clinical tests, T cell distribution and function tests can be performed for cancer, autoimmune diseases, AIDS, and the like. In clinical tests, whole blood may be tested using a testing device as it is after blood collection. This makes it possible to perform high T cell tests.

さらに、本発明の吸着分離剤は、充分な保水性を有し、
しかも安定性に優れた微細構造を有するので、短時間に
再現性の高い分離を行うことができる。また、本発明の
吸着分離剤を用いて分離を行う場合には、インキュベー
シゴンを必要としないので、操作は極めて簡略化される
Furthermore, the adsorption/separation agent of the present invention has sufficient water retention,
Moreover, since it has a fine structure with excellent stability, separation can be performed in a short time with high reproducibility. Furthermore, when performing separation using the adsorption/separation agent of the present invention, no incubation is required, so the operation is extremely simplified.

Claims (1)

【特許請求の範囲】 1、平均孔径20〜500nmの連続微細気孔と平均孔
径1〜50μmの連続小気孔の2種類の連続気孔構造を
有するリン酸カルシウム系多孔質顆粒であることを特徴
とするウィルス及び細胞の吸着分離剤。 2、気孔率が10〜75%である請求項1記載の吸着分
離剤。 3、平均粒径が10〜2000μmである請求項1又は
2記載の吸着分離剤。 4、顆粒表面に生体由来の多糖類、ムコ多糖類及び蛋白
質並びにそれらの誘導体のうちの1種以上を部分吸着さ
せてなる請求項1記載の吸着分離剤。 5、請求項1記載の吸着分離剤を充填したカラムに生物
学的液体を流すことを特徴とするウィルス及び細胞の分
離方法。 6、生物学的液体が血液、血清、尿、唾液あるいは細胞
及び/又はウィルスの浮遊液である請求項5記載の分離
方法。 7、生物学的液体が、採血時に血液凝固阻止剤を添加し
た血液を培養液で1〜10倍に希釈したものである請求
項6記載の分離方法。
[Scope of Claims] 1. A virus characterized by being a calcium phosphate-based porous granule having two types of continuous pore structures: continuous fine pores with an average pore diameter of 20 to 500 nm and continuous small pores with an average pore diameter of 1 to 50 μm; Cell adsorption separation agent. 2. The adsorption/separation agent according to claim 1, which has a porosity of 10 to 75%. 3. The adsorption/separation agent according to claim 1 or 2, which has an average particle diameter of 10 to 2000 μm. 4. The adsorption/separation agent according to claim 1, wherein one or more of biologically derived polysaccharides, mucopolysaccharides, proteins, and derivatives thereof are partially adsorbed on the surface of the granules. 5. A method for separating viruses and cells, which comprises flowing a biological liquid through a column packed with the adsorption/separation agent according to claim 1. 6. The separation method according to claim 5, wherein the biological liquid is blood, serum, urine, saliva, or a suspension of cells and/or viruses. 7. The separation method according to claim 6, wherein the biological liquid is blood to which an anticoagulant was added at the time of blood collection, diluted 1 to 10 times with a culture medium.
JP1156195A 1989-02-28 1989-06-19 Adsorbent separating agent for viruses and cells, and method for separating viruses and cells using the same Expired - Lifetime JP2543766B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1156195A JP2543766B2 (en) 1989-03-01 1989-06-19 Adsorbent separating agent for viruses and cells, and method for separating viruses and cells using the same
SE9000650A SE9000650L (en) 1989-02-28 1990-02-23 Separation of cells or viruses
US07/486,220 US5085781A (en) 1989-02-28 1990-02-28 Separating agent, separator and method of separating cell or virus
DE4006293A DE4006293C2 (en) 1989-02-28 1990-02-28 Method for separating cells or viruses
DE4042579A DE4042579C2 (en) 1989-02-28 1990-02-28 Adsorbents for sepg. cells or viruses
US08/193,760 USRE35267E (en) 1989-02-28 1994-02-03 Separating agent, separator and method of separating cell or virus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-49175 1989-03-01
JP4917589 1989-03-01
JP1156195A JP2543766B2 (en) 1989-03-01 1989-06-19 Adsorbent separating agent for viruses and cells, and method for separating viruses and cells using the same

Publications (2)

Publication Number Publication Date
JPH0321342A true JPH0321342A (en) 1991-01-30
JP2543766B2 JP2543766B2 (en) 1996-10-16

Family

ID=26389535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156195A Expired - Lifetime JP2543766B2 (en) 1989-02-28 1989-06-19 Adsorbent separating agent for viruses and cells, and method for separating viruses and cells using the same

Country Status (1)

Country Link
JP (1) JP2543766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627229B2 (en) 2000-02-18 2003-09-30 Hiromi Houzawa Antiviral agent and method of producing the same
JP2006192271A (en) * 2005-01-10 2006-07-27 Haemosys Gmbh Adsorption system for removing virus and viral component from liquid, especially blood and blood plasma
JP2010188426A (en) * 2009-01-26 2010-09-02 Emprie Technology Development LLC Cleaning sheet
JP2011193972A (en) * 2010-03-18 2011-10-06 Olympus Corp Osteoclast removing filter and osteoclast removing device
US10960380B2 (en) 2015-12-28 2021-03-30 Jnc Corporation Adsorbent and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023106207A1 (en) 2021-12-06 2023-06-15

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627229B2 (en) 2000-02-18 2003-09-30 Hiromi Houzawa Antiviral agent and method of producing the same
JP2006192271A (en) * 2005-01-10 2006-07-27 Haemosys Gmbh Adsorption system for removing virus and viral component from liquid, especially blood and blood plasma
JP2010188426A (en) * 2009-01-26 2010-09-02 Emprie Technology Development LLC Cleaning sheet
JP2011193972A (en) * 2010-03-18 2011-10-06 Olympus Corp Osteoclast removing filter and osteoclast removing device
US10960380B2 (en) 2015-12-28 2021-03-30 Jnc Corporation Adsorbent and method for producing the same

Also Published As

Publication number Publication date
JP2543766B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US5085781A (en) Separating agent, separator and method of separating cell or virus
JP4226050B1 (en) Absorption column for body fluid purification treatment
RU2064429C1 (en) Carbon sorbent and method for its production
JPH0724723B2 (en) Sulfated non-carbohydrate Germantrics adsorbent
US4952323A (en) B2 microglobulin adsorbent
JPH0513269B2 (en)
US4221695A (en) Adsorbent for artificial organs
JPH0321342A (en) Virus and cell adsorbing and separating agent and method for separation of virus and cell
JP2613488B2 (en) Functional paper
EP0230247A2 (en) Adsorbent for removing complement component
GB2025385A (en) Activated carbon and apparatus for hemoperfusion
JP2816739B2 (en) Virus and cell separator
CA1283073C (en) Adsorbent for purification of blood coagulation factor viii and process for purification of blood coagulation factor viii using the same
CN103230784A (en) Composite continuous bed cryogel and preparation thereof, and application in separating IgG and albumin
JPH0977790A (en) Adsorbent for antibody to glycolipid
EP0252472A2 (en) Packing material for liquid chromatography and process for producing the same
CN110152501B (en) Filtering membrane for removing leukocytes in platelet-rich plasma and preparation method thereof
Uzun et al. Poly (hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma
EP1679117A2 (en) Adsorption system for removing viruses and viral components from fluids, in particular from blood and blood plasma
CN112221474B (en) Bilirubin adsorbent with high mechanical strength and good biocompatibility and preparation method thereof
Mazid et al. An improved affinity support and immunoadsorbent with a synthetic blood group oligosaccharide and polymer coating for hemoperfusion
CH660634A5 (en) METHOD FOR PRODUCING NATURAL IMMUNOADSORB.
JPH025098B2 (en)
JPS6051387B2 (en) Method for manufacturing porous particles
JPH0653169B2 (en) Adsorbent for blood purification

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

EXPY Cancellation because of completion of term