JPS63180004A - Combustion method of boiler - Google Patents

Combustion method of boiler

Info

Publication number
JPS63180004A
JPS63180004A JP1202387A JP1202387A JPS63180004A JP S63180004 A JPS63180004 A JP S63180004A JP 1202387 A JP1202387 A JP 1202387A JP 1202387 A JP1202387 A JP 1202387A JP S63180004 A JPS63180004 A JP S63180004A
Authority
JP
Japan
Prior art keywords
air
burner
combustion
fuel
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202387A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takamatsu
高松 宏至
Yatsuhiro Iwanami
岩波 八尋
Fumio Yamamoto
文雄 山本
Masakazu Kamishina
神志那 雅数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1202387A priority Critical patent/JPS63180004A/en
Publication of JPS63180004A publication Critical patent/JPS63180004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of hydrogen sulfide in combustion gas and prevent the wear of generating tubes without increasing the amount of nitrogen oxides by a method wherein an air fuel is chosen to be low at the upper burner and high at the lower burner. CONSTITUTION:Combustion gas comes out from a three-stage burner group 3, 3', 3'' installed at the bottom of a combustion chamber 1 and passes through a No.1 superheater tube group 4', a fuel economizer 5, and an air preheater 6 and is then discharged from a stack 7. Combustion air is supplied to the burner group 3, 3', 3'' with a forced blower 11, an air duct 12, branch ducts 13, and air-flow limiting dampers 14. An air fuel ratio constituted by the supply amounts of air and fuel is chosen to be 1.25-1.7 at the lowest stage burner 3'' and is reduced towards the most upper stage; therefore, combustion is carried out in the range of 1.0-1.2 for the air fuel ratio as the whole burner group.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラーの燃焼方法の改良に関するものである
。詳しくは本発明は、重油燃料の多様化に伴い、燃焼性
が悪くかつイオウ分が多い重質化した重油を燃料として
用いた場合において、燃焼時における硫化水素の生成を
抑制するのに好適なボイラーの燃焼方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in the combustion method of a boiler. Specifically, with the diversification of heavy oil fuels, the present invention provides a method suitable for suppressing the production of hydrogen sulfide during combustion when heavy fuel oil with poor flammability and high sulfur content is used as a fuel. This relates to the combustion method of boilers.

〔従来の技術〕[Conventional technology]

近年、複数のバーナ群、例えば3段以上のバーナ群を備
えたボイラーにおいては、重油燃料の多様化に伴い、燃
焼性が悪くかつイオウ分の多い重質化した重油を燃料と
して用い、かつ、窒素酸化物の生成抑制、排煙対策及び
省エネルギ一対策等の観点から低酸素燃焼法、即ち、燃
焼装置出口の燃焼排ガス中の酸素濃度を低くする燃焼法
を採用し、各バーナへの空気の配分を均等とする(各バ
ーナの空燃比を一定にする)方法、下段から上段へ向け
て増加させる(空燃比を増加させる)方法或いは2段燃
焼法等により運転されている。
In recent years, with the diversification of heavy oil fuels, boilers equipped with multiple burner groups, for example burner groups of three or more stages, are using heavy fuel oil with poor combustibility and high sulfur content as fuel, and From the viewpoint of suppressing the production of nitrogen oxides, controlling smoke emissions, and saving energy, we adopted a low-oxygen combustion method, that is, a combustion method that lowers the oxygen concentration in the combustion exhaust gas at the combustion equipment outlet, and reduced the air flow to each burner. It is operated by a method in which the air-fuel ratio is distributed evenly (the air-fuel ratio of each burner is kept constant), a method in which the air-fuel ratio is increased from the lower stage to the upper stage (the air-fuel ratio is increased), or a two-stage combustion method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の低酸素燃焼法においては炉内での
燃焼状態が悪化して燃焼ガス雰囲気が変化し、この影響
によって火炉の蒸発管の特定部分(%に下段バーナの下
部付近の蒸発管)において腐食によると見られる著しい
減肉現象が生起するという問題点があった。
However, in the above-mentioned low-oxygen combustion method, the combustion state in the furnace deteriorates and the combustion gas atmosphere changes, and due to this effect, certain parts of the evaporation tube of the furnace (in particular, the evaporation tube near the bottom of the lower burner) There was a problem in that a significant thinning phenomenon that appeared to be caused by corrosion occurred.

上記蒸発管の腐食防止対策として、従来、■ Mg系防
食添加剤を注入する方法、■ cr拡散浸透処理や耐食
性合金の溶射等による表面処理、 等が知られている。
Conventionally known measures to prevent corrosion of the evaporator tube include (1) injection of a Mg-based anticorrosive additive, (2) surface treatment by Cr diffusion and penetration treatment, thermal spraying of a corrosion-resistant alloy, etc.

しかしながら、上記■の方法では、還元性のH,Sを含
む環境下においてMgS化合物を生成して防食機能を損
失するばかりか、条件によっては腐食を促進させる可能
性があり、また、上記■の方法上は、高温で長時間使用
した場合に表面剥離を起す恐れがある。
However, in the method (2) above, MgS compounds are generated in an environment containing reducing H and S, which not only causes loss of anticorrosive function, but also may accelerate corrosion depending on the conditions. Due to the method, there is a risk of surface peeling when used at high temperatures for a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記従来技術の問題点を解決すべくその原
因究明に努めた結果、燃焼時における酸素不足環境(還
元性雰囲気)によって硫化水素が生成し、この硫化水素
が引き金となって蒸発管を腐食させていることが判明し
た。
The inventors of the present invention endeavored to investigate the cause of the problem in the prior art described above, and found that hydrogen sulfide was generated due to the oxygen-deficient environment (reducing atmosphere) during combustion, and this hydrogen sulfide triggered evaporation. It turned out that the pipes were corroded.

上記燃焼時における硫化水素の生成を抑制すべく、上記
した従来法における空気流量の配分割合で炉内出口の排
ガス中の酸素濃度を高くし過剰空気率を高くする運転法
を試みたが、この方法でも、特に下段バーナの火炎先端
部付近の燃焼ガス中の硫化水素濃度を減少させることが
できないことがわかった。
In order to suppress the generation of hydrogen sulfide during the combustion described above, an operating method was attempted in which the air flow distribution ratio used in the conventional method was used to increase the oxygen concentration in the exhaust gas at the furnace outlet and increase the excess air ratio. It was found that this method was also unable to reduce the hydrogen sulfide concentration in the combustion gas, especially near the flame tip of the lower burner.

本発明者等は上記燃焼時に卦ける硫化水素の生成を燃焼
改善によって抑制すべく鋭意検討を重ねた結果、空気の
配分割合を従来法とは逆に下段パー゛すへの空燃比を著
しく高くし、上段バーナへの空燃比を低くするような運
転法を採用することによって、全体としては低酸素燃焼
法であっても燃焼時における硫化水素の生成を著しく抑
制することができ、これによシ蒸発管の腐食を著しく減
少させることができ、かつ、燃焼排ガス中の煤塵量も減
少させることができ1さらに驚くべきことに窒素酸化物
は特に増加しないことを見出して本発明を完成した。
The inventors of the present invention have conducted intensive studies to suppress the generation of hydrogen sulfide that occurs during combustion by improving combustion, and as a result, the air-fuel ratio to the lower stage was significantly increased, contrary to the conventional method. However, by adopting an operating method that lowers the air-fuel ratio to the upper stage burner, it is possible to significantly suppress the production of hydrogen sulfide during combustion, even with the low-oxygen combustion method as a whole. The present invention was completed based on the discovery that the corrosion of the evaporator tube can be significantly reduced, and the amount of soot and dust in the combustion exhaust gas can also be reduced.1 Furthermore, surprisingly, nitrogen oxides do not particularly increase.

即ち本発明の要旨は、燃焼室の垂直面に少なくとも3段
のバーナ群を備え、燃料の供給量を各バーナ群ごとに制
御し、かつ燃焼用空気の供給量を各バーナごとまたは各
バーナ群ごとに制御し得るボイラー燃焼装置において、
燃料としてイオウ分が1重量%以上、残留炭素分が7重
量%以上で、かつ、SO℃での動粘度が/θ0センチス
トークス以上である重油を使用し、これを、各バーナ群
に供給する空気供給量と燃料供給量との空燃比を最下段
バーナ群でへコ5〜/、?とし、最下段バーナ群から最
上段バーナ群 ゛に向けて空燃比を減少させ、かつ、全
バーナ群における空燃比を八〇 −/、コの範囲として
燃焼させることを特徴とするボイラーの燃焼方法、に存
する。
That is, the gist of the present invention is to provide at least three stages of burner groups on the vertical plane of a combustion chamber, to control the amount of fuel supplied to each burner group, and to control the amount of combustion air supplied to each burner or each burner group. In boiler combustion equipment that can be controlled individually,
Heavy oil with a sulfur content of 1% by weight or more, a residual carbon content of 7% by weight or more, and a kinematic viscosity of /θ0 centistokes or more at SO°C is used as fuel, and this is supplied to each burner group. The air-fuel ratio between the air supply amount and the fuel supply amount is 5~/, ? A combustion method for a boiler, characterized in that the air-fuel ratio is decreased from the lowest burner group to the uppermost burner group, and the air-fuel ratio in all burner groups is in the range of 80 −/. , resides in

以下、図面を参照しつつ本発明につき詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法で使用されるボイラー燃焼装置の一
例を示す模式的縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of a boiler combustion apparatus used in the method of the present invention.

竪 図中、(1)は算型の燃焼室であり、その壁面は水冷壁
を形成する蒸発管(水管)(2)で構成されており、燃
焼室(1)の下部には3段のバーナ群(3)、((至)
、(4が設けられている。燃焼室(1)からの燃焼ガス
流路の下流には第1過熱器管群(4)が設けられ、さら
にその下流には第1過熱器管群(4つ、節炭器(5)及
び空気予熱器(6)が順次設けられている。
In the vertical diagram, (1) is a calculation-shaped combustion chamber, whose wall is composed of evaporation tubes (water tubes) (2) that form water-cooled walls, and at the bottom of the combustion chamber (1) there are three stages. Burner group (3), ((to)
, (4). A first superheater tube group (4) is provided downstream of the combustion gas flow path from the combustion chamber (1), and further downstream thereof a first superheater tube group (4). A power economizer (5) and an air preheater (6) are sequentially provided.

燃焼ガスはこれらを通シ、次いで煙道を経由して煙突(
7)に導かれ、大気中に排出される。燃焼用空気をバー
ナ群(3)、((至)、(jに供給するために強圧通風
機αη、空気ダクト(6)、分岐ダクト(至)及び空気
流量制御ダンパα尋が設けられている。また各バーナ群
に燃料を供給するために燃料配管(3)、燃料供給分岐
管(9)及び燃料制御弁α1が設置されている。
Combustion gas passes through these, then through the flue to the chimney (
7) and is emitted into the atmosphere. In order to supply combustion air to the burner groups (3), ((to), (j), a strong pressure ventilation fan αη, an air duct (6), a branch duct (to), and an air flow rate control damper αhi are provided. Further, a fuel pipe (3), a fuel supply branch pipe (9), and a fuel control valve α1 are installed to supply fuel to each burner group.

本発明方法においては、燃料としてイオウ分が1重量%
以上、好ましくは1〜7重量%、残留a炭素分が7重量
%以上、好ましくは7〜=S重it%で、かつ30℃で
の動粘度がiooセンチストークス(C8t )以上、
好ましくは100〜コ0,000 cStである重油が
用いられる。特にイオウ分が2〜6重量%、残留炭素分
が10〜コ5重量%で、かつ、SO℃での動粘度が30
0〜/ o、o o o cstである重油を用いた場
合には本発明の効果が著しい。
In the method of the present invention, the sulfur content is 1% by weight as the fuel.
The above, preferably 1 to 7% by weight, the residual a carbon content is 7% by weight or more, preferably 7 to 1% by weight, and the kinematic viscosity at 30°C is io centistokes (C8t) or more,
Preferably, heavy oil having a molecular weight of 100 to 0,000 cSt is used. In particular, the sulfur content is 2 to 6% by weight, the residual carbon content is 10 to 5% by weight, and the kinematic viscosity at SO℃ is 30%.
The effect of the present invention is remarkable when heavy oil having a cst of 0~/o, o o o cst is used.

本明細書において「空燃比」は次のようにして算出され
る。即ち燃料(重油)中の炭素、水素及びイオウの含有
量(Kg/Kf−燃料)をそれぞれC,H及びSとして
次式により理論空気量(Nm’/Kp−燃料)を算出す
る。
In this specification, "air-fuel ratio" is calculated as follows. That is, the theoretical air amount (Nm'/Kp-fuel) is calculated by the following formula, assuming that the content of carbon, hydrogen, and sulfur (Kg/Kf-fuel) in the fuel (heavy oil) is C, H, and S, respectively.

理論空気量冨!!;、t9・C+ 24.7・H+、1
..1.7・8次にこれを用いて次式によシ空燃比を算
出する0 本発明は、各バーナ群における空気供給量と燃料供給量
との空燃比が、 最下段バーナ群〉中段バーナ群〉最上段バーナ群となる
条件下で燃焼を行なわせることを特徴とするものである
。より具体的には最下段のバーナ群の空燃比を1.λ5
〜/、7、好ましくは1.3〜1.6の範囲、中段のバ
ーナ群の空燃比を通常/、0〜/、2、好ましくは/、
0 ! −/、−の範囲、最上段のバーナ群の空燃比を
通常0.7〜/、01好ましくは09g −0,9!t
の範囲とし、かつ全バーナ群における空燃比を1.0〜
1.2の範囲に調節して燃焼を行なわせるものである。
Theoretical air volume! ! ;, t9・C+ 24.7・H+, 1
.. .. 1.7.8 Next, use this to calculate the air-fuel ratio according to the following formula. In the present invention, the air-fuel ratio between the air supply amount and the fuel supply amount in each burner group is as follows: lowermost burner group > middle burner group Group> This is characterized in that combustion is performed under the conditions of the uppermost burner group. More specifically, the air-fuel ratio of the bottom burner group is set to 1. λ5
~/, 7, preferably in the range of 1.3 to 1.6, the air-fuel ratio of the middle burner group is normally /, 0 to /, 2, preferably /,
0! -/, - range, the air-fuel ratio of the top burner group is usually 0.7 to /, 01 preferably 09g -0,9! t
and the air-fuel ratio in all burner groups to be in the range of 1.0 to
The combustion is controlled within the range of 1.2.

この場合、炉出口燃焼排ガス中の酸素濃度がO9S −
S容量チの範囲内となるのが好ましい。
In this case, the oxygen concentration in the flue gas at the furnace outlet is O9S −
It is preferable that the S capacity is within the range of .

本発明方法における燃焼条件と従来法における燃焼条件
との違いは、従来法が窒素酸化物の生成を抑制する目的
で下段バーナ域において空燃比くlの不完全燃焼域を形
成し、その下流になる上段バーナ域でもって完全燃焼域
を形成させるような燃焼条件が採用されているのに対し
、本発明方法においては燃焼性の悪い燃料を用い、最下
段バーナ域において空燃比を/、、Zj〜1.7の範囲
として完全燃焼域を形成させ、全燃焼域が完全燃焼域を
形成するような燃焼条件が採用されている点である。
The difference between the combustion conditions in the method of the present invention and the combustion conditions in the conventional method is that in the conventional method, an incomplete combustion region with an air-fuel ratio of l is formed in the lower burner region for the purpose of suppressing the production of nitrogen oxides, and in the downstream In contrast, in the method of the present invention, a fuel with poor combustibility is used, and the air-fuel ratio in the lowest burner area is set to /, Zj. The point is that combustion conditions are adopted such that a complete combustion region is formed in the range of 1.7 to 1.7, and the entire combustion region forms a complete combustion region.

本発明方法において、最下段バーナ群の空燃比が八−3
未満では、燃焼状態が悪くなり燃焼時における硫化水素
の生成を抑制する効果が小さい。なお本発明方法は上記
したような燃焼性の悪い燃料を用いた場合に大きな効果
が認められるものであり、燃焼性の良い燃料を用いた場
合には効果は小さい。
In the method of the present invention, the air-fuel ratio of the lowest stage burner group is 8-3.
If it is less than that, the combustion condition will deteriorate and the effect of suppressing the generation of hydrogen sulfide during combustion will be small. Note that the method of the present invention is highly effective when using a fuel with poor combustibility as described above, and is less effective when using a fuel with good combustibility.

第一図は本発明方法で使用される好適々ボイラー燃焼装
置の燃焼室部分の例を示す模式的縦断面図である。同図
に示すものも3段のバーナ群を備えたものであシ、各バ
ーナはその上下に設けた空気流量制御ダンパによって空
気流量が調節できるものである。即ち、各バーナ(3)
、((イ)、(jへ燃料供給分岐管(9)、(9’l、
(95から所定量の燃料を供給し、一方燃焼用空気を空
気ダクト(2)よりそれぞれ沙岐した分岐ダクト(至)
、−を経て第1ダンパ(2)、−の開度調節により空気
流量を上下に配分し、さらに各バーナの入口側に設けら
れた上側第一ダンパα7)、C75、an及び下側第λ
ダンパ(至)、(至)、ぽの開度調節によってそれぞれ
の空気流量を調節し、各バーナ(3)、(3’l、(4
の空燃比を所望の範囲に調節するものである。
FIG. 1 is a schematic vertical sectional view showing an example of a combustion chamber portion of a boiler combustion apparatus preferably used in the method of the present invention. The burner shown in the figure is also equipped with a three-stage burner group, and the air flow rate of each burner can be adjusted by air flow control dampers provided above and below the burner. That is, each burner (3)
, ((a), (fuel supply branch pipe (9) to (j), (9'l,
(A predetermined amount of fuel is supplied from 95, and combustion air is supplied from air duct (2) to branch ducts (to).
, -, the air flow rate is distributed vertically by adjusting the opening of the first damper (2), -, and the upper first damper α7), C75, an provided on the inlet side of each burner and the lower first damper λ
The air flow rate of each burner (3), (3'l, (4) is adjusted by adjusting the opening of the damper (to), (to), and po.
The air-fuel ratio is adjusted to a desired range.

第3図は本発明方法で使用されるよシ好適なボイラー燃
焼装置の燃焼室部分の例を示す模式的縦断面図である。
FIG. 3 is a schematic longitudinal sectional view showing an example of a combustion chamber portion of a boiler combustion apparatus suitable for use in the method of the present invention.

同図に示すものは各バーナに供給する燃焼用空気を一次
空気及び二次空気に分けてそれぞれ流量調節ができるも
のである。
The one shown in the figure is one in which the combustion air supplied to each burner can be divided into primary air and secondary air, and the flow rates can be adjusted for each.

即ち、各バーナ(31、(,3’l、 <f)へ所定量
供給される燃料に対し、燃焼用空気を空気ダクト(2)
よシ分岐ダクl)を経て、各バーナの一次空気流路に設
けられたダンパ01)、ct’)、c2う及び二次空気
流路に設けられた上側ダンバニ)、(2)、(ml及び
下側ダンパ(23)、(2)、(2)のそれぞれの開度
を調節して所望の空燃比となるように各バーナへの一次
空気及び二次空気をそれぞれ調節するものである。
That is, for a predetermined amount of fuel supplied to each burner (31, (, 3'l, <f), combustion air is supplied to the air duct (2).
The dampers 01), ct'), c2 provided in the primary air flow path of each burner, and the upper dampers provided in the secondary air flow path), (2), (ml The opening degree of each of the lower dampers (23), (2), and (2) is adjusted to adjust the primary air and secondary air to each burner so as to obtain a desired air-fuel ratio.

特に最下段バーナ(35については中段バーナ(j及び
上段バーナ(3)に比べて燃焼状態が悪くなり、硫化水
素の生成が増加する恐れがあるので、特に燃焼性の悪い
燃料を用いた場合には、最下段バーナ(jの下側ダンパ
(2t)の開度をほぼ全開にして二次空気量を増加させ
て、所望の空燃比に調節する運転方法を採用するのが望
ましい。
In particular, the lowest stage burner (35) has a worse combustion condition than the middle stage burner (j) and the upper stage burner (3), and the generation of hydrogen sulfide may increase. It is desirable to adopt an operating method in which the lower damper (2t) of the lowest stage burner (j) is opened almost fully to increase the amount of secondary air and adjust the air-fuel ratio to the desired air-fuel ratio.

また、燃焼室におけるバーナの配置については、前面燃
焼型、対向燃焼型及び接線燃焼型のいずれでもよいが、
特に接線燃焼型のものは窒素酸化物の生成を著しく抑制
できるので望ましい。第φ図は接線燃焼型のバーナ配置
を有する燃焼室のバーナ部の模式的横断面図であり、こ
こでの接線燃焼は燃焼室の四隅にバーナを配置し、はぼ
中心に向けて燃料を吹出して燃焼させるものである。
Regarding the burner arrangement in the combustion chamber, any of the front combustion type, facing combustion type, and tangential combustion type may be used.
In particular, a tangential combustion type is desirable because it can significantly suppress the production of nitrogen oxides. Figure φ is a schematic cross-sectional view of the burner section of a combustion chamber that has a tangential combustion type burner arrangement. It is blown out and combusted.

なおこれまで燃焼室に3段のバーナ群を配置した場合に
ついて具体的に説明したが、本発明はこれに限定される
ものではなく、り段のバーナ群あるいはそれ以上のバー
ナ群を配置した場合であってもよい。また最上段のバー
ナ群の上部にさらに2次空気を供給してコ段燃焼させる
方式をとることもできる。
Although the case where three stages of burner groups are arranged in the combustion chamber has been specifically described, the present invention is not limited to this, and the present invention is not limited to this, but can also be applied to cases where three stages of burner groups or more burner groups are arranged. It may be. Alternatively, it is also possible to adopt a method in which secondary air is further supplied to the upper part of the burner group in the uppermost stage to perform combustion in the second stage.

〔実施例〕〔Example〕

次に本発明の具体的態様を実施例によって更に詳細に説
明するが、本発明はその要旨を越えない限シ、以下の実
施例によって限定されるものではない。
Next, specific embodiments of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

なお実施例中の用語の意味は次の通シである。Note that the terms used in the examples have the following meanings.

(:)過剰空気率=2//Cコt−A)A:燃焼排ガス
中酸素濃度(4) (1()平均空気量(’Hrrl/Ko−燃料)=理論
空気量×過剰空気率 010  全空気量(N−) 一平均空気量X燃料量(助) 4搬 空気比率(1) (V)  下段バーナの「=次空気配分比率」下段バー
ナ1次窒気電+−次空気量 υ; 下段バーナの「λ次空気下/λ次空気上」比実雄
側−l〜3 第3図に示す空気ダンパ構成であるが、たたしダ段のバ
ーナ群からなシ、各バーナ群は第4図に示す接線燃焼型
のバーナ配置を有するボイラー燃焼装置を用い、第1表
に示す性状の重油及び燃焼条件で燃焼を行なわせた。そ
の結果を第1表に示す。
(:) Excess air rate = 2//Ckot-A) A: Oxygen concentration in combustion exhaust gas (4) (1 () Average air amount ('Hrrl/Ko-Fuel) = Theoretical air amount x Excess air rate 010 Total air amount (N-) Average air amount ``Below λ-th air/Above λ-th air'' Himio side of lower stage burner - 1 ~ 3 The air damper configuration shown in Fig. 3 is different from the burner groups in the first stage, and each burner group is Using a boiler combustion apparatus having a tangential combustion type burner arrangement as shown in FIG. 4, combustion was carried out using heavy oil having the properties and combustion conditions shown in Table 1. The results are shown in Table 1.

比較例−/−J 実施例1において燃焼条件を第1表に示す条件に変えて
燃焼を行なわせた。その結果を第1表に示す。
Comparative Example -/-J In Example 1, the combustion conditions were changed to those shown in Table 1 and combustion was performed. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば燃焼性の悪い重質油を燃料として用
いた場合でも各バーナの燃焼状態を最適な状態で運転す
ることができ、燃焼時における硫化水素の生成を者しく
減少することができ、これにより蒸発管の腐食を著しく
少なくすることができ、蒸発管の減肉による取替頻度を
著しく減少させることができるので、工業的意義が大き
い。さらに本発明方法では、燃焼排ガス中の煤塵量も大
幅に減少させることができる〇
According to the method of the present invention, even when heavy oil with poor combustibility is used as fuel, each burner can be operated in an optimal combustion state, and the generation of hydrogen sulfide during combustion can be significantly reduced. As a result, corrosion of the evaporator tube can be significantly reduced, and the frequency of replacement due to thinning of the evaporator tube can be significantly reduced, which is of great industrial significance. Furthermore, the method of the present invention can also significantly reduce the amount of soot and dust in combustion exhaust gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で使用されるボイラー燃焼装置の一
例を示す模式的縦断面図である。第2図は本発明方法で
使用される好適なボイラー燃焼装置の燃焼室部分の例を
示す模式的縦断面図である。第3図は本発明方法で使用
されるよシ好適なボイラー燃焼装置の燃焼室部分の例を
示す模式的縦断面図である。また第参図は接線燃焼型の
バーナ配置を有する燃焼室のバーナ部の模式的横断面図
である。 l:燃焼室、      2:L廃管、3、!1.?#
:バーナ群、  ダニ第コ過熱器管群、弘′:第7過熱
器管群   S:節炭器、6:空気予熱器、    り
:煙突、 ざ:燃料配管、    12=空気ダクト、/6、/6
“:第1ダンパ、 /7、/デ、/τ′ :上側第コダンパ、/11. /
g′、/r :下側第コダンパ、コ/Sコ/’、21“
 ニー次空気流路ダンパ、ココ、コ2’、2!’ :二
次空気流路上側ダンパ、コj、23’Sコ、?#:二次
空気流路下側ダンパ。 特許出願人  三菱化成工業株式会社 代 理 人 弁理士長谷用  − ほか1名 亮1 因 σ 吊2図 昂40
FIG. 1 is a schematic vertical sectional view showing an example of a boiler combustion apparatus used in the method of the present invention. FIG. 2 is a schematic longitudinal sectional view showing an example of a combustion chamber portion of a preferred boiler combustion apparatus used in the method of the present invention. FIG. 3 is a schematic longitudinal sectional view showing an example of a combustion chamber portion of a boiler combustion apparatus suitable for use in the method of the present invention. Further, Figure 1 is a schematic cross-sectional view of a burner section of a combustion chamber having a tangential combustion type burner arrangement. l: Combustion chamber, 2: L waste pipe, 3,! 1. ? #
: Burner group, No. 1 superheater tube group, Hiro': 7th superheater tube group S: Economizer, 6: Air preheater, R: Chimney, Z: Fuel piping, 12 = Air duct, /6, /6
“: 1st damper, /7, /de, /τ′: Upper co-damper, /11. /
g', /r: Lower No. Co damper, Co/S Co/', 21"
Knee air flow path damper, here, here 2', 2! ': Secondary air flow upper damper, koj, 23'Sko, ? #: Secondary air flow path lower damper. Patent applicant: Mitsubishi Chemical Industries, Ltd. Representative: Patent attorney Haseyo - 1 other person

Claims (4)

【特許請求の範囲】[Claims] (1)燃焼室の垂直面に少なくとも3段のバーナ群を備
え、燃料の供給量を各バーナ群ごとに制御し、かつ燃焼
用空気の供給量を各バーナごとまたは各バーナ群ごとに
制御し得るボイラー燃焼装置において、燃料としてイオ
ウ分が1重量%以上、残留炭素分が7重量%以上で、か
つ、50℃での動粘度が100センチストークス以上で
ある重油を使用し、これを、各バーナ群に供給する空気
供給量と燃料供給量との空燃比を最下段バーナ群で1.
25〜1.7とし、最下段バーナ群から最上段バーナ群
に向けて空燃比を減少させ、かつ、全バーナ群における
空燃比を1.0〜1.2の範囲として燃焼させることを
特徴とするボイラーの燃焼方法。
(1) At least three stages of burner groups are provided on the vertical plane of the combustion chamber, the amount of fuel supplied is controlled for each burner group, and the amount of combustion air supplied is controlled for each burner or each burner group. In the boiler combustion equipment to be obtained, heavy oil having a sulfur content of 1% by weight or more, a residual carbon content of 7% by weight or more, and a kinematic viscosity of 100 centistokes or more at 50°C is used as a fuel. The air-fuel ratio between the air supply amount and the fuel supply amount supplied to the burner group is set to 1.
25 to 1.7, the air-fuel ratio decreases from the lowest burner group to the highest burner group, and combustion is performed with the air-fuel ratio in all burner groups in the range of 1.0 to 1.2. The boiler combustion method.
(2)特許請求の範囲第1項に記載のボイラーの燃焼方
法において、各バーナ群の各バーナが燃焼室の水平断面
において接線燃焼型に配置されていることを特徴とする
方法。
(2) A boiler combustion method according to claim 1, characterized in that each burner in each burner group is arranged in a tangential combustion type in a horizontal section of the combustion chamber.
(3)特許請求の範囲第1項又は第2項に記載のボイラ
ーの燃焼方法において、重油がイオウ分の2重量%以上
、残留炭素分が10重量%以上で、かつ50℃での動粘
度が300センチストークス以上のものであることを特
徴とする方法。
(3) In the boiler combustion method according to claim 1 or 2, the heavy oil has a sulfur content of 2% by weight or more, a residual carbon content of 10% by weight or more, and a kinematic viscosity at 50°C. is 300 centistokes or more.
(4)特許請求の範囲第1〜3項のいずれか1つに記載
のボイラーの燃焼方法において、各バーナ群の空燃比を
最下段バーナ群で1.25〜1.7、中段バーナ群で1
.0〜1.2、最上段バーナ群で0.7〜1.0の範囲
とし、かつ、全バーナ群における空燃比を1.0〜1.
2の範囲として燃焼させることを特徴とする方法。
(4) In the boiler combustion method according to any one of claims 1 to 3, the air-fuel ratio of each burner group is set to 1.25 to 1.7 in the lowest burner group, and 1.25 to 1.7 in the middle burner group. 1
.. 0 to 1.2, and 0.7 to 1.0 in the uppermost burner group, and the air-fuel ratio in all burner groups is 1.0 to 1.0.
A method characterized by burning as a range of 2.
JP1202387A 1987-01-21 1987-01-21 Combustion method of boiler Pending JPS63180004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202387A JPS63180004A (en) 1987-01-21 1987-01-21 Combustion method of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202387A JPS63180004A (en) 1987-01-21 1987-01-21 Combustion method of boiler

Publications (1)

Publication Number Publication Date
JPS63180004A true JPS63180004A (en) 1988-07-25

Family

ID=11794003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202387A Pending JPS63180004A (en) 1987-01-21 1987-01-21 Combustion method of boiler

Country Status (1)

Country Link
JP (1) JPS63180004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528246A (en) * 2007-05-18 2010-08-19 ラムス テクノロジー インコーポレイテッド Heater and operation method
JP2015124942A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil burning boiler
JP2016114316A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Method for igniting heavy fuel oil burning boiler and heavy fuel oil burning boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528246A (en) * 2007-05-18 2010-08-19 ラムス テクノロジー インコーポレイテッド Heater and operation method
JP2015124942A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil burning boiler
JP2016114316A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Method for igniting heavy fuel oil burning boiler and heavy fuel oil burning boiler

Similar Documents

Publication Publication Date Title
CN105020700B (en) A kind of grate firing boiler combination denitrification apparatus and method
CA2537514A1 (en) Process for combusting fuels, in particular waste
CN107355776A (en) Combustion System of Boiler Burning Fine, method and the application of ultra-low NOx emission
NZ197243A (en) Solid fuel boiler or furnace: flue gas recirculation
CN2864378Y (en) Multistage multi-room gas boiler for coal gasification
CN106322360A (en) Selective non-catalytic reduction (SNCR) and flue gas recirculation coupling denitration system for chain furnace
CN104583678A (en) Waste processing method and waste incinerator
CN104654265A (en) Ultralow-emission nitrogen oxide biomass chain boiler
CN205782865U (en) Realize the circulating fluidized bed boiler systems of low-nitrogen oxide discharging
CN108592015A (en) A kind of boiler smoke recirculating system and its method
CN105805730A (en) Circulating fluidized bed boiler system for achieving low nitrogen oxide discharge
JPS63180004A (en) Combustion method of boiler
CN208546969U (en) A kind of chain-grate boiler system of capacity-increasing transformation
WO2020202362A1 (en) Petroleum residue-fired boiler and combustion method therefor
CN1191335C (en) Steam generator for gasifying coal
JPS63183315A (en) Combustion method in boiler
CN105864754A (en) Secondary air distribution device used for circulating fluidized bed boiler
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
CN208635098U (en) A kind of boiler smoke recirculating system
CN207394824U (en) High stability, short flamed low NOx, CO burner
CN104676582A (en) Method for preventing side water walls of opposed combusting boiler from high temperature corrosion
CN217423224U (en) Boiler system for relieving high-temperature corrosion
CN208952074U (en) A kind of low nitrogen burning gas boiler
CN206786702U (en) The air distribution arrangement of U-shaped stove
CN110006034A (en) Reduce the optimization air distribution method of W type flame furnace NOx emission and clinker coking