JPS6142165B2 - - Google Patents
Info
- Publication number
- JPS6142165B2 JPS6142165B2 JP3710479A JP3710479A JPS6142165B2 JP S6142165 B2 JPS6142165 B2 JP S6142165B2 JP 3710479 A JP3710479 A JP 3710479A JP 3710479 A JP3710479 A JP 3710479A JP S6142165 B2 JPS6142165 B2 JP S6142165B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- combustion
- flame
- model
- properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 32
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 5
- 238000009841 combustion method Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 31
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
この発明はボイラ等の燃焼装置の運転方法に係
り、特に空気系統、燃料系統の端末機器の異常を
発見できる燃焼装置の運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a combustion device such as a boiler, and more particularly to a method of operating a combustion device that can detect abnormalities in terminal equipment of an air system or a fuel system.
最近、石炭、石油、ガスといつた化石燃料を使
用する燃焼装置にあつては窒素酸化物(NOx)
硫黄酸化物(SOx)、煤煙といつた大気汚染物質
排出の規制値が厳しくなつており、これに対応し
た対策が要望されている。しかし現在においては
燃焼装置の操作条件と排ガス中の汚染物質生成量
の因果関係を、装置製作端の正常状態下において
把握し、この結果に基づいて現場において操作し
ている。このため操作機器の操作遅れにより、正
常運転に戻る間に汚染物質が生成されるという不
都合がある。このため、あらかじめ設定した事項
に基づき、火炎および排ガスの性状を常時分析
し、この分析結果を、あらかじめ設定しておい
た、正常燃焼状態の火炎排ガスモデルと比較し、
各操作部を適宜操作して正常燃焼を行なう方法が
提案された。この方法は従来、人の経験によつて
判断、操作をしていたものと比較して、正常燃焼
に復帰させる操作を迅速に行なうことができると
いう利点がある。しかし燃焼の異常は単に端末機
器の操作の不適切によるばかりでなく、これら端
末機器の故障、性能低下等による場合もあり、こ
れら機器の故障は上記方法によつては発見できな
かつた。例えばバーナチツプの摩耗や汚損、火炎
保持器の焼損、経時的なゆがみ等によつても異常
燃焼が発生し、これら端末機器の故障の発見でき
ず、他の機器により補完的な操作を行つている
と、他の機器まで関連的に故障、性能低下をきた
す慮れがあつた。第1図は排ガス中の汚染物質の
生成量を規定値以下として正常燃焼を行なう従来
方法を示す。例えば火炉1から排出される排ガス
中のNOxの量が多い場合には、送風機5から供
給される燃焼用空気に対して、排ガス混合器14
において、再循環フアン4から供給される排ガス
を混入したり、風箱9に対する空気供給量自体を
低減させて処理する。また煤塵の量が増加した場
合には、逆に空気供給量を増加したり、バーナ2
に対する燃料供給量を減少させたりして対処す
る。その他二段燃焼ポート13の空気供給量等を
適宜操作して汚染物質の減少を図る。なお図中符
号6は空気予熱器、7は集塵器、8は煙突であ
る。 Recently, combustion equipment that uses fossil fuels such as coal, oil, and gas produces nitrogen oxides (NOx).
Regulatory values for air pollutant emissions such as sulfur oxides (SOx) and soot are becoming stricter, and countermeasures are required. However, at present, the causal relationship between the operating conditions of the combustion equipment and the amount of pollutants produced in the exhaust gas is understood under normal conditions at the equipment manufacturing end, and operations are performed on site based on this result. For this reason, there is a problem in that pollutants are generated during the return to normal operation due to a delay in the operation of the operating equipment. For this reason, we constantly analyze the properties of the flame and exhaust gas based on preset items, and compare the analysis results with a preset flame exhaust gas model for normal combustion conditions.
A method has been proposed in which normal combustion is performed by operating each operating part appropriately. This method has the advantage of being able to quickly restore normal combustion compared to conventional methods in which judgment and operation were performed based on human experience. However, combustion abnormalities are not only caused by improper operation of terminal equipment, but may also be caused by malfunctions, performance deterioration, etc. of these terminal equipment, and malfunctions of these equipment could not be detected by the above-mentioned method. For example, abnormal combustion can also occur due to wear and contamination of the burner tip, burnout of the flame holder, distortion over time, etc., and failures in these terminal devices cannot be discovered and complementary operations are performed using other devices. There was a possibility that this would cause related failures and performance deterioration to other equipment. FIG. 1 shows a conventional method in which normal combustion is carried out by keeping the amount of pollutants produced in exhaust gas below a specified value. For example, when the amount of NOx in the exhaust gas discharged from the furnace 1 is large, the exhaust gas mixer 14
In the process, the exhaust gas supplied from the recirculation fan 4 is mixed in, or the amount of air supplied to the wind box 9 itself is reduced. Also, if the amount of soot and dust increases, increase the air supply amount or increase the amount of burner 2.
Take measures such as reducing the amount of fuel supplied. In addition, the amount of air supplied to the two-stage combustion port 13 is appropriately controlled to reduce the amount of pollutants. In the figure, numeral 6 is an air preheater, 7 is a dust collector, and 8 is a chimney.
この発明の目的は、第1図に示した如き燃焼制
御系統において、排ガスの分析を常時行い、この
分析結果に基づいて各操作を行い、常時正常運転
を行うと共に、各端末機器の異常を発見できる方
法を提供することにある。 The purpose of this invention is to constantly analyze exhaust gas in a combustion control system as shown in Figure 1, perform various operations based on the analysis results, maintain normal operation at all times, and discover abnormalities in each terminal device. The goal is to provide a way to do so.
要するにこの発明は、あらかじめ正常燃焼にお
ける火炎、排ガスモデルを求めておき、一方常時
火炎性状、排ガス性状を検知分析し、この分析結
果と上記モデルをコンピユータ等の判断機構で判
断し、機器の作動モデルにより各端末機器を操作
して正常復帰操作を行い、さらに正常復帰操作後
の火炎、排ガス性状を火炎排ガスモデルと再度比
較し、正常に復帰していない場合には端末機器の
異常として警報を発するようにしたものである。 In short, in this invention, a flame and exhaust gas model for normal combustion is obtained in advance, flame properties and exhaust gas properties are constantly detected and analyzed, and this analysis result and the above model are judged by a judgment mechanism such as a computer, and an operating model of the equipment is determined. Operate each terminal device to return to normal, then compare the flame and exhaust gas properties after the normal return operation with the flame exhaust gas model again, and if it does not return to normal, issue an alarm as an abnormality in the terminal device. This is how it was done.
以下この発明の実施例を添付面図を用いて説明
する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
第2図において、火炉15内にはセンサ16を
配置し、符号17aで示す火炉内検知事項、例え
ばFフレームデイテクタ、F火炎スペクトル
F火炉出口ガス温度、F過熱器管メタル温
度、F火炉出口ガス透明度について分析を行
う。また排ガス煙道20内に配置したセンサ19
によつて排ガス中の組成を17bに示す検知事項
に基づいて分析を行う。これらの分析データ(D
……CO、D……SO2、D……NOx、D
……HCD……ダスト、D……O2)は常時検知
回路21を経て、コンピユータ18に検出信号と
して送られ、あらかじめ設定しておいた火炎排ガ
スモデルと比較される。第3図はこの火炎排ガス
モデルの一例を示す。図中斜線は要操作区域であ
り、各事項(D……煤塵、FS……火炎スペクト
ル、FUT……火炉出口ガス温度等)について分
析値が斜線内の区域に入つた場合には後述する各
端末機器を操作して正常燃焼復帰操作を行う。分
析の結果、このモデルにより、例えば排ガス中の
NOx生成量が多く、正常燃焼復帰操作が必要と
なつた場合には以下の順序で行う。先ずコンピユ
ータ18は内部にあらかじめ設定しておいた作動
モデル(ACT−M)により操作すべき端末機器
の種類および、操作の程度。つまりダンパであれ
ば開度、油圧部品であれば油圧の程度等を決定す
る。第4図はこの作動モデルの一例を示す。図中
の符号の意味を略記する。P……エヤレジスタ開
度(ドラフト差)ADD……主燃焼空気用ダンパ
開度、AFDO……空気流量制御ダンパ、SR……
安全域、TSDO……2段燃焼エヤポートダンパ開
度、TO……バーナチツプ詰り(油圧低下)SP…
…噴霧蒸気圧、BW……バーナ摩耗(油圧低)
DO……排ガス混合ダンパ開度(風箱中のO2)前
記NOxの生成量の低減のためには、再循環ガス
混合ダンパの開度を図のマス目部で示す安全域内
に位置するように設定して、排ガス導入量を増加
させる。この場合検知事項17bのDに示す
COの生成量が増加するようならば空気系統操作
A−OPに示す二段燃焼用エアポートの開度を
高めて二段燃焼用空気の導入量を増加させる。こ
の場合その開度はモデルの安全域を逸脱しないよ
うに注意する。コンピユータ18はこれら作動モ
デルに基づき、作動指令を制御器22に与え、こ
の制御器22は空気系統および燃焼系統の各端末
機器を操作して正常燃焼復帰操作を行う。この正
常燃焼復帰操作後の火炎、排ガス性状をさらに検
知分析し、この分析結果を別の回路23によりコ
ンピユータ18内の火炎排ガスモデル送り再比較
を行う。この結果、火炎もしくは排ガス正常に復
帰していない場合には、各端末機のいずれか1つ
もしくは複数のものが正常に作動していないこと
から、装置故障の警報を警報機24により発す
る。 In FIG. 2, a sensor 16 is disposed inside the furnace 15, and detects items inside the furnace indicated by reference numeral 17a, such as F flame detector, F flame spectrum, F furnace outlet gas temperature, F superheater tube metal temperature, F furnace outlet. Analyze gas transparency. In addition, a sensor 19 placed inside the exhaust gas flue 20
The composition of the exhaust gas is analyzed based on the detected items shown in 17b. These analytical data (D
...CO, D... SO2 , D...NOx, D
...HCD...dust, D... O2 ) is sent as a detection signal to the computer 18 via the constant detection circuit 21, and compared with a flame exhaust gas model set in advance. FIG. 3 shows an example of this flame exhaust gas model. The diagonal lines in the figure are areas that require operation, and if the analysis value for each item (D...soot dust, FS...flame spectrum, FUT...furnace outlet gas temperature, etc.) falls within the shaded area, the following operations will be performed. Operate the terminal equipment to restore normal combustion. As a result of the analysis, this model shows that, for example,
If the amount of NOx produced is large and it becomes necessary to restore normal combustion, follow the steps below. First, the computer 18 determines the type of terminal equipment to be operated and the degree of operation based on an operation model (ACT-M) that is preset internally. In other words, if it is a damper, it determines the opening degree, and if it is a hydraulic component, it determines the level of oil pressure. FIG. 4 shows an example of this operating model. The meanings of the symbols in the figure are abbreviated. P...Air register opening (draft difference) ADD...Main combustion air damper opening, AFDO...Air flow rate control damper, SR...
Safety range, TSDO...Two-stage combustion air port damper opening, TO...Burner tip clogged (oil pressure drop) SP...
...Spray vapor pressure, BW...Burner wear (low oil pressure)
DO...Opening degree of exhaust gas mixing damper (O 2 in the wind box) In order to reduce the amount of NOx generated, the opening degree of the recirculating gas mixing damper must be located within the safe range shown by the squares in the figure. setting to increase the amount of exhaust gas introduced. In this case, it is shown in D of detection matter 17b.
If the amount of CO produced increases, increase the opening degree of the second-stage combustion air port shown in air system operation A-OP to increase the amount of second-stage combustion air introduced. In this case, care must be taken to ensure that the opening degree does not deviate from the safety range of the model. Based on these operating models, the computer 18 gives an operating command to the controller 22, and the controller 22 operates each terminal device of the air system and the combustion system to restore normal combustion. The flame and exhaust gas properties after this normal combustion recovery operation are further detected and analyzed, and the analysis results are sent to a flame exhaust gas model in the computer 18 through another circuit 23 for re-comparison. As a result, if the flame or exhaust gas has not returned to normal, one or more of the terminals is not operating normally, and the alarm 24 issues an alarm indicating a device failure.
この発明によれば、火炎および排ガスの性状を
常に監視し、これに対応する操作を行うようにし
ているので、燃焼を常時正常に保つことができ
る。 According to this invention, since the properties of the flame and exhaust gas are constantly monitored and corresponding operations are performed, combustion can be maintained normally at all times.
また、各端末器の操作を作動モデルに基づいて
行うので、装置の作動状態と作動した効果を比較
することにより、装置の故障、性能低下を発見で
きる。 In addition, since each terminal device is operated based on the operation model, failures and performance deterioration of the device can be discovered by comparing the operating state of the device and the effect of the operation.
第1図は従来方法により正常燃焼確保の方法を
示す燃焼装置の系統図、第2図はこの発明に係る
方法を示す燃焼制御の系統図、第3図は火炎排ガ
スモデルの一例を示すグラフ、第4図は端末機器
の作動モデルの一例を示すグラフである。
15……火炉、16,19……センサ、17a
……火炎検知事項、17b……排ガス検知事項、
18……コンピユータ、22……制御器、24…
…警報器、F−OP……燃料流量制御弁、F−
OP……燃料温度制御弁、F−OP……バーナ
入口弁、F−OP……噴霧蒸気圧力制御弁、A
−OP……空気流量制御ダンパ、A−OP……
再循環ガス混合ダンパ、A−OP……再循環ガ
スダンパ、A−OP……エアレジスタ、A−OP
……バーナベーン開度、A−OP……二段燃
焼用エアポート。
Fig. 1 is a system diagram of a combustion device showing a method of ensuring normal combustion using a conventional method, Fig. 2 is a system diagram of combustion control showing a method according to the present invention, and Fig. 3 is a graph showing an example of a flame exhaust gas model. FIG. 4 is a graph showing an example of an operating model of a terminal device. 15... Furnace, 16, 19... Sensor, 17a
...Flame detection matter, 17b...Exhaust gas detection matter,
18...computer, 22...controller, 24...
...Alarm, F-OP...Fuel flow control valve, F-
OP... Fuel temperature control valve, F-OP... Burner inlet valve, F-OP... Spray steam pressure control valve, A
−OP……Air flow rate control damper, A-OP……
Recirculating gas mixing damper, A-OP...Recirculating gas damper, A-OP...Air register, A-OP
...Burner vane opening, A-OP...Airport for two-stage combustion.
Claims (1)
び排ガスの性状を検知分析し、この分析結果をコ
ンピユータ等の判断機構内にあらかじめ設定した
火炎モデルおよび排ガスモデルと比較検討し、こ
の結果に基づいて燃焼装置の燃料系統および空気
系統の端末機器を操作して正常燃焼に復帰させる
ものにおいて、正常燃焼復帰操作後の火炎性状お
よび排ガス性状を再度火炎モデルおよび排ガスモ
デルと比較し、この比較により正常燃焼復帰操作
後の火炎性状および排ガス性状が正常に復帰して
いない場合、端末機器の故障もしくは性能低下と
して警報を発することを特徴とする燃焼装置の適
正燃焼方法。1 Detect and analyze the properties of the flame and exhaust gas based on the preset items, compare and examine the analysis results with the flame model and exhaust gas model preset in a judgment mechanism such as a computer, and use the combustion equipment based on these results. In cases where the terminal equipment of the fuel system and air system are operated to restore normal combustion, the flame properties and exhaust gas properties after the normal combustion restoration operation are compared again with the flame model and the exhaust gas model, and based on this comparison, the normal combustion restoration operation is A proper combustion method for a combustion device, characterized in that if the flame properties and exhaust gas properties do not return to normal, a warning is issued indicating a failure or performance decline in terminal equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3710479A JPS55131624A (en) | 1979-03-30 | 1979-03-30 | Method for proper combustion for combustor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3710479A JPS55131624A (en) | 1979-03-30 | 1979-03-30 | Method for proper combustion for combustor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55131624A JPS55131624A (en) | 1980-10-13 |
JPS6142165B2 true JPS6142165B2 (en) | 1986-09-19 |
Family
ID=12488275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3710479A Granted JPS55131624A (en) | 1979-03-30 | 1979-03-30 | Method for proper combustion for combustor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55131624A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200044913A (en) | 2017-08-31 | 2020-04-29 | 가부시키가이샤 아데카 | Additive for electrolytic plating solution, electrolytic plating solution containing additive for electrolytic plating solution, and electrolytic plating method using the electrolytic plating solution |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008025967A (en) * | 2006-07-25 | 2008-02-07 | Chugoku Electric Power Co Inc:The | Air pollution control system and air pollution control method |
-
1979
- 1979-03-30 JP JP3710479A patent/JPS55131624A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200044913A (en) | 2017-08-31 | 2020-04-29 | 가부시키가이샤 아데카 | Additive for electrolytic plating solution, electrolytic plating solution containing additive for electrolytic plating solution, and electrolytic plating method using the electrolytic plating solution |
US11624120B2 (en) | 2017-08-31 | 2023-04-11 | Adeka Corporation | Additive for electrolytic plating solutions, electrolytic plating solution containing additive for electrolytic plating solutions, and electrolytic plating method using electrolytic plating solution |
Also Published As
Publication number | Publication date |
---|---|
JPS55131624A (en) | 1980-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105276611B (en) | Power plant boiler firing optimization optimization method and system | |
US5423272A (en) | Method for optimizing the operating efficiency of a fossil fuel-fired power generation system | |
US7838297B2 (en) | Combustion optimization for fossil fuel fired boilers | |
CN103697482B (en) | A kind of organic exhaust gas boiler heating power burning processing system and process technique | |
CN113266843B (en) | Combustion optimization method, system and device for coal-fired boiler | |
US20060204417A1 (en) | Method for treating emissions | |
US20060266018A1 (en) | Exhaust control system implementing sulfur detection | |
US8521333B2 (en) | Method and apparatus for flue gas recirculation | |
KR100834306B1 (en) | Emission treatment system | |
JPS6142165B2 (en) | ||
KR101965437B1 (en) | A boiler control method for reducing nitrogen oxides by adjusting combustion air through detection of real-time exhaust gas components | |
Payne et al. | Efficient boiler operations sourcebook | |
KR101989119B1 (en) | Exhaust Gas Reduction Apparatus | |
JPS6318090B2 (en) | ||
Straitz III et al. | Combat NOx with better burner design | |
KR20210131562A (en) | A method of increasing the heating rate by controlling the oxidant concentration and thermal energy in the circulating fluidized bed reactor and circulating fluidized bed combustion system using the same | |
JP3500686B2 (en) | Operating method of cogeneration system | |
Kilgroe et al. | Control of PCDD/PCDF emissions from refuse-derived fuel combustors | |
KR100963088B1 (en) | Air supply system for the optimum condition in a boiler | |
JPH0225091B2 (en) | ||
JP5615502B2 (en) | Denitration catalyst protection method and denitration catalyst protection device | |
JPH0220896B2 (en) | ||
Wu et al. | Boiler implosion control in fossil fuel power plants | |
JP4639562B2 (en) | Boiler SO3 suppression type air-fuel ratio control method | |
JPS633205B2 (en) |