JPS6318090B2 - - Google Patents

Info

Publication number
JPS6318090B2
JPS6318090B2 JP54089905A JP8990579A JPS6318090B2 JP S6318090 B2 JPS6318090 B2 JP S6318090B2 JP 54089905 A JP54089905 A JP 54089905A JP 8990579 A JP8990579 A JP 8990579A JP S6318090 B2 JPS6318090 B2 JP S6318090B2
Authority
JP
Japan
Prior art keywords
control
combustion
value
difference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54089905A
Other languages
Japanese (ja)
Other versions
JPS5616024A (en
Inventor
Akira Baba
Shoichi Masuko
Manabu Orimoto
Toshiharu Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8990579A priority Critical patent/JPS5616024A/en
Publication of JPS5616024A publication Critical patent/JPS5616024A/en
Publication of JPS6318090B2 publication Critical patent/JPS6318090B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ボイラ装置などの燃焼装置における
燃焼制御方法に係り、燃焼による有害成分の発生
を可及的に抑制し、かつ安全で効率的な運転がで
きる燃焼制御方法に関する。 近年、燃焼装置から発生する窒素酸化物
(NOx)、イオウ酸化物(SOx)、炭化水素(HC)、
煤煙などの有害成分の排出量規制が厳しくなつて
おり、その対策が要望されている。 ところが従来の燃焼装置は、その組立が完了し
た時点で燃焼試験や排ガス確認試験を行ない、燃
焼装置の燃焼状態を調整する各操作端と燃焼状態
との因果関係を初期の正常運転時において把握
し、その結果に基づいて現場において排ガス混合
比、2段燃焼比、火炉出口過剰空気率などを調整
しながら運転している。 しかし燃焼状態は、バーナチツプの摩耗や汚
損、火炎保持器の焼損や熱歪、制御機器の動作ず
れ、炉内の水壁管表面の汚損など種々の原因によ
つて経時的に変化する。従つて前述のように初期
の正常運転時に把握したデータに基づく制御では
不十分である。従来は燃焼状態が連続的にかつ定
量的に把握されていないから、前述のようなバー
ナチツプの摩耗や汚損、火炎保持器の焼損や熱
歪、制御機器の動作ずれ、炉内の水壁管表面の汚
損などの現象が生じても、それを迅速に察知する
ことができず、その間有害成分の放出や焼燃効率
の低下を招く結果となり、正常運転に復帰するま
でに時間がかかるなどの欠点を有している。 本発明の目的は、このような従来技術の欠点を
解消し、有害成分の発生を可及的に抑制するとと
もに燃焼効率の高い運転ができる燃焼制御方法を
提供するにある。 この目的を達成するため、本発明は、燃焼状態
に関する各測定項目と、その各測定項目毎の制御
許容範囲値と、前記測定項目に関係する燃焼装置
の制御操作端の種類と、前記制御許容範囲値と測
定値との差の大きさに応じて決められた制御操作
端の制御値とを予め記憶しておく記憶部と、 前記測定項目毎に燃焼装置の燃焼状態を測定す
る測定器と、 その測定器によつて測定された各測定項目の測
定値と前記制御許容範囲値とを比較して、測定値
が制御許容範囲値とに差があつた測定項目と、測
定値と制御許容範囲値との差を出力する演算部
と、 その演算部から取り出された測定項目に関係す
る燃焼装置の制御操作端に、測定値と制御許容範
囲値との差の大きさに応じた制御量を出力する
か、あるいは前記差の大きさが制御可能域を超過
する場合は警報信号を出力する制御指令部と、 その制御指令部からの警報信号によつて警報を
発する警報装置とを備える。 そして稼動している燃焼装置から前記測定項目
について測定を行ない、この測定値と制御許容範
囲値とを前記演算部で比較し、測定値が制御許容
範囲内に入つている場合は制御操作端の調整を行
なわず、測定値が制御許容範囲値から外れている
場合は、外れている測定項目に関係する制御操作
端に差に応じて前記記憶部に記憶されている制御
量を出力するか、あるいは差に応じた制御量がな
いと前記警報装置に警報信号を出力するように構
成されていることを特徴とするものである。 以下、本発明の実施例を図面とともに説明す
る。第1図は、ボイラなどの燃焼装置1の概略構
成図である。石炭、石油、ガスなどの燃料は複数
個設置されたバーナ2から火炉3内に噴射される
が、各バーナ2にはそれぞれ個別にバルブと流量
計とが付設されて、燃料の供給量は各バーナ2で
調整できるようになつており、バーナチツプの摩
耗や詰りなどがバーナ別に検知ができるようにな
つている。燃焼用空気は燃焼用空気量制御ダンパ
4で調整され、送風機5により空気予熱器6を通
つて風箱7及び2段燃焼用空気ポート16に送ら
れる。 火炉内での燃料の燃焼によつて生成した燃焼ガ
スは過熱器8、再熱器9、節炭器10を経て、そ
の大部分は煙道11及び集塵器12を通つて煙突
13から放出される。燃焼ガスの一部は再循環フ
アン14によつて火炉3と混合器15に供給され
るようになつており、混合器15に供給された燃
焼ガスは燃焼用空気と混合されて風箱7側へ送ら
れる。 バーナ2への燃料供給量の調整は、ボイラ負荷
の変化に追従して燃料流量制御弁17、バーナ入
口燃料圧力計18、燃料温度制御弁(図示せず)、
噴霧蒸気圧力制御弁(図示せず)などで行なわれ
る。一方、ガス系統の調整は、燃焼用空気量制御
ダンパ4、再循環ガス火炉用ダンパ19、再循環
ガス混合用ダンパ20、2段燃焼用空気ダンパ2
1、2段燃焼用空気ポート16、風箱7、バーナ
ベーン(図示せず)などでそれぞれ行なわれる。
なお22は燃焼用空気酸素濃度計、23は燃焼用
空気圧力計である。前述した燃料系統及びガス系
統の調整を行なう各操作端は、後述する燃焼診断
装置24の制御指令部25によつて自動的に制御
されるようになつている。 第2図は、燃焼診断機構を説明するための略図
である。燃焼装置1の燃焼状態を把握するため次
の表1に示す如く測定項目が予め設定されてお
り、これらの測定項目によつて火炎及び燃焼ガス
の性状が正確に把握される。
The present invention relates to a combustion control method in a combustion device such as a boiler device, and more particularly to a combustion control method that suppresses the generation of harmful components due to combustion as much as possible and allows safe and efficient operation. In recent years, nitrogen oxides (NO x ), sulfur oxides (SO x ), hydrocarbons (HC),
Regulations on emissions of harmful components such as soot are becoming stricter, and countermeasures are required. However, with conventional combustion equipment, combustion tests and exhaust gas confirmation tests are conducted once assembly is completed, and the causal relationship between each control end that adjusts the combustion state of the combustion equipment and the combustion state can be grasped during initial normal operation. Based on the results, the exhaust gas mixture ratio, two-stage combustion ratio, excess air rate at the furnace outlet, etc. are adjusted on site during operation. However, the combustion condition changes over time due to various causes such as wear and contamination of the burner tip, burnout and thermal distortion of the flame holder, malfunction of control equipment, and contamination of the surface of the water wall tube inside the furnace. Therefore, as described above, control based on data obtained during initial normal operation is insufficient. Conventionally, the combustion state has not been grasped continuously and quantitatively, so the above-mentioned problems such as wear and contamination of the burner tip, burnout and thermal distortion of the flame holder, misalignment of control equipment, and the surface of the water wall tube in the furnace Even if a phenomenon such as contamination occurs, it cannot be detected quickly, resulting in the release of harmful components and a decrease in combustion efficiency, and it takes time to return to normal operation. have. SUMMARY OF THE INVENTION An object of the present invention is to provide a combustion control method that eliminates the drawbacks of the prior art, suppresses the generation of harmful components as much as possible, and allows operation with high combustion efficiency. In order to achieve this object, the present invention provides each measurement item related to the combustion state, the control allowable range value for each measurement item, the type of control operating end of the combustion device related to the measurement item, and the control allowable range value for each measurement item. a storage unit that stores in advance a control value for a control operating end determined according to the magnitude of the difference between the range value and the measured value; and a measuring device that measures the combustion state of the combustion device for each of the measurement items. , Compare the measured value of each measurement item measured by the measuring device with the control allowable range value, and compare the measured value and the control allowable range value for the measurement item whose measured value is different from the control allowable range value. A calculation unit that outputs the difference with the range value, and a control operation terminal of the combustion device related to the measurement item taken out from the calculation unit, which outputs a control amount according to the size of the difference between the measurement value and the control allowable range value. or, if the magnitude of the difference exceeds a controllable range, a control command unit that outputs an alarm signal, and an alarm device that issues an alarm in response to the alarm signal from the control command unit. The above-mentioned measurement items are then measured from the operating combustion equipment, and this measured value is compared with the control allowable range value in the calculation section. If the measured value is within the control allowable range, the control operating end is If no adjustment is made and the measured value deviates from the control permissible range value, output the control amount stored in the storage section according to the difference to the control operation end related to the deviated measurement item, or Alternatively, if there is no control amount corresponding to the difference, an alarm signal is output to the alarm device. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a combustion device 1 such as a boiler. Fuel such as coal, oil, gas, etc. is injected into the furnace 3 from a plurality of burners 2 installed, but each burner 2 is individually equipped with a valve and a flow meter, so that the amount of fuel supplied can be adjusted individually. Adjustments can be made using burner 2, and wear and clogging of burner tips can be detected for each burner. Combustion air is adjusted by a combustion air amount control damper 4, and is sent by a blower 5 through an air preheater 6 to a wind box 7 and a two-stage combustion air port 16. Combustion gas generated by combustion of fuel in the furnace passes through a superheater 8, a reheater 9, and an economizer 10, and most of it passes through a flue 11 and a dust collector 12 and is released from a chimney 13. be done. A part of the combustion gas is supplied to the furnace 3 and the mixer 15 by the recirculation fan 14, and the combustion gas supplied to the mixer 15 is mixed with combustion air and sent to the wind box 7 side. sent to. The amount of fuel supplied to the burner 2 is adjusted according to changes in the boiler load by a fuel flow control valve 17, a burner inlet fuel pressure gauge 18, a fuel temperature control valve (not shown),
This is done using a spray steam pressure control valve (not shown) or the like. On the other hand, the gas system is adjusted by the combustion air amount control damper 4, the recirculation gas furnace damper 19, the recirculation gas mixing damper 20, and the two-stage combustion air damper 2.
This is carried out by the first and second stage combustion air ports 16, wind box 7, burner vanes (not shown), etc., respectively.
Note that 22 is a combustion air oxygen concentration meter, and 23 is a combustion air pressure gauge. Each operating end for adjusting the fuel system and gas system described above is automatically controlled by a control command unit 25 of a combustion diagnosis device 24, which will be described later. FIG. 2 is a schematic diagram for explaining the combustion diagnosis mechanism. In order to grasp the combustion state of the combustion device 1, measurement items are set in advance as shown in Table 1 below, and the properties of the flame and combustion gas can be accurately grasped by these measurement items.

【表】 測定項目のうち火炎スペクトル、過熱器管壁温
度、火炉出口燃焼ガス温度、火炉出口燃焼ガス透
明度は燃焼装置1の火炉3内に配置した測定器2
6(実際には4個の測定器)によつて測定され、
測定値は信号F〜Fとしてそれぞれ燃焼診断
装置24に入力される。また測定項目のうち燃焼
ガイ中の残存酸素濃度、炭化水素濃度、一酸化炭
素濃度、ダスト濃度、イオウ酸化物濃度、窒素酸
化物濃度は燃焼装置1の煙道11内に配置した測
定器27(実際には6個の測定器)によつて測定
され、測定値は信号G〜Gとしてそれぞれ燃
焼診断装置24に入力される。 燃焼状態に関する前記測定項目には許容範囲値
が予め設定されており、火炎スペクトルの許容範
囲値(火炎スペクトルの適正範囲値)は信号SF
、過熱器管壁温度の許容範囲値は信号SF、
火炉出口における燃焼ガス温度の許容範囲値は信
号SF、火炉出口における燃焼ガス透明度の許
容範囲値は信号SF、燃焼ガス中における残存
酸素濃度の許容範囲値は信号SG、炭化水素濃
度の許容範囲値は信号SG、一酸化炭素濃度の
許容範囲値は信号SG、ダスト濃度の許容範囲
値は信号SG、イオウ酸化物濃度の許容範囲値
は信号SG、窒素酸化物濃度の許容範囲値は信
号SGとしてそれぞれ燃焼診断装置24の記憶
部28に予め記憶されている。 記憶部28には、前述した許容範囲データD1
の他に制御データD2が予め記憶されている。こ
の制御データD2は、前記測定項目に関係する燃
焼装置1の操作端の種類と、前記許容範囲値と測
定値との差の大きさに応じて決められた制御量と
が各測定項目ごとに記憶されている。例えば窒素
酸化物濃度の測定項目については、燃焼装置1の
燃焼用空気量制御ダンパ4、再循環ガス混合用ダ
ンパ20、2段燃焼用バンパ21などが関係操作
端として記憶され、窒素酸化物濃度の許容範囲値
と測定値との差の大きさに応じて各ダンパの開度
(制御量)も合わせて記憶されている。また一酸
化炭素濃度の測定項目については、燃料流量制御
弁17、燃焼用空気量制御ダンパ4、再循環ガス
混合用ダンパ20、2段燃焼用空気ダンパ21な
どが関係操作端として記憶され、一酸化炭素濃度
の許容範囲値と測定値との差の大きさに応じて各
操作端ごとに制御量も合わせて記憶されている。 前述のように燃焼装置1の各測定器26,27
で連続的に測定された値は信号F〜F及びG
〜Gとして燃焼診断装置24の演算部29に
入力されるとともに、CRTデイスプレイ・スク
リーンからなる表示部30に測定結果が連続的に
表示される。前記演算部29で測定項目ごとに許
容範囲値と測定値とが演算され、測定値が許容範
囲値から外れている場合はその演算結果(測定項
目及び測定値と許容範囲値との差の大きさ)が制
御指令部25に入力される。この制御指令部25
には前述した記憶部28の制御データD2が入力
されているから、前記演算結果と制御データD2
とにより、測定値が許容範囲値から外れている測
定項目について、その測定項目に関係する燃焼装
置1の操作端を制御指令部25の出力により記憶
部28に記憶されている制御量に従つて調整す
る。31は燃焼装置1の操作系統を示すもので、
燃料操作系統F−OPとガス操作系統G−OPに分
かれている。燃料操作系統F−OPには、燃焼流
量制御弁F−OP(第1図符号17)、燃料温度
制御弁F−OP、バーナ入口制御弁F−OP、
噴霧蒸気圧力制御弁F−OPなどの操作端があ
る。一方、ガス操作系統G−OPには、燃焼用空
気量制御ダンパG−OP(第1図符号4)、再循
環ガス火炉用ダンパG−OP(第1図符号1
9)、再循環ガス混合用ダンパG−OP(第1図
符号20)、2段燃焼用空気ダンパG−OP(第
1図符号21)、風箱G−OP(第1図符号7)、
2段燃焼用空気ポートG−OP(第1図符号1
6)、バーナベーンG−OPなどの操作端があ
る。前述のように測定値が許容範囲値より外れた
場合、すなわち火炎性状や燃焼ガス性状が正常で
ない場合には、演算部29からの演算結果と、記
憶部28からの制御データD2とにより、関係す
る操作端を自動的に調整して燃焼状態を正常に修
正する。演算結果が制御データD2の記憶制御量
を超過する場合は異常とみなし、警報装置32か
ら警報を発するようになつている。 前記したように測定器26,27によつて測定
された結果は連続して表示部30に表示されるか
ら、焼燃状態の経時変化が定量的に把握できる。
そのためバーナチツプの摩耗や詰り、火炎保持器
の焼損や熱歪、炉内の水壁管表面の汚損などの故
障を予知して未然に防止することができる。な
お、有害成分の発生防止制御はマイクロコンピユ
ータで、また最適燃焼を行なわせるための操作端
へのフイードバツク制御はミニコンピユータでそ
れぞれ行なわれる。 1つの燃焼装置において、燃焼効率を高めるこ
と、窒素酸化物の発生を抑制すること、イウオ酸
化物の発生を抑制すること、炭化水素の発生を抑
制すること、ならびに煤煙の発生を抑制すること
などは燃焼システム上において相反する制御を複
数同時に行なう必要があることが多い。そのため
1つのことだけ、例えば窒素酸化物の発生を抑制
することだけを頻繁にオン、オフ制御している
と、他の制御系統を干渉して他の制御が狂つてし
まい、窒素酸化物の発生を抑制することができる
が、反対に例えば燃焼効率の低下や未燃分の発生
を生じてしまい、燃焼装置としての総合的な制御
が行えなくなる。 その点本発明では前述のように、各測定項目に
対して制御許容範囲値を設けており、測定値がこ
の制御許容範囲値内に入つている場合は、制御系
統を調整しないようになつている。そのため制御
操作端の頻繁な調整に基因する他の制御系統の干
渉などがなくなり、装置全体としての制御の健全
性が確持できる。 さらに測定値が制御許容範囲値を外れた異常の
場合でも、制御系統を調整して制御が可能なの
か、あるいはその異常は制御系統の調整では対応
できないのかを判断するように、すなわち予め記
憶されている制御量を超えていない場合は制御可
能で、制御量を超えている場合は制御不可能であ
ると判断するようになつている。そのため徒らに
制御系統に乱調をきたしたりすることがなく、大
きな異常をす早く検知することができ、燃焼装置
の安全性が確保できる。
[Table] Among the measurement items, flame spectrum, superheater tube wall temperature, furnace exit combustion gas temperature, and furnace exit combustion gas transparency were measured using the measuring device 2 installed in the furnace 3 of the combustion device 1.
6 (actually 4 measuring instruments),
The measured values are input to the combustion diagnosis device 24 as signals F to F, respectively. Among the measurement items, the residual oxygen concentration, hydrocarbon concentration, carbon monoxide concentration, dust concentration, sulfur oxide concentration, and nitrogen oxide concentration in the combustion chamber are measured using a measuring device 27 ( Actually, the measurement values are measured by six measuring instruments), and the measured values are inputted to the combustion diagnosis device 24 as signals G to G, respectively. Tolerable range values are set in advance for the measurement items related to the combustion state, and the allowable range values for the flame spectrum (appropriate range values for the flame spectrum) are determined by the signal SF.
, the tolerance value of the superheater tube wall temperature is the signal SF,
The permissible value of the combustion gas temperature at the furnace exit is the signal SF, the permissible value of the combustion gas transparency at the furnace exit is the signal SF, the permissible value of the residual oxygen concentration in the combustion gas is the signal SG, and the permissible value of the hydrocarbon concentration is the signal SF. is the signal SG, the tolerance value of the carbon monoxide concentration is the signal SG, the tolerance value of the dust concentration is the signal SG, the tolerance value of the sulfur oxide concentration is the signal SG, the tolerance value of the nitrogen oxide concentration is the signal SG. Each of them is stored in advance in the storage unit 28 of the combustion diagnosis device 24. The storage unit 28 stores the above-mentioned tolerance data D1.
In addition to this, control data D2 is stored in advance. This control data D2 includes, for each measurement item, a control amount determined according to the type of operating end of the combustion device 1 related to the measurement item and the magnitude of the difference between the tolerance range value and the measurement value. remembered. For example, for the measurement item of nitrogen oxide concentration, the combustion air amount control damper 4, recirculation gas mixing damper 20, two-stage combustion bumper 21, etc. of the combustion device 1 are stored as related operation terminals, and the nitrogen oxide concentration The opening degree (control amount) of each damper is also stored according to the magnitude of the difference between the allowable range value and the measured value. Regarding the measurement items of carbon monoxide concentration, the fuel flow rate control valve 17, combustion air amount control damper 4, recirculation gas mixing damper 20, two-stage combustion air damper 21, etc. are stored as related operation terminals, and one A control amount is also stored for each operating end according to the magnitude of the difference between the permissible range value of carbon oxide concentration and the measured value. As mentioned above, each measuring device 26, 27 of the combustion device 1
The values measured continuously in the signals F to F and G
-G to the calculation section 29 of the combustion diagnostic device 24, and the measurement results are continuously displayed on the display section 30 consisting of a CRT display screen. The calculation unit 29 calculates the allowable range value and the measured value for each measurement item, and if the measured value is outside the allowable range value, the calculation result (the measurement item and the size of the difference between the measured value and the allowable range value) ) is input to the control command unit 25. This control command section 25
Since the control data D2 of the storage unit 28 described above is input to
As a result, for a measurement item whose measured value is outside the allowable range value, the operating end of the combustion device 1 related to the measurement item is controlled according to the control amount stored in the storage unit 28 by the output of the control command unit 25. adjust. 31 shows the operation system of the combustion device 1;
It is divided into a fuel operation system F-OP and a gas operation system G-OP. The fuel operation system F-OP includes a combustion flow rate control valve F-OP (numeral 17 in Figure 1), a fuel temperature control valve F-OP, a burner inlet control valve F-OP,
There is an operating end such as a spray steam pressure control valve F-OP. On the other hand, the gas operation system G-OP includes a combustion air amount control damper G-OP (number 4 in Figure 1) and a damper G-OP for recirculating gas furnace (number 1 in Figure 1).
9), damper G-OP for recirculating gas mixing (number 20 in Figure 1), air damper G-OP for two-stage combustion (number 21 in Figure 1), wind box G-OP (number 7 in Figure 1),
2nd stage combustion air port G-OP (Symbol 1 in Figure 1
6) There is an operating end such as burner vane G-OP. As mentioned above, if the measured value is out of the allowable range value, that is, if the flame properties or combustion gas properties are not normal, the calculation result from the calculation unit 29 and the control data D2 from the storage unit 28 are used to Automatically adjusts the operating end to correct combustion conditions to normal. If the calculation result exceeds the storage control amount of the control data D2, it is regarded as an abnormality, and the alarm device 32 issues an alarm. As described above, since the results measured by the measuring devices 26 and 27 are continuously displayed on the display section 30, it is possible to quantitatively grasp the change in the combustion state over time.
Therefore, it is possible to predict and prevent malfunctions such as wear and clogging of the burner tip, burnout and thermal distortion of the flame holder, and staining of the surface of the water wall tube inside the furnace. Note that control to prevent the generation of harmful components is performed by a microcomputer, and feedback control to the operating end for optimal combustion is performed by a minicomputer. In one combustion device, increasing combustion efficiency, suppressing the generation of nitrogen oxides, suppressing the generation of sulfur oxides, suppressing the generation of hydrocarbons, suppressing the generation of soot, etc. It is often necessary to perform multiple contradictory controls simultaneously on the combustion system. Therefore, if only one thing, for example suppressing the generation of nitrogen oxides, is controlled on and off frequently, it will interfere with other control systems and cause other controls to go awry, causing the generation of nitrogen oxides. However, on the contrary, for example, combustion efficiency decreases and unburned matter is generated, making it impossible to perform comprehensive control as a combustion device. In this regard, in the present invention, as mentioned above, a control tolerance range value is set for each measurement item, and if the measured value is within this control tolerance range value, the control system is not adjusted. There is. Therefore, there is no interference with other control systems due to frequent adjustments of the control operation end, and the soundness of the control of the apparatus as a whole can be ensured. Furthermore, even in the case of an abnormality in which the measured value is outside the allowable control range, it is possible to determine whether control is possible by adjusting the control system, or whether the abnormality cannot be handled by adjusting the control system. If the control amount does not exceed the specified control amount, it is determined that the control is possible, and if it exceeds the control amount, it is determined that the control is not possible. Therefore, there is no needless disturbance in the control system, and major abnormalities can be detected quickly, ensuring the safety of the combustion device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る燃焼装置の概略
構成図、第2図は本発明の実施例に係る燃焼診断
機構を示す系統図である。 1……燃焼装置、24……燃焼診断装置、25
……制御指令部、26,27……測定器、28…
…記憶部、29……演算部、30……表示部、3
1……操作系統、32……警報装置、D1……許
容範囲データ、D2……制御データ。
FIG. 1 is a schematic configuration diagram of a combustion apparatus according to an embodiment of the present invention, and FIG. 2 is a system diagram showing a combustion diagnosis mechanism according to an embodiment of the present invention. 1... Combustion device, 24... Combustion diagnosis device, 25
...Control command unit, 26, 27...Measuring instrument, 28...
... Storage section, 29 ... Calculation section, 30 ... Display section, 3
1...Operating system, 32...Alarm device, D1...Tolerance range data, D2...Control data.

Claims (1)

【特許請求の範囲】 1 燃焼状態に関する各測定項目と、その各測定
項毎の制御許容範囲値と、前記測定項目に関係す
る燃焼装置の制御操作端の種類と、前記制御許容
範囲値と測定値との差の大きさに応じて決められ
た制御操作端の制御量とを予め記憶しておく記憶
部と、 前記測定項目毎に燃焼装置の燃焼状態を測定す
る各測定器と、 その各測定器によつて測定された各測定項目の
測定値と前記制御許容範囲値とを比較して、測定
値が制御許容範囲値から外れている測定項目と、
その測定値と制御許容範囲値との差を出力する演
算部と、 その演算部から取り出された測定項目に関係す
る燃焼装置の制御操作端に、測定値と制御許容範
囲値との差の大きさに応じて制御量を出力する
か、あるいはその差の大きさが制御可能域を超過
する場合は警報信号を出力する制御指令部と、 その制御指令部からの警報信号によつて警報を
発する警報装置とを備え、 稼動している燃焼装置から前記測定項目につい
て測定を行ない、この測定値と制御許容範囲値と
を前記演算部で比較し、測定値が制御許容範囲内
に入つている場合は制御操作端の調整を行なわ
ず、測定値が制御許容範囲値から外れている場合
は、外れている測定項目に関係する制御操作端に
差に応じて前記記憶部に記憶されている制御量を
出力するか、あるいは差に応じた制御量がないと
前記警報装置に警報信号を出力するように構成さ
れていることを特徴とする燃焼装置の燃焼制御方
法。
[Scope of Claims] 1. Each measurement item related to the combustion state, the control allowable range value for each measurement item, the type of control operating end of the combustion device related to the measurement item, the control allowable range value and the measurement a storage unit that stores in advance a control amount of a control operating end determined according to the magnitude of the difference between the values; each measuring device that measures the combustion state of the combustion device for each of the measurement items; Comparing the measured value of each measurement item measured by a measuring device with the control tolerance range value, a measurement item whose measured value is outside the control tolerance range value;
A calculation unit that outputs the difference between the measured value and the control tolerance value, and a control operation terminal of the combustion device related to the measurement item extracted from the calculation unit, which outputs the difference between the measurement value and the control tolerance value. A control command section that outputs a control amount according to the difference in control, or outputs an alarm signal if the magnitude of the difference exceeds the controllable range, and an alarm is issued by the alarm signal from the control command section. an alarm device, measures the measurement items from the operating combustion equipment, compares the measured value with a control allowable range value in the calculation unit, and if the measured value is within the control allowable range; does not adjust the control operating end, and if the measured value deviates from the control tolerance range value, the control operating end related to the measurement item that is out of range adjusts the control amount stored in the storage unit according to the difference. A combustion control method for a combustion apparatus, characterized in that the method is configured to output an alarm signal to the alarm device if there is no control amount corresponding to the difference.
JP8990579A 1979-07-17 1979-07-17 Inspecting method of combustion of combusting apparatus Granted JPS5616024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8990579A JPS5616024A (en) 1979-07-17 1979-07-17 Inspecting method of combustion of combusting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8990579A JPS5616024A (en) 1979-07-17 1979-07-17 Inspecting method of combustion of combusting apparatus

Publications (2)

Publication Number Publication Date
JPS5616024A JPS5616024A (en) 1981-02-16
JPS6318090B2 true JPS6318090B2 (en) 1988-04-16

Family

ID=13983725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8990579A Granted JPS5616024A (en) 1979-07-17 1979-07-17 Inspecting method of combustion of combusting apparatus

Country Status (1)

Country Link
JP (1) JPS5616024A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168502A (en) * 1983-03-15 1984-09-22 Kansai Electric Power Co Inc:The Weight setting system for calculation of optimum control value
JPS60142704A (en) * 1983-12-30 1985-07-27 Sumitomo Heavy Ind Ltd Device for inputting optimum control function
JPS61180829A (en) * 1985-02-01 1986-08-13 Hitachi Ltd Burning control method
JPS63120763U (en) * 1987-01-29 1988-08-04
JP6278767B2 (en) * 2014-03-17 2018-02-14 大阪瓦斯株式会社 Diagnostic method for reformer and diagnostic device for reformer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108641A (en) * 1973-02-20 1974-10-16
JPS5410437A (en) * 1977-06-24 1979-01-26 Hitachi Ltd Inimical oxidant exhaust gain control system in boiler

Also Published As

Publication number Publication date
JPS5616024A (en) 1981-02-16

Similar Documents

Publication Publication Date Title
US7838297B2 (en) Combustion optimization for fossil fuel fired boilers
CN105276611B (en) Power plant boiler firing optimization optimization method and system
JPS6225934B2 (en)
US11732891B2 (en) Combustion system with inferred fuel and associated methods
CN104456538A (en) Device and method for retarding high-temperature corrosion on rotational flow opposed combustion boiler water wall
JPS6318090B2 (en)
US10088157B2 (en) Multi-sensor probe for monitoring combustion in a conduit
JPS62178731A (en) Method of controlling pressure fluidized-bed combustion plant at time when operation disturbance of gas turbine device is generated and plant with such controller
Payne et al. Efficient boiler operations sourcebook
JP2667609B2 (en) Gas turbine control device
CN110671717B (en) Combustion accurate control system for steam power generation boiler
Garg Optimize fired heater operations to save money
JP2512536B2 (en) Boiler optimal combustion control method
CN112240566A (en) Boiler partial combustion online adjusting system and method
JPH0820070B2 (en) Nitrogen oxide reduction device
JPH0220896B2 (en)
JPS6142165B2 (en)
RU2745181C1 (en) System and method of automatic control and monitoring of a boiler unit operating on gaseous fuel
Hunter et al. Refinery process heater NOx control by staged combustion air lances
JPH0587333A (en) Diagnosing method of state of combustion
Ito et al. A combustion monitoring and evaluation system for large utility boilers
DE60020517T2 (en) Gas fired kettle
KR960014714B1 (en) Gas burner
JPS5924104A (en) Combustion of pulverized coal with low nitrogen oxide
Venetucci et al. DUAL FUEL/LOX NOx CONVERSION OF THREE OIL FIRED BURNERS AT COMMONWEALTH EDISON’S COLLINS STATION