WO2020202362A1 - Petroleum residue-fired boiler and combustion method therefor - Google Patents

Petroleum residue-fired boiler and combustion method therefor Download PDF

Info

Publication number
WO2020202362A1
WO2020202362A1 PCT/JP2019/014280 JP2019014280W WO2020202362A1 WO 2020202362 A1 WO2020202362 A1 WO 2020202362A1 JP 2019014280 W JP2019014280 W JP 2019014280W WO 2020202362 A1 WO2020202362 A1 WO 2020202362A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
combustion chamber
air
fuel
temperature reduction
Prior art date
Application number
PCT/JP2019/014280
Other languages
French (fr)
Japanese (ja)
Inventor
信夫 末光
誠司 田端
均 伊勢田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CA3131851A priority Critical patent/CA3131851A1/en
Priority to US17/599,493 priority patent/US20220146090A1/en
Priority to JP2021511736A priority patent/JPWO2020202362A1/en
Priority to KR1020217033786A priority patent/KR20210139413A/en
Priority to BR112021017302A priority patent/BR112021017302A2/en
Priority to PCT/JP2019/014280 priority patent/WO2020202362A1/en
Publication of WO2020202362A1 publication Critical patent/WO2020202362A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber

Definitions

  • the present invention relates to an oil residue-fired boiler that uses flame-retardant petroleum residues such as asphalt pitch and oil coke as fuel.
  • Patent Document 1 discloses this type of boiler.
  • the boiler described in Patent Document 1 includes a high-temperature reduction combustion chamber and a low-temperature oxidation combustion chamber connected below the high-temperature reduction combustion chamber via a throttle portion.
  • the high temperature reduction combustion chamber is provided with a primary burner that supplies petroleum residue fuel and air for primary combustion.
  • the low temperature oxidation combustion chamber is provided with an air supply nozzle for staged combustion.
  • the fuel is burned at a high temperature of about 1450 to 1550 ° C. in a fuel-rich and reducing atmosphere.
  • the combustion gas generated in the high-temperature reduction combustion chamber flows into the low-temperature oxidation combustion chamber through the throttle portion.
  • combustion is completed at a low temperature of about 1100 ° C. in an oxidizing atmosphere.
  • Flame-retardant petroleum residues such as asphalt pitch and oil coke have a high nitrogen and sulfur content due to the concentration of nitrogen and sulfur in the oil refining process. Therefore, the combustion exhaust gas of the flame-retardant petroleum residue contains a large amount of NOx.
  • the flame-retardant petroleum residue has a high vanadium content due to the concentration of vanadium in the petroleum refining process. Therefore, the combustion ash of the flame-retardant petroleum residue contains vanadium oxide having a low melting point. If this combustion ash adheres to the furnace wall or heat transfer tube, it may cause heat transfer inhibition, ventilation obstruction, and high temperature corrosion due to the influence of high sulfur content. Therefore, when flame-retardant petroleum residue is used as fuel, it is an issue to reduce the amount of NOx and soot and dust generated.
  • the amount of NOx generated is reduced by burning the flame-retardant petroleum residue fuel in two stages of high-temperature reduction combustion and low-temperature oxidation combustion. Further, in the boiler of Patent Document 1, water vapor is added to the air for primary combustion to cause a water gasification reaction between carbon and water vapor to promote gasification of carbon, thereby reducing the amount of soot and dust generated. There is.
  • the endothermic reaction is more advantageous at higher temperatures in terms of equilibrium.
  • steam which is significantly lower than the temperature inside the furnace as a gasifying agent, is supplied into the furnace, the temperature inside the furnace drops. Due to this decrease in the temperature inside the furnace, the effect of the water gasification reaction is limited.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to effectively promote an aqueous gasification reaction as compared with the case where water vapor is directly supplied into a furnace as a gasifying agent.
  • the purpose is to propose an oil residue-fired boiler that realizes low soot and dust combustion and a combustion method thereof.
  • the petroleum residue-fired boiler according to one aspect of the present invention is A high-temperature reduction combustion chamber that burns at an air ratio of 1300 ° C. or higher and less than 1 and a low-temperature oxidation combustion chamber that is connected to the high-temperature reduction combustion chamber and burns at an air ratio of less than 1300 ° C. and 1 or more are formed.
  • a burner that supplies petroleum residue fuel and air for primary combustion to the high-temperature reduction combustion chamber A two-stage combustion air supply nozzle that supplies air for two-stage combustion to the low-temperature oxidation combustion chamber, It is provided with an assist gas supply nozzle that supplies an assist gas containing a component that generates water vapor as a gasifying agent for unburned carbon in the combustion gas of the petroleum residue fuel to the high temperature reduction combustion chamber.
  • the method for burning an oil residue-fired boiler is A high-temperature reduction combustion chamber to which petroleum residue fuel and primary combustion air are supplied and combustion is performed at an air ratio of 1300 ° C. or higher and less than 1 and air connected to the high-temperature reduction combustion chamber and having a temperature lower than 1300 ° C. and 1 or higher.
  • An assist gas is supplied to the high temperature reduction combustion chamber, and the unburned carbon in the combustion gas of the petroleum residue fuel is gasified by an aqueous gasification reaction using the water vapor generated by the combustion of the assist gas as a gasifying agent. is there.
  • steam H 2 O gas
  • This steam is used as a gasifying agent to burn the oil residue fuel.
  • the unburned carbon inside can be gasified by an aqueous gasification reaction.
  • the temperature drop in the furnace can be suppressed as compared with the case where water vapor is directly supplied into the furnace as a gasifying agent, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction. In this way, since the gasification of unburned carbon is promoted, the amount of soot and dust generated by combustion can be reduced.
  • a petroleum residue-fired boiler that effectively promotes the water gasification reaction as compared with the case where steam is directly supplied into the furnace as a gasifying agent, thereby realizing low soot and dust combustion, and a boiler thereof.
  • a combustion method can be proposed.
  • FIG. 1 is a schematic functional diagram illustrating an oil residue-fired boiler according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the structure of the burner.
  • FIG. 3 is a chart showing the relationship between the supply of assist gas and the amount of dust and combustion efficiency.
  • FIG. 1 is a schematic functional diagram illustrating a combustion chamber of a petroleum residue-fired boiler 1 according to an embodiment of the present invention.
  • the petroleum residue-fired boiler 1 shown in FIG. 1 is configured as an inverted vertical reactor.
  • a combustion chamber including a high-temperature reduction combustion chamber 2 and a low-temperature oxidation combustion chamber 3 provided below the high-temperature reduction combustion chamber 2 is formed in the furnace body 20 of the petroleum residue-fired boiler 1.
  • the high-temperature reduction combustion chamber 2 and the low-temperature oxidation combustion chamber 3 are connected by a throttle portion 4.
  • the throttle portion 4 is a flow path that reduces the horizontal cross-sectional area of the combustion chamber by 20 to 50%.
  • the wall of the high temperature reduction combustion chamber 2 is covered with a refractory material 6 that can withstand a high temperature of 1550 ° C. or higher.
  • a plurality of burners 5 are provided on each of the pair of furnace walls facing each other in the high temperature reduction combustion chamber 2.
  • the plurality of burners 5 form a row of burners arranged in the horizontal direction, and a plurality of rows of burners are provided in the vertical direction.
  • the plurality of burners 5 are staggered so as not to intersect the axes of the flames emitted from the opposing burners 5.
  • FIG. 2 is a schematic cross-sectional view of the burner 5.
  • the burner 5 is configured as a coaxial co-firing burner of petroleum residual fuel and assist gas.
  • An assist gas supply nozzle 52 is provided at the axis of the burner 5, a main fuel supply nozzle 51 is provided around the assist gas supply nozzle 52, and secondary combustion air is provided around the main fuel supply nozzle 51.
  • a nozzle 56 is provided.
  • a first air supply device 53 for pumping combustion air is connected to the main fuel supply nozzle 51.
  • a second air supply device 57 for supplying combustion air is connected to the secondary combustion air nozzle 56.
  • the second air supply device 57 can adjust the supply amount of combustion air.
  • a petroleum residue fuel supply device 54 that supplies petroleum residue fuel into the pumped primary combustion air is connected to the main fuel supply nozzle 51.
  • the petroleum residue fuel supply device 54 can quantitatively supply the petroleum residue fuel.
  • the petroleum residue fuel is, for example, a flame-retardant solid fuel obtained by finely crushing asphalt pitch or petroleum coke.
  • An assist gas supply device 55 for pumping assist gas is connected to the assist gas supply nozzle 52.
  • the assist gas supply device 55 can adjust the supply amount of the assist gas.
  • the assist gas is a gas containing a component that produces water vapor (H 2 O gas) by combustion.
  • the assist gas is, for example, a by-product gas in a petroleum refining process.
  • By-products of the petroleum refining process include components that produce water vapor by combustion, such as hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), and propane (C 3 H 8 ).
  • Table 1 illustrates the composition of by-product gas in the petroleum refining process that can be used as an assist gas.
  • the assist gas used in the present invention is not limited to the by-product gas having the illustrated composition.
  • the petroleum residual fuel supplied into the combustion air pumped to the main fuel supply nozzle 51 is airflow-conveyed by the combustion air.
  • the primary combustion air and the petroleum residue fuel accompanying the primary combustion air are ejected into the high temperature reduction combustion chamber 2.
  • the assist gas is ejected from the assist gas supply nozzle 52. That is, the assist gas, the primary combustion air, and the petroleum residue fuel are coaxially ejected from the burner 5.
  • the amount of combustion air supplied by the second air supply device 57, the amount of fuel supplied by the petroleum residue fuel supply device 54, and the amount of assist gas supplied by the assist gas supply device 55 are adjusted so that the calorific value ratio R is maintained. ..
  • the burner 5 is provided with a well-known swirling flow generation mechanism (not shown) equipped with a swirler.
  • the combustion gas forms a swirling flow by swirling the secondary combustion air by the action of the swirling flow generating mechanism.
  • the swirling flow generated in each burner 5 collects the fuel and the combustion gas in the high temperature reduction combustion chamber 2 in the central portion of the ceiling, and brings about the effect of extending the residence time of the high temperature reduction combustion chamber 2.
  • a cooling unit 9, a staged combustion unit 10, and an ash discharge unit 8 are formed in the low temperature oxidation combustion chamber 3.
  • a two-stage combustion air supply nozzle 7 for supplying two-stage combustion air is provided on a furnace wall separated downward from the throttle portion 4.
  • the cooling section 9 is located above and below the throttle section 4 and the air supply nozzle 7 for staged combustion.
  • the cooling unit 9 the high-temperature combustion gas flowing down from the high-temperature reduction combustion chamber 2 through the throttle unit 4 is cooled.
  • a heat transfer tube for steam generation (not shown) is stretched around the furnace wall of the cooling unit 9.
  • the staged combustion unit 10 is below the air supply nozzle 7 for staged combustion.
  • a heat transfer tube for steam generation (not shown) is stretched around the furnace wall of the staged combustion unit 10.
  • the staged combustion unit 10 is kept at a low temperature by the refrigerant flowing through the heat transfer tube.
  • the air supply nozzle 7 for staged combustion is provided on each of the pair of furnace walls facing each other in the low temperature oxidation combustion chamber 3.
  • the plurality of two-stage combustion air supply nozzles 7 form a nozzle row arranged in the horizontal direction, and a plurality of nozzle rows are provided in the vertical direction.
  • the air supplied from the two-stage combustion air supply nozzle 7 causes the unburned gas in the combustion gas cooled by the cooling unit 9 to be two-stage burned in the low-temperature oxidizing atmosphere of the two-stage combustion unit 10.
  • An ash discharge part 8 is formed at the bottom of the low temperature oxidation combustion chamber 3.
  • An ash discharge mechanism (not shown) is provided below the ash discharge unit 8. The combustion ash collected on the bottom of the furnace is discharged to the outside of the furnace from the ash discharge unit 8.
  • a gas outlet 11 leading to the flue 12 is provided on the lower side surface of the staged combustion unit 10.
  • the combustion exhaust gas generated in the staged combustion unit 10 reverses the flow in a U shape and flows into the flue 12.
  • the flue 12 is provided with a steam superheater tube 13 and an economizer 14.
  • an ash discharge port 15 for settling and discharging the combustion ash accompanying the combustion gas is provided.
  • Fuel and primary combustion air are supplied from the burner 5 to the high-temperature reduction combustion chamber 2, and combustion of the fuel starts.
  • the high temperature reduction combustion chamber 2 is maintained in a reduction atmosphere having an air ratio of less than 1 (for example, about 0.6 to 0.8) by suppressing the introduction of air.
  • the high temperature reduction combustion chamber 2 is maintained at a high temperature of 1300 ° C. or higher, preferably 1450 ° C. or higher and 1550 ° C. or lower, by burning the fuel and burning the auxiliary fuel as needed.
  • staged combustion unit 10 Sufficiently low temperature air for staged combustion is supplied to the staged combustion unit 10 from the air supply nozzle 7 for staged combustion.
  • the staged combustion unit 10 is maintained in an oxidizing atmosphere having an air ratio of 1 or more (for example, about 1.1).
  • the unburned component in the combustion gas is completely burned in the oxidizing atmosphere of the staged combustion unit 10.
  • the combustion exhaust gas is cooled to about 1000 to 1100 ° C. by the staged combustion unit 10 and then flows out to the flue 12.
  • the combustion exhaust gas passing through the flue 12 exchanges heat with the boiler water supply in the steam superheater tube 13 and the economizer 14, and then flows out to the post-treatment process connected to the flue 12.
  • the amount of NOx generated in the combustion of petroleum residue fuel strongly depends on the combustion temperature and air ratio. That is, in a reducing atmosphere, the higher the temperature combustion, the smaller the amount of NOx generated, and in the oxidizing atmosphere, the lower the temperature combustion, the smaller the amount of NOx generated.
  • the generation of fuel NOx is suppressed by burning the fuel in the high temperature reduction atmosphere of the high temperature reduction combustion chamber 2, and the combustion gas is suppressed in the low temperature oxidation atmosphere of the low temperature oxidation combustion chamber 3.
  • the generation of thermal NOx is suppressed by completely burning the unburned component inside.
  • the amount of NOx generated can be effectively reduced by adopting the two-stage combustion method as described above.
  • the assist gas is supplied to the high-temperature reduction combustion chamber 2 and the high-temperature reduction combustion chamber 2 is maintained at a high temperature of 1300 ° C. or higher (preferably 1450 ° C. or higher). To do. As a result, an aqueous gasification reaction occurs in the high temperature reduction combustion chamber 2, and gasification of carbides is promoted. Gasification of carbides can reduce the amount of soot and dust generated by the combustion of petroleum residue fuel.
  • Petroleum residue fuel, assist gas, and combustion air are ejected from the burner 5 of the high-temperature reduction combustion chamber 2. Since the petroleum residual fuel is flame-retardant, the assist gas starts burning before the petroleum residual fuel. When the assist gas is burned by the combustion air, water vapor is generated. 2H 2 + O 2 ⁇ 2H 2 O, CH 4 + O 2 ⁇ CO 2 + 2H 2 O, ... The generated H 2 O gas acts as a gasifying agent, and unburned carbon in the combustion gas undergoes an aqueous gasification reaction to be converted into CO gas and H 2 gas.
  • the assist gas When the assist gas is supplied to the high temperature reduction combustion chamber 2 and steam is generated by the combustion of the assist gas, compared with the case where the steam lower than the temperature inside the furnace is directly supplied to the furnace as a gasifying agent, It is possible to suppress a decrease in the temperature inside the furnace. That is, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction.
  • FIG. 3 is a chart showing the relationship between the supply of assist gas and the amount of soot and combustion efficiency.
  • the horizontal axis of FIG. 3 represents the calorific value ratio [%] obtained by converting the supply amount of assist gas to the supply amount of petroleum residual fuel by the calorific value, and the vertical axis represents (1) the amount of soot and dust with respect to the supply amount [t] of petroleum residual fuel. It represents the ratio of [Kg] and (2) combustion efficiency [%].
  • the amount of soot includes bottom ash discharged from the ash discharge unit 8 and the ash discharge port 15, and fly ash collected by a dust collector in the post-treatment process connected to the flue 12.
  • the amount of soot and dust decreases as the amount of assist gas supplied increases. From this, it is clear that the amount of soot and dust can be reduced by supplying the assist gas. Further, as the amount of soot and dust decreases, the combustion efficiency increases. From this, it is clear that the combustion efficiency is increased by reducing the amount of soot and dust.
  • the petroleum residue-fired boiler 1 is connected to the high-temperature reduction combustion chamber 2 and the high-temperature reduction combustion chamber 2 in which combustion is performed at an air ratio of 1300 ° C. or higher and lower than 1, 1300.
  • a furnace body 20 in which a low-temperature oxidation combustion chamber 3 that burns at an air ratio of less than 1 ° C. and 1 or more is formed, a burner 5 that supplies petroleum residue fuel and primary combustion air to the high-temperature reduction combustion chamber 2, and a low temperature.
  • a two-stage combustion air supply nozzle 7 for supplying two-stage combustion air to the oxidation combustion chamber 3 and an assist gas supply nozzle 52 for supplying an assist gas to the high-temperature reduction combustion chamber 2 are provided.
  • the assist gas contains a component that produces water vapor by combustion, and this water vapor becomes a gasifying agent for unburned carbon in the combustion gas of petroleum residue fuel.
  • the high temperature reduction combustion chamber 2 to which the oil residue fuel and the air for primary combustion are supplied and the combustion is performed at an air ratio of 1300 ° C. or higher and less than 1 and
  • the assist gas is supplied to the high temperature reduction combustion chamber 2.
  • the steam generated by the combustion of the assist gas is used as a gasifying agent, and the unburned carbon in the combustion gas of the petroleum residue fuel is gasified by an aqueous gasification reaction.
  • steam H 2 O gas
  • Unburned carbon in the combustion gas can be gasified by an aqueous gasification reaction.
  • the temperature drop in the furnace can be suppressed as compared with the case where water vapor is directly supplied into the furnace as a gasifying agent, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction.
  • the gasification of unburned carbon is promoted, the amount of soot and dust generated by combustion can be reduced. That is, the petroleum residue-fired boiler 1 and its combustion method that effectively promote the water gasification reaction as compared with the case where steam is directly supplied into the furnace as a gasifying agent, thereby realizing low soot and dust combustion. Can be provided.
  • the burner 5 is a coaxial co-firing burner having an assist gas supply nozzle 52 and a main fuel supply nozzle 51 for supplying petroleum residue fuel and primary combustion air. is there.
  • the assist gas is coaxially supplied to the high-temperature reduction combustion chamber 2 together with the petroleum residue fuel and the primary combustion air.
  • the assist gas, the petroleum residual fuel, and the air for primary combustion are coaxially supplied (spouted) to the high-temperature reduction combustion chamber 2, so that the primary combustion precedes the flame-retardant petroleum residual fuel.
  • the air for use and the assist gas can be reacted.
  • the water vapor generated by the combustion reaction between the primary combustion air and the assist gas can be reacted with the unburned carbon contained in the combustion gas generated by the combustion of the petroleum residue fuel.
  • the assist gas may be a by-product gas generated in the petroleum refining process.
  • the petroleum residue-fired boiler 1 uses the petroleum residue generated in the petroleum refining process as fuel, it may be installed at or adjacent to the petroleum refining factory. In such a case, if the assist gas is a by-product gas generated in the petroleum refining process, it is preferable because both the petroleum residue fuel and the by-product gas generated in the petroleum refining process can be effectively used.
  • the present invention may include modified details of the specific structure and / or function of the above embodiment without departing from the idea of the present invention. ..
  • the above configuration can be changed, for example, as follows.
  • the burner 5 is a coaxial co-firing burner of petroleum residue fuel and assist gas.
  • the burner 5 may be a dedicated burning burner for petroleum residue fuel.
  • the assist gas supply nozzle 52 that ejects the assist gas so as to be mixed with the petroleum residue fuel ejected from the exclusive combustion burner of the petroleum residue fuel and the air for primary combustion may be provided independently of the burner 5.
  • Oil residue-fired boiler 2 High-temperature reduction combustion chamber 3: Low-temperature oxidation combustion chamber 4: Squeezing section 5: Burner 6: Fireproof material 7: Air supply nozzle for two-stage combustion 8: Ash discharge section 9: Cooling section 10: Two Stage combustion chamber 11: Gas outlet 12: Smoke path 13: Steam superheater tube 14: Economizer 15: Ash discharge port 20: Furnace 51: Main fuel supply nozzle 52: Assist gas supply nozzle 53: Air supply device 54: Oil Residual fuel supply device 55: Assist gas supply device

Abstract

This petroleum residue-fired boiler has: a high-temperature reduction combustion chamber which is suppled with petroleum residue fuel and primary combustion air, and which performs combustion at an air ratio of less than 1 at 1300°C or more; and a low-temperature oxidation combustion chamber which is connected to the high-temperature reduction combustion chamber, and which performs combustion at an air ratio of 1 or more at less than 1300°C. In this petroleum residue-fired boiler, assist gas is supplied to the high-temperature reduction combustion chamber, and water vapor produced by the combustion of the assist gas is used as a gasifying agent to gasify the unburned carbon in the combustion gas of the petroleum residue fuel through a water gas reaction.

Description

石油残渣焚きボイラ及びその燃焼方法Petroleum residue-fired boiler and its combustion method
 本発明は、アスファルトピッチやオイルコークスなどの難燃性石油残渣を燃料として用いる石油残渣焚きボイラに関する。 The present invention relates to an oil residue-fired boiler that uses flame-retardant petroleum residues such as asphalt pitch and oil coke as fuel.
 従来、アスファルトピッチやオイルコークスなどの難燃性石油残渣を燃料として用いる石油残渣焚きボイラが知られている。特許文献1では、この種のボイラが開示されている。 Conventionally, petroleum residue-fired boilers that use flame-retardant petroleum residues such as asphalt pitch and oil coke as fuel are known. Patent Document 1 discloses this type of boiler.
 特許文献1に記載のボイラは、高温還元燃焼室と、その下方に絞り部を介して接続された低温酸化燃焼室とを備える。高温還元燃焼室には、石油残渣燃料及び一次燃焼用空気を供給する一次バーナが設けられている。低温酸化燃焼室には、二段燃焼用空気供給ノズルが設けられている。高温還元燃焼室では、燃料過濃且つ還元雰囲気中において約1450~1550℃の高温で燃料を燃焼させる。高温還元燃焼室で発生した燃焼ガスは、絞り部を通して低温酸化燃焼室へ流入する。低温酸化燃焼室では、酸化雰囲気中において約1100℃の低温で燃焼を完結させる。 The boiler described in Patent Document 1 includes a high-temperature reduction combustion chamber and a low-temperature oxidation combustion chamber connected below the high-temperature reduction combustion chamber via a throttle portion. The high temperature reduction combustion chamber is provided with a primary burner that supplies petroleum residue fuel and air for primary combustion. The low temperature oxidation combustion chamber is provided with an air supply nozzle for staged combustion. In the high-temperature reduction combustion chamber, the fuel is burned at a high temperature of about 1450 to 1550 ° C. in a fuel-rich and reducing atmosphere. The combustion gas generated in the high-temperature reduction combustion chamber flows into the low-temperature oxidation combustion chamber through the throttle portion. In the low temperature oxidation combustion chamber, combustion is completed at a low temperature of about 1100 ° C. in an oxidizing atmosphere.
 アスファルトピッチやオイルコークスなどの難燃性石油残渣は、石油精製の過程における窒素分・硫黄分の濃縮によって、窒素分・硫黄分の含有濃度が高い。そのため、難燃性石油残渣の燃焼排ガスは、多量のNOxを含む。また、難燃性石油残渣は、石油精製の過程におけるバナジウム分の濃縮によって、バナジウムの含有濃度が高い。そのため、難燃性石油残渣の燃焼灰は低融点のバナジウム酸化物を含む。この燃焼灰が炉壁や伝熱管へ付着すると、伝熱阻害、通風障害、及び、高硫黄分の影響による高温腐食が引き起こされるおそれがある。そこで、難燃性石油残渣を燃料として用いる場合には、NOx及び煤塵の発生量の低減が課題となる。 Flame-retardant petroleum residues such as asphalt pitch and oil coke have a high nitrogen and sulfur content due to the concentration of nitrogen and sulfur in the oil refining process. Therefore, the combustion exhaust gas of the flame-retardant petroleum residue contains a large amount of NOx. In addition, the flame-retardant petroleum residue has a high vanadium content due to the concentration of vanadium in the petroleum refining process. Therefore, the combustion ash of the flame-retardant petroleum residue contains vanadium oxide having a low melting point. If this combustion ash adheres to the furnace wall or heat transfer tube, it may cause heat transfer inhibition, ventilation obstruction, and high temperature corrosion due to the influence of high sulfur content. Therefore, when flame-retardant petroleum residue is used as fuel, it is an issue to reduce the amount of NOx and soot and dust generated.
 特許文献1のボイラでは、難燃性石油残渣燃料を高温還元燃焼と低温酸化燃焼の2段階で燃焼させることで、NOx発生量を低減している。また、特許文献1のボイラでは、一次燃焼用空気に水蒸気を加えて、炭素と水蒸気で水性ガス化反応を生じさせて、炭素のガス化を促進することにより、煤塵の発生量の低減している。 In the boiler of Patent Document 1, the amount of NOx generated is reduced by burning the flame-retardant petroleum residue fuel in two stages of high-temperature reduction combustion and low-temperature oxidation combustion. Further, in the boiler of Patent Document 1, water vapor is added to the air for primary combustion to cause a water gasification reaction between carbon and water vapor to promote gasification of carbon, thereby reducing the amount of soot and dust generated. There is.
特開2012-107825号公報Japanese Unexamined Patent Publication No. 2012-107825
 吸熱反応である水性ガス化反応は、平衡論的に高温ほど有利である。ガス化剤として炉内温度と比較して著しく低温の水蒸気が炉内へ供給されると、炉内温度が低下する。この炉内温度の低下によって、水性ガス化反応の効果が限定的となってしまう。 The endothermic reaction, the water gas reaction, is more advantageous at higher temperatures in terms of equilibrium. When steam, which is significantly lower than the temperature inside the furnace as a gasifying agent, is supplied into the furnace, the temperature inside the furnace drops. Due to this decrease in the temperature inside the furnace, the effect of the water gasification reaction is limited.
 本発明は以上の事情に鑑みてされたものであり、その目的は、ガス化剤として水蒸気を直接に炉内に供給する場合と比較して水性ガス化反応を効果的に促進させ、これにより、低煤塵燃焼を実現する石油残渣焚きボイラ及びその燃焼方法を提案することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to effectively promote an aqueous gasification reaction as compared with the case where water vapor is directly supplied into a furnace as a gasifying agent. The purpose is to propose an oil residue-fired boiler that realizes low soot and dust combustion and a combustion method thereof.
 本発明の一態様に係る石油残渣焚きボイラは、
1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室、及び、前記高温還元燃焼室と接続され1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室とが形成された炉体と、
前記高温還元燃焼室へ石油残渣燃料及び一次燃焼用空気を供給するバーナと、
前記低温酸化燃焼室へ二段燃焼用空気を供給する二段燃焼用空気供給ノズルと、
燃焼によって前記石油残渣燃料の燃焼ガス中の未燃炭素のガス化剤となる水蒸気が生じる成分を含むアシストガスを前記高温還元燃焼室へ供給するアシストガス供給ノズルとを、備えるものである。
The petroleum residue-fired boiler according to one aspect of the present invention is
A high-temperature reduction combustion chamber that burns at an air ratio of 1300 ° C. or higher and less than 1 and a low-temperature oxidation combustion chamber that is connected to the high-temperature reduction combustion chamber and burns at an air ratio of less than 1300 ° C. and 1 or more are formed. With the furnace body
A burner that supplies petroleum residue fuel and air for primary combustion to the high-temperature reduction combustion chamber,
A two-stage combustion air supply nozzle that supplies air for two-stage combustion to the low-temperature oxidation combustion chamber,
It is provided with an assist gas supply nozzle that supplies an assist gas containing a component that generates water vapor as a gasifying agent for unburned carbon in the combustion gas of the petroleum residue fuel to the high temperature reduction combustion chamber.
 また、本発明の一態様に係る石油残渣焚きボイラの燃焼方法は、
石油残渣燃料及び一次燃焼用空気が供給され、1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室、及び、前記高温還元燃焼室と接続され、1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室とを有する石油残渣焚きボイラにおいて、
前記高温還元燃焼室にアシストガスを供給し、前記アシストガスの燃焼により生じた水蒸気をガス化剤として、前記石油残渣燃料の燃焼ガス中の未燃炭素を水性ガス化反応によりガス化させるものである。
In addition, the method for burning an oil residue-fired boiler according to one aspect of the present invention is
A high-temperature reduction combustion chamber to which petroleum residue fuel and primary combustion air are supplied and combustion is performed at an air ratio of 1300 ° C. or higher and less than 1 and air connected to the high-temperature reduction combustion chamber and having a temperature lower than 1300 ° C. and 1 or higher. In an oil residue-fired boiler with a low-temperature oxidation combustion chamber where combustion is performed in proportion,
An assist gas is supplied to the high temperature reduction combustion chamber, and the unburned carbon in the combustion gas of the petroleum residue fuel is gasified by an aqueous gasification reaction using the water vapor generated by the combustion of the assist gas as a gasifying agent. is there.
 上記石油残渣焚きボイラ及びその燃焼方法によれば、高温還元燃焼室に供給されたアシストガスの燃焼により水蒸気(H2Oガス)が生じ、この水蒸気をガス化剤として、石油残渣燃料の燃焼ガス中の未燃炭素を水性ガス化反応によりガス化させることができる。そのうえ、ガス化剤として水蒸気を直接に炉内に供給する場合と比較して炉内温度低下を抑制できることから、炉内は水性ガス化反応の進行に有利な高温に維持される。このように、未燃炭素のガス化が促進されるので、燃焼により生じる煤塵の量を低減することができる。 According to the above-mentioned oil residue burning boiler and its combustion method, steam (H 2 O gas) is generated by combustion of the assist gas supplied to the high temperature reduction combustion chamber, and this steam is used as a gasifying agent to burn the oil residue fuel. The unburned carbon inside can be gasified by an aqueous gasification reaction. In addition, since the temperature drop in the furnace can be suppressed as compared with the case where water vapor is directly supplied into the furnace as a gasifying agent, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction. In this way, since the gasification of unburned carbon is promoted, the amount of soot and dust generated by combustion can be reduced.
 本発明によれば、ガス化剤として水蒸気を直接に炉内に供給する場合と比較して水性ガス化反応を効果的に促進させ、これにより、低煤塵燃焼を実現する石油残渣焚きボイラ及びその燃焼方法を提案することができる。 According to the present invention, a petroleum residue-fired boiler that effectively promotes the water gasification reaction as compared with the case where steam is directly supplied into the furnace as a gasifying agent, thereby realizing low soot and dust combustion, and a boiler thereof. A combustion method can be proposed.
図1は、本発明の一実施形態に係る石油残渣焚きボイラを説明する概略機能図である。FIG. 1 is a schematic functional diagram illustrating an oil residue-fired boiler according to an embodiment of the present invention. 図2は、バーナの構造を説明する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating the structure of the burner. 図3は、アシストガスの供給と煤塵量及び燃焼効率との関係を表す図表である。FIG. 3 is a chart showing the relationship between the supply of assist gas and the amount of dust and combustion efficiency.
 以下、図面を参照し実施形態に基づいて本発明について説明する。図1は本発明の一実施形態に係る石油残渣焚きボイラ1の燃焼室を説明する概略機能図である。 Hereinafter, the present invention will be described with reference to the drawings based on the embodiments. FIG. 1 is a schematic functional diagram illustrating a combustion chamber of a petroleum residue-fired boiler 1 according to an embodiment of the present invention.
 図1に示す石油残渣焚きボイラ1は、倒立式の竪型炉として構成されている。石油残渣焚きボイラ1の炉体20には、高温還元燃焼室2と、その下方に設けられた低温酸化燃焼室3とを含む燃焼室が形成されている。高温還元燃焼室2と低温酸化燃焼室3とは、絞り部4で接続されている。絞り部4は、燃焼室の水平断面積を20~50%減少させるような流路である。 The petroleum residue-fired boiler 1 shown in FIG. 1 is configured as an inverted vertical reactor. A combustion chamber including a high-temperature reduction combustion chamber 2 and a low-temperature oxidation combustion chamber 3 provided below the high-temperature reduction combustion chamber 2 is formed in the furnace body 20 of the petroleum residue-fired boiler 1. The high-temperature reduction combustion chamber 2 and the low-temperature oxidation combustion chamber 3 are connected by a throttle portion 4. The throttle portion 4 is a flow path that reduces the horizontal cross-sectional area of the combustion chamber by 20 to 50%.
 高温還元燃焼室2の壁は、1550℃以上の高温に耐えうる耐火材6で覆われている。高温還元燃焼室2の対向する一対の炉壁の各々には、複数のバーナ5が設けられている。複数のバーナ5は水平方向に並ぶバーナ列を形成し、上下方向に複数段のバーナ列が設けられている。対向するバーナ5から放出される火炎の軸が交差しないように、複数のバーナ5は対向千鳥配置されている。 The wall of the high temperature reduction combustion chamber 2 is covered with a refractory material 6 that can withstand a high temperature of 1550 ° C. or higher. A plurality of burners 5 are provided on each of the pair of furnace walls facing each other in the high temperature reduction combustion chamber 2. The plurality of burners 5 form a row of burners arranged in the horizontal direction, and a plurality of rows of burners are provided in the vertical direction. The plurality of burners 5 are staggered so as not to intersect the axes of the flames emitted from the opposing burners 5.
 図2は、バーナ5の概略断面図である。バーナ5は、石油残渣燃料とアシストガスとの同軸混焼バーナとして構成されている。バーナ5の軸心にはアシストガス供給ノズル52が設けられており、アシストガス供給ノズル52の周囲に主燃料供給ノズル51が設けられており、主燃料供給ノズル51の周囲に二次燃焼用空気ノズル56が設けられている。 FIG. 2 is a schematic cross-sectional view of the burner 5. The burner 5 is configured as a coaxial co-firing burner of petroleum residual fuel and assist gas. An assist gas supply nozzle 52 is provided at the axis of the burner 5, a main fuel supply nozzle 51 is provided around the assist gas supply nozzle 52, and secondary combustion air is provided around the main fuel supply nozzle 51. A nozzle 56 is provided.
 主燃料供給ノズル51には、燃焼用空気(一次燃焼用空気)を圧送する第1空気供給装置53が接続されている。二次燃焼用空気ノズル56には、燃焼用空気(二次燃焼用空気)を給気する第2空気供給装置57が接続されている。第2空気供給装置57は、燃焼用空気の供給量を調整することができる。また、主燃料供給ノズル51には、圧送される一次燃焼用空気中に石油残渣燃料を供給する石油残渣燃料供給装置54が接続されている。石油残渣燃料供給装置54は、石油残渣燃料を定量的に供給することができる。石油残渣燃料は、例えば、アスファルトピッチや石油コークスが細かく粉砕されてなる、難燃性の固形燃料である。 A first air supply device 53 for pumping combustion air (primary combustion air) is connected to the main fuel supply nozzle 51. A second air supply device 57 for supplying combustion air (secondary combustion air) is connected to the secondary combustion air nozzle 56. The second air supply device 57 can adjust the supply amount of combustion air. Further, a petroleum residue fuel supply device 54 that supplies petroleum residue fuel into the pumped primary combustion air is connected to the main fuel supply nozzle 51. The petroleum residue fuel supply device 54 can quantitatively supply the petroleum residue fuel. The petroleum residue fuel is, for example, a flame-retardant solid fuel obtained by finely crushing asphalt pitch or petroleum coke.
 アシストガス供給ノズル52には、アシストガスを圧送するアシストガス供給装置55が接続されている。アシストガス供給装置55は、アシストガスの供給量を調整することができる。アシストガスは、燃焼により水蒸気(H2Oガス)が生じる成分を含む気体である。アシストガスは、例えば、石油精製工程の副生ガスである。石油精製工程の副生ガスは、例えば、水素(H2)、メタン(CH4)、エタン(C26)、プロパン(C38)などの、燃焼により水蒸気が生じる成分を含む。次表1に、アシストガスとして使用し得る石油精製工程の副生ガスの組成を例示する。但し、本発明に使用されるアシストガスは例示された組成の副生ガスに限定されない。 An assist gas supply device 55 for pumping assist gas is connected to the assist gas supply nozzle 52. The assist gas supply device 55 can adjust the supply amount of the assist gas. The assist gas is a gas containing a component that produces water vapor (H 2 O gas) by combustion. The assist gas is, for example, a by-product gas in a petroleum refining process. By-products of the petroleum refining process include components that produce water vapor by combustion, such as hydrogen (H 2 ), methane (CH 4 ), ethane (C 2 H 6 ), and propane (C 3 H 8 ). Table 1 below illustrates the composition of by-product gas in the petroleum refining process that can be used as an assist gas. However, the assist gas used in the present invention is not limited to the by-product gas having the illustrated composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 主燃料供給ノズル51へ圧送される燃焼用空気中に供給された石油残渣燃料は、燃焼用空気によって気流搬送される。主燃料供給ノズル51から、一次燃焼用空気とそれに同伴する石油残渣燃料とが、高温還元燃焼室2へ噴き出す。また、アシストガス供給ノズル52からは、アシストガスが噴き出す。つまり、バーナ5から、アシストガスと、一次燃焼用空気及び石油残渣燃料とが同軸状に噴き出す。石油残渣燃料の熱量A[Kcal/h]に対するアシストガスの熱量B[Kcal/h]の熱量比R(R=B/A)[%]は、限定されるわけではないが、10以上30以下が好ましい。熱量比Rが維持されるように、第2空気供給装置57による燃焼用空気供給量、石油残渣燃料供給装置54による燃料供給量、及び、アシストガス供給装置55によるアシストガス供給量が調整される。 The petroleum residual fuel supplied into the combustion air pumped to the main fuel supply nozzle 51 is airflow-conveyed by the combustion air. From the main fuel supply nozzle 51, the primary combustion air and the petroleum residue fuel accompanying the primary combustion air are ejected into the high temperature reduction combustion chamber 2. Further, the assist gas is ejected from the assist gas supply nozzle 52. That is, the assist gas, the primary combustion air, and the petroleum residue fuel are coaxially ejected from the burner 5. The calorie ratio R (R = B / A) [%] of the calorie B [Kcal / h] of the assist gas to the calorie A [Kcal / h] of the petroleum residue fuel is not limited, but is 10 or more and 30 or less. Is preferable. The amount of combustion air supplied by the second air supply device 57, the amount of fuel supplied by the petroleum residue fuel supply device 54, and the amount of assist gas supplied by the assist gas supply device 55 are adjusted so that the calorific value ratio R is maintained. ..
 バーナ5には、スワラーを備えた周知の旋回流発生機構(図示略)が設けられている。旋回流発生機構の作用によって二次燃焼用空気が旋回することによって、燃焼ガスが旋回流を形成する。各バーナ5で発生する旋回流によって、高温還元燃焼室2内の燃料と燃焼ガスとが天井の中央部分に集められ、高温還元燃焼室2の滞留時間の延長作用がもたらされる。 The burner 5 is provided with a well-known swirling flow generation mechanism (not shown) equipped with a swirler. The combustion gas forms a swirling flow by swirling the secondary combustion air by the action of the swirling flow generating mechanism. The swirling flow generated in each burner 5 collects the fuel and the combustion gas in the high temperature reduction combustion chamber 2 in the central portion of the ceiling, and brings about the effect of extending the residence time of the high temperature reduction combustion chamber 2.
 図1に戻って、低温酸化燃焼室3には、冷却部9、二段燃焼部10、及び灰排出部8が形成されている。低温酸化燃焼室3において、絞り部4から下方へ離間した炉壁に、二段燃焼用空気を供給する二段燃焼用空気供給ノズル7が設けられている。 Returning to FIG. 1, a cooling unit 9, a staged combustion unit 10, and an ash discharge unit 8 are formed in the low temperature oxidation combustion chamber 3. In the low-temperature oxidation combustion chamber 3, a two-stage combustion air supply nozzle 7 for supplying two-stage combustion air is provided on a furnace wall separated downward from the throttle portion 4.
 低温酸化燃焼室3において、絞り部4と二段燃焼用空気供給ノズル7との上下間が冷却部9となっている。冷却部9では、高温還元燃焼室2から絞り部4を介して流下した高温の燃焼ガスが冷却される。冷却部9の炉壁には、図示されない蒸気発生用の伝熱管が張り巡らされている。 In the low temperature oxidation combustion chamber 3, the cooling section 9 is located above and below the throttle section 4 and the air supply nozzle 7 for staged combustion. In the cooling unit 9, the high-temperature combustion gas flowing down from the high-temperature reduction combustion chamber 2 through the throttle unit 4 is cooled. A heat transfer tube for steam generation (not shown) is stretched around the furnace wall of the cooling unit 9.
 低温酸化燃焼室3において、二段燃焼用空気供給ノズル7より下方が二段燃焼部10となっている。二段燃焼部10の炉壁には、図示されない蒸気発生用の伝熱管が張り巡らされている。伝熱管を流れる冷媒によって二段燃焼部10が低温に保持される。 In the low temperature oxidation combustion chamber 3, the staged combustion unit 10 is below the air supply nozzle 7 for staged combustion. A heat transfer tube for steam generation (not shown) is stretched around the furnace wall of the staged combustion unit 10. The staged combustion unit 10 is kept at a low temperature by the refrigerant flowing through the heat transfer tube.
 二段燃焼用空気供給ノズル7は、低温酸化燃焼室3の対向する一対の炉壁の各々に設けられている。複数の二段燃焼用空気供給ノズル7は水平方向に並ぶノズル列を形成し、上下方向に複数段のノズル列が設けられている。二段燃焼用空気供給ノズル7から供給される空気によって、冷却部9で冷却された燃焼ガス中の未燃ガスを二段燃焼部10の低温の酸化雰囲気中で二段燃焼させる。 The air supply nozzle 7 for staged combustion is provided on each of the pair of furnace walls facing each other in the low temperature oxidation combustion chamber 3. The plurality of two-stage combustion air supply nozzles 7 form a nozzle row arranged in the horizontal direction, and a plurality of nozzle rows are provided in the vertical direction. The air supplied from the two-stage combustion air supply nozzle 7 causes the unburned gas in the combustion gas cooled by the cooling unit 9 to be two-stage burned in the low-temperature oxidizing atmosphere of the two-stage combustion unit 10.
 低温酸化燃焼室3の底部には、灰排出部8が形成されている。灰排出部8の下方には図示されない灰排出機構が設けられている。炉底に溜まった燃焼灰は、灰排出部8から炉外へ排出される。 An ash discharge part 8 is formed at the bottom of the low temperature oxidation combustion chamber 3. An ash discharge mechanism (not shown) is provided below the ash discharge unit 8. The combustion ash collected on the bottom of the furnace is discharged to the outside of the furnace from the ash discharge unit 8.
 二段燃焼部10の下方側面に、煙道12に通じるガス流出口11が設けられている。二段燃焼部10で生じた燃焼排ガスはU字状に流れを反転させて煙道12に流入する。煙道12には、蒸気過熱器管13とエコノマイザ14とが設けられている。蒸気過熱器管13及びエコノマイザ14が設けられた煙道12の底部には、燃焼ガスに同伴する燃焼灰を沈降させて排出する灰排出口15が設けられている。 A gas outlet 11 leading to the flue 12 is provided on the lower side surface of the staged combustion unit 10. The combustion exhaust gas generated in the staged combustion unit 10 reverses the flow in a U shape and flows into the flue 12. The flue 12 is provided with a steam superheater tube 13 and an economizer 14. At the bottom of the flue 12 provided with the steam superheater tube 13 and the economizer 14, an ash discharge port 15 for settling and discharging the combustion ash accompanying the combustion gas is provided.
 ここで、上記構成の石油残渣焚きボイラ1の燃焼方法について説明する。高温還元燃焼室2へバーナ5から燃料と一次燃焼用空気とが供給されて、燃料の燃焼が開始する。高温還元燃焼室2は、空気の導入が抑制されて、空気比が1未満(例えば、0.6~0.8程度)の還元雰囲気に維持される。高温還元燃焼室2は、燃料の燃焼と、必要に応じた補助燃料の燃焼とにより、1300℃以上、望ましくは、1450℃以上1550℃以下の高温に維持される。 Here, the combustion method of the petroleum residue-fired boiler 1 having the above configuration will be described. Fuel and primary combustion air are supplied from the burner 5 to the high-temperature reduction combustion chamber 2, and combustion of the fuel starts. The high temperature reduction combustion chamber 2 is maintained in a reduction atmosphere having an air ratio of less than 1 (for example, about 0.6 to 0.8) by suppressing the introduction of air. The high temperature reduction combustion chamber 2 is maintained at a high temperature of 1300 ° C. or higher, preferably 1450 ° C. or higher and 1550 ° C. or lower, by burning the fuel and burning the auxiliary fuel as needed.
 高温還元燃焼室2の高温還元雰囲気中で燃料が燃焼すると、高温の燃焼ガスが生じる。燃焼ガスは、次々と生じる燃焼ガスによって高温還元燃焼室2から押し出されて、絞り部4を通って低温酸化燃焼室3に流下する。燃焼ガスは、冷却部9を通る間に1300℃未満、望ましくは、1200℃以上1300℃未満にまで冷却され、二段燃焼部10へ流下する。 When fuel burns in the high temperature reduction atmosphere of the high temperature reduction combustion chamber 2, high temperature combustion gas is generated. The combustion gas is pushed out from the high-temperature reduction combustion chamber 2 by the combustion gas generated one after another, and flows down to the low-temperature oxidation combustion chamber 3 through the throttle portion 4. The combustion gas is cooled to less than 1300 ° C., preferably 1200 ° C. or higher and lower than 1300 ° C. while passing through the cooling unit 9, and flows down to the staged combustion unit 10.
 二段燃焼部10には、二段燃焼用空気供給ノズル7から比較的低温の二段燃焼用空気が十分に供給される。これにより、二段燃焼部10は、空気比が1以上(例えば、1.1程度)の酸化雰囲気に維持される。燃焼ガス中の未燃分は、二段燃焼部10の酸化雰囲気中で完全燃焼する。燃焼排ガスは、二段燃焼部10で1000~1100℃程度まで冷却されてから煙道12へ流出する。 Sufficiently low temperature air for staged combustion is supplied to the staged combustion unit 10 from the air supply nozzle 7 for staged combustion. As a result, the staged combustion unit 10 is maintained in an oxidizing atmosphere having an air ratio of 1 or more (for example, about 1.1). The unburned component in the combustion gas is completely burned in the oxidizing atmosphere of the staged combustion unit 10. The combustion exhaust gas is cooled to about 1000 to 1100 ° C. by the staged combustion unit 10 and then flows out to the flue 12.
 煙道12を通る燃焼排ガスは、蒸気過熱器管13及びエコノマイザ14においてボイラ給水と熱交換を行った後、煙道12に接続された後処理工程へ流出する。 The combustion exhaust gas passing through the flue 12 exchanges heat with the boiler water supply in the steam superheater tube 13 and the economizer 14, and then flows out to the post-treatment process connected to the flue 12.
 一般に、石油残渣燃料の燃焼におけるNOxの発生量は、燃焼温度と空気比に強く依存する。即ち、還元雰囲気下では高温燃焼になるほどNOx発生量が少なく、酸化雰囲気下では低温燃焼になるほどNOx発生量が少ない。本実施形態に係る石油残渣焚きボイラ1では、高温還元燃焼室2の高温還元雰囲気下で燃料を燃焼させることによりフューエルNOxの発生が抑制され、低温酸化燃焼室3の低温酸化雰囲気下で燃焼ガス中の未燃分を完全に燃焼させることによりサーマルNOxの発生が抑制される。本実施形態に係る石油残渣焚きボイラ1では、上記のような二段燃焼方式を採用することにより、効果的にNOx発生量を低減することができる。 In general, the amount of NOx generated in the combustion of petroleum residue fuel strongly depends on the combustion temperature and air ratio. That is, in a reducing atmosphere, the higher the temperature combustion, the smaller the amount of NOx generated, and in the oxidizing atmosphere, the lower the temperature combustion, the smaller the amount of NOx generated. In the oil residue burning boiler 1 according to the present embodiment, the generation of fuel NOx is suppressed by burning the fuel in the high temperature reduction atmosphere of the high temperature reduction combustion chamber 2, and the combustion gas is suppressed in the low temperature oxidation atmosphere of the low temperature oxidation combustion chamber 3. The generation of thermal NOx is suppressed by completely burning the unburned component inside. In the petroleum residue-fired boiler 1 according to the present embodiment, the amount of NOx generated can be effectively reduced by adopting the two-stage combustion method as described above.
 一般に、高温還元燃焼雰囲気で石油残渣燃料を燃焼すると、炭素の一部がガス化されずに未燃炭素として残る。これが、煤塵の量を増加させる。これに対し、本実施形態に係る石油残渣焚きボイラ1では、高温還元燃焼室2にアシストガスを供給するとともに、高温還元燃焼室2を1300℃以上(望ましくは、1450℃以上)の高温に維持する。これにより、高温還元燃焼室2で水性ガス化反応が生じ、炭化物のガス化を促進される。炭化物のガス化により、石油残渣燃料の燃焼により生じる煤塵の量を低減することができる。 In general, when petroleum residue fuel is burned in a high-temperature reduction combustion atmosphere, part of the carbon is not gasified and remains as unburned carbon. This increases the amount of soot. On the other hand, in the petroleum residue-fired boiler 1 according to the present embodiment, the assist gas is supplied to the high-temperature reduction combustion chamber 2 and the high-temperature reduction combustion chamber 2 is maintained at a high temperature of 1300 ° C. or higher (preferably 1450 ° C. or higher). To do. As a result, an aqueous gasification reaction occurs in the high temperature reduction combustion chamber 2, and gasification of carbides is promoted. Gasification of carbides can reduce the amount of soot and dust generated by the combustion of petroleum residue fuel.
 高温還元燃焼室2のバーナ5から、石油残渣燃料と、アシストガスと、燃焼用空気とが噴出する。石油残渣燃料は難燃性であるため、アシストガスが石油残渣燃料よりも先に燃焼を開始する。アシストガスが燃焼用空気によって燃焼すると、水蒸気が生じる。
2H2+O2→2H2O,CH4+O2→CO2+2H2O,・・・
発生したH2Oガスがガス化剤となって、燃焼ガス中の未燃炭素が水性ガス化反応して、COガスとH2ガスに変換される。
C+H2O→CO+H2
なお、燃焼ガスの温度が1300℃未満では、石油残渣燃料とアシストガスとの混焼において、アシストガスの割合が増えると酸素不足の状態となって、水性ガス化反応が生じない。その結果、逆に煤塵の量が増えるおそれがある。
Petroleum residue fuel, assist gas, and combustion air are ejected from the burner 5 of the high-temperature reduction combustion chamber 2. Since the petroleum residual fuel is flame-retardant, the assist gas starts burning before the petroleum residual fuel. When the assist gas is burned by the combustion air, water vapor is generated.
2H 2 + O 2 → 2H 2 O, CH 4 + O 2 → CO 2 + 2H 2 O, ...
The generated H 2 O gas acts as a gasifying agent, and unburned carbon in the combustion gas undergoes an aqueous gasification reaction to be converted into CO gas and H 2 gas.
C + H 2 O → CO + H 2
If the temperature of the combustion gas is less than 1300 ° C., in the co-firing of the petroleum residual fuel and the assist gas, if the ratio of the assist gas increases, the oxygen becomes insufficient and the water gasification reaction does not occur. As a result, on the contrary, the amount of soot and dust may increase.
 高温還元燃焼室2にアシストガスを供給して、アシストガスの燃焼により水蒸気を生じさせる場合は、ガス化剤として炉内温度より低温の水蒸気を直接に炉内に供給する場合と比較して、炉内温度低下を抑制できる。つまり、炉内は水性ガス化反応の進行に有利な高温に維持される。 When the assist gas is supplied to the high temperature reduction combustion chamber 2 and steam is generated by the combustion of the assist gas, compared with the case where the steam lower than the temperature inside the furnace is directly supplied to the furnace as a gasifying agent, It is possible to suppress a decrease in the temperature inside the furnace. That is, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction.
 図3は、アシストガスの供給と煤塵量及び燃焼効率との関係を表す図表である。図3の横軸は石油残渣燃料の供給量に対するアシストガスの供給量を熱量で換算した熱量比[%]を表し、縦軸が(1)石油残渣燃料の供給量[t]に対する煤塵量[Kg]の比、及び、(2)燃焼効率[%]を表す。煤塵量は、灰排出部8及び灰排出口15から排出されたボトムアッシュ、及び、煙道12に接続された後処理行程において集塵器で回収されたフライアッシュを含む。 FIG. 3 is a chart showing the relationship between the supply of assist gas and the amount of soot and combustion efficiency. The horizontal axis of FIG. 3 represents the calorific value ratio [%] obtained by converting the supply amount of assist gas to the supply amount of petroleum residual fuel by the calorific value, and the vertical axis represents (1) the amount of soot and dust with respect to the supply amount [t] of petroleum residual fuel. It represents the ratio of [Kg] and (2) combustion efficiency [%]. The amount of soot includes bottom ash discharged from the ash discharge unit 8 and the ash discharge port 15, and fly ash collected by a dust collector in the post-treatment process connected to the flue 12.
 図3の図表に示されるように、アシストガスの供給量が増加するに従って、煤塵量が低下する。このことから、アシストガスの供給により煤塵量を低減できることが明らかである。また、煤塵量が低下するに従って、燃焼効率が増加する。このことから、煤塵量の低減により燃焼効率が増加することが明らかである。 As shown in the chart of FIG. 3, the amount of soot and dust decreases as the amount of assist gas supplied increases. From this, it is clear that the amount of soot and dust can be reduced by supplying the assist gas. Further, as the amount of soot and dust decreases, the combustion efficiency increases. From this, it is clear that the combustion efficiency is increased by reducing the amount of soot and dust.
 以上に説明した通り、本実施形態に係る石油残渣焚きボイラ1は、1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室2、及び、高温還元燃焼室2と接続され、1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室3とが形成された炉体20と、高温還元燃焼室2へ石油残渣燃料及び一次燃焼用空気を供給するバーナ5と、低温酸化燃焼室3へ二段燃焼用空気を供給する二段燃焼用空気供給ノズル7と、高温還元燃焼室2へアシストガスを供給するアシストガス供給ノズル52とを、備える。アシストガスは、燃焼によって水蒸気が生じる成分を含み、この水蒸気は石油残渣燃料の燃焼ガス中の未燃炭素のガス化剤となる。 As described above, the petroleum residue-fired boiler 1 according to the present embodiment is connected to the high-temperature reduction combustion chamber 2 and the high-temperature reduction combustion chamber 2 in which combustion is performed at an air ratio of 1300 ° C. or higher and lower than 1, 1300. A furnace body 20 in which a low-temperature oxidation combustion chamber 3 that burns at an air ratio of less than 1 ° C. and 1 or more is formed, a burner 5 that supplies petroleum residue fuel and primary combustion air to the high-temperature reduction combustion chamber 2, and a low temperature. A two-stage combustion air supply nozzle 7 for supplying two-stage combustion air to the oxidation combustion chamber 3 and an assist gas supply nozzle 52 for supplying an assist gas to the high-temperature reduction combustion chamber 2 are provided. The assist gas contains a component that produces water vapor by combustion, and this water vapor becomes a gasifying agent for unburned carbon in the combustion gas of petroleum residue fuel.
 また、本実施形態に係る石油残渣焚きボイラ1の燃焼方法は、石油残渣燃料及び一次燃焼用空気が供給され、1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室2、及び、高温還元燃焼室2と接続され、1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室3とを有する石油残渣焚きボイラ1において、高温還元燃焼室2にアシストガスを供給し、アシストガスの燃焼により生じた水蒸気をガス化剤として、石油残渣燃料の燃焼ガス中の未燃炭素を水性ガス化反応によりガス化させるものである。 Further, in the combustion method of the oil residue burning boiler 1 according to the present embodiment, the high temperature reduction combustion chamber 2 to which the oil residue fuel and the air for primary combustion are supplied and the combustion is performed at an air ratio of 1300 ° C. or higher and less than 1 and In the petroleum residue burning boiler 1 having a low temperature oxidation combustion chamber 3 connected to the high temperature reduction combustion chamber 2 and combusting at an air ratio of less than 1300 ° C. and 1 or more, the assist gas is supplied to the high temperature reduction combustion chamber 2. The steam generated by the combustion of the assist gas is used as a gasifying agent, and the unburned carbon in the combustion gas of the petroleum residue fuel is gasified by an aqueous gasification reaction.
 上記石油残渣焚きボイラ1及びその燃焼方法によれば、高温還元燃焼室2に供給されたアシストガスの燃焼により水蒸気(H2Oガス)が生じ、この水蒸気をガス化剤として、石油残渣燃料の燃焼ガス中の未燃炭素を水性ガス化反応によりガス化させることができる。そのうえ、ガス化剤として水蒸気を直接に炉内に供給する場合と比較して炉内温度低下を抑制できることから、炉内は水性ガス化反応の進行に有利な高温に維持される。このように、未燃炭素のガス化が促進されるので、燃焼により生じる煤塵の量を低減することができる。つまり、ガス化剤として水蒸気を直接に炉内に供給する場合と比較して水性ガス化反応を効果的に促進させ、これにより、低煤塵燃焼を実現する石油残渣焚きボイラ1及びその燃焼方法を提供することができる。 According to the oil residue burning boiler 1 and its combustion method, steam (H 2 O gas) is generated by combustion of the assist gas supplied to the high temperature reduction combustion chamber 2, and this steam is used as a gasifying agent for the petroleum residue fuel. Unburned carbon in the combustion gas can be gasified by an aqueous gasification reaction. In addition, since the temperature drop in the furnace can be suppressed as compared with the case where water vapor is directly supplied into the furnace as a gasifying agent, the inside of the furnace is maintained at a high temperature which is advantageous for the progress of the water gasification reaction. In this way, since the gasification of unburned carbon is promoted, the amount of soot and dust generated by combustion can be reduced. That is, the petroleum residue-fired boiler 1 and its combustion method that effectively promote the water gasification reaction as compared with the case where steam is directly supplied into the furnace as a gasifying agent, thereby realizing low soot and dust combustion. Can be provided.
 本実施形態に係る石油残渣焚きボイラ1においては、上記のバーナ5が、アシストガス供給ノズル52と、石油残渣燃料及び一次燃焼用空気を供給する主燃料供給ノズル51とを有する、同軸混焼バーナである。 In the petroleum residue-fired boiler 1 according to the present embodiment, the burner 5 is a coaxial co-firing burner having an assist gas supply nozzle 52 and a main fuel supply nozzle 51 for supplying petroleum residue fuel and primary combustion air. is there.
 同様に、本実施形態に係る石油残渣焚きボイラ1の燃焼方法では、アシストガスを、石油残渣燃料及び一次燃焼用空気とともに、同軸状に高温還元燃焼室2へ供給する。 Similarly, in the combustion method of the petroleum residue-fired boiler 1 according to the present embodiment, the assist gas is coaxially supplied to the high-temperature reduction combustion chamber 2 together with the petroleum residue fuel and the primary combustion air.
 このようにアシストガスと、石油残渣燃料及び一次燃焼用空気とが、同軸状に高温還元燃焼室2へ供給される(噴出する)ことによって、難燃性の石油残渣燃料よりも先に一次燃焼用空気とアシストガスとを反応させることができる。そして、一次燃焼用空気とアシストガスとの燃焼反応によって生じた水蒸気を、石油残渣燃料の燃焼により生じた燃焼ガスに含まれる未燃炭素と反応させることができる。 In this way, the assist gas, the petroleum residual fuel, and the air for primary combustion are coaxially supplied (spouted) to the high-temperature reduction combustion chamber 2, so that the primary combustion precedes the flame-retardant petroleum residual fuel. The air for use and the assist gas can be reacted. Then, the water vapor generated by the combustion reaction between the primary combustion air and the assist gas can be reacted with the unburned carbon contained in the combustion gas generated by the combustion of the petroleum residue fuel.
 本実施形態に係る石油残渣焚きボイラ1及びその燃焼方法において、アシストガスが、石油精製工程で発生する副生ガスであってよい。 In the petroleum residue-fired boiler 1 and the combustion method thereof according to the present embodiment, the assist gas may be a by-product gas generated in the petroleum refining process.
 石油残渣焚きボイラ1は、石油精製工程で生じる石油残渣を燃料として用いることから、石油精製工場又はそれに隣接して設けられることがある。このような場合に、アシストガスが石油精製工程で発生する副生ガスであれば、石油精製工程で生じる石油残渣燃料と副生ガスとを共に有効に利用することができるので好ましい。 Since the petroleum residue-fired boiler 1 uses the petroleum residue generated in the petroleum refining process as fuel, it may be installed at or adjacent to the petroleum refining factory. In such a case, if the assist gas is a by-product gas generated in the petroleum refining process, it is preferable because both the petroleum residue fuel and the by-product gas generated in the petroleum refining process can be effectively used.
 以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。上記の構成は、例えば、以下のように変更することができる。 Although the preferred embodiment of the present invention has been described above, the present invention may include modified details of the specific structure and / or function of the above embodiment without departing from the idea of the present invention. .. The above configuration can be changed, for example, as follows.
 例えば、上記実施形態においてバーナ5は、石油残渣燃料とアシストガスとの同軸混焼バーナである。但し、バーナ5は、石油残渣燃料の専焼バーナであってもよい。この場合、石油残渣燃料の専焼バーナから噴出する石油残渣燃料及び一次燃焼用空気と混合するようにアシストガスを噴出するアシストガス供給ノズル52が、バーナ5から独立して設けられていてよい。 For example, in the above embodiment, the burner 5 is a coaxial co-firing burner of petroleum residue fuel and assist gas. However, the burner 5 may be a dedicated burning burner for petroleum residue fuel. In this case, the assist gas supply nozzle 52 that ejects the assist gas so as to be mixed with the petroleum residue fuel ejected from the exclusive combustion burner of the petroleum residue fuel and the air for primary combustion may be provided independently of the burner 5.
1   :石油残渣焚きボイラ
2   :高温還元燃焼室
3   :低温酸化燃焼室
4   :絞り部
5   :バーナ
6   :耐火材
7   :二段燃焼用空気供給ノズル
8   :灰排出部
9   :冷却部
10  :二段燃焼部
11  :ガス流出口
12  :煙道
13  :蒸気過熱器管
14  :エコノマイザ
15  :灰排出口
20  :炉体
51  :主燃料供給ノズル
52  :アシストガス供給ノズル
53  :空気供給装置
54  :石油残渣燃料供給装置
55  :アシストガス供給装置
1: Oil residue-fired boiler 2: High-temperature reduction combustion chamber 3: Low-temperature oxidation combustion chamber 4: Squeezing section 5: Burner 6: Fireproof material 7: Air supply nozzle for two-stage combustion 8: Ash discharge section 9: Cooling section 10: Two Stage combustion chamber 11: Gas outlet 12: Smoke path 13: Steam superheater tube 14: Economizer 15: Ash discharge port 20: Furnace 51: Main fuel supply nozzle 52: Assist gas supply nozzle 53: Air supply device 54: Oil Residual fuel supply device 55: Assist gas supply device

Claims (6)

  1.  1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室、及び、前記高温還元燃焼室と接続され1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室とが形成された炉体と、
     前記高温還元燃焼室へ石油残渣燃料及び一次燃焼用空気を供給するバーナと、
     前記低温酸化燃焼室へ二段燃焼用空気を供給する二段燃焼用空気供給ノズルと、
     燃焼によって前記石油残渣燃料の燃焼ガス中の未燃炭素のガス化剤となる水蒸気が生じる成分を含むアシストガスを、前記高温還元燃焼室へ供給するアシストガス供給ノズルとを、備える、
     石油残渣焚きボイラ。
    A high-temperature reduction combustion chamber that burns at an air ratio of 1300 ° C. or higher and less than 1 and a low-temperature oxidation combustion chamber that is connected to the high-temperature reduction combustion chamber and burns at an air ratio of less than 1300 ° C. and 1 or more are formed. With the furnace body
    A burner that supplies petroleum residue fuel and air for primary combustion to the high-temperature reduction combustion chamber,
    A two-stage combustion air supply nozzle that supplies air for two-stage combustion to the low-temperature oxidation combustion chamber,
    An assist gas supply nozzle for supplying an assist gas containing a component that produces water vapor as a gasifying agent for unburned carbon in the combustion gas of the petroleum residue fuel to the high temperature reduction combustion chamber is provided.
    Oil residue-fired boiler.
  2.  前記バーナが、前記アシストガス供給ノズルと、前記石油残渣燃料及び前記一次燃焼用空気を供給する主燃料供給ノズルとを有する、同軸混焼バーナである、
    請求項1に記載の石油残渣焚きボイラ。
    The burner is a coaxial co-firing burner having the assist gas supply nozzle and the main fuel supply nozzle for supplying the petroleum residual fuel and the primary combustion air.
    The petroleum residue-fired boiler according to claim 1.
  3.  前記アシストガスが、石油精製工程で発生する副生ガスである、
    請求項1又は2に記載の石油残渣焚きボイラ。
    The assist gas is a by-product gas generated in the oil refining process.
    The petroleum residue-fired boiler according to claim 1 or 2.
  4.  石油残渣燃料及び一次燃焼用空気が供給され、1300℃以上且つ1未満の空気比で燃焼が行われる高温還元燃焼室、及び、前記高温還元燃焼室と接続され、1300℃未満且つ1以上の空気比で燃焼が行われる低温酸化燃焼室とを有する石油残渣焚きボイラにおいて、
     前記高温還元燃焼室にアシストガスを供給し、前記アシストガスの燃焼により生じた水蒸気をガス化剤として、前記石油残渣燃料の燃焼ガス中の未燃炭素を水性ガス化反応によりガス化させる、
    石油残渣焚きボイラの燃焼方法。
    A high-temperature reduction combustion chamber to which petroleum residue fuel and primary combustion air are supplied and combustion is performed at an air ratio of 1300 ° C. or higher and less than 1 and air connected to the high-temperature reduction combustion chamber and having a temperature lower than 1300 ° C. and 1 or higher. In an oil residue-fired boiler with a low-temperature oxidation combustion chamber where combustion is performed in proportion,
    An assist gas is supplied to the high-temperature reduction combustion chamber, and unburned carbon in the combustion gas of the petroleum residue fuel is gasified by an aqueous gasification reaction using the water vapor generated by the combustion of the assist gas as a gasifying agent.
    How to burn an oil residue-fired boiler.
  5.  前記アシストガスを、前記石油残渣燃料及び前記一次燃焼用空気とともに、同軸状に前記高温還元燃焼室へ供給する、
    請求項4に記載の石油残渣焚きボイラの燃焼方法。
    The assist gas is coaxially supplied to the high temperature reduction combustion chamber together with the petroleum residue fuel and the primary combustion air.
    The method for burning an oil residue-fired boiler according to claim 4.
  6.  前記アシストガスが、石油精製工程で発生する副生ガスである、
    請求項4又は5に記載の石油残渣焚きボイラの燃焼方法。
    The assist gas is a by-product gas generated in the oil refining process.
    The method for burning a petroleum residue-fired boiler according to claim 4 or 5.
PCT/JP2019/014280 2019-03-29 2019-03-29 Petroleum residue-fired boiler and combustion method therefor WO2020202362A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3131851A CA3131851A1 (en) 2019-03-29 2019-03-29 Petroleum residuum burning boiler and combustion method thereof
US17/599,493 US20220146090A1 (en) 2019-03-29 2019-03-29 Petroleum residuum burning boiler and combustion method thereof
JP2021511736A JPWO2020202362A1 (en) 2019-03-29 2019-03-29 Petroleum residue-fired boiler and its combustion method
KR1020217033786A KR20210139413A (en) 2019-03-29 2019-03-29 Petroleum residue combustion boiler and its combustion method
BR112021017302A BR112021017302A2 (en) 2019-03-29 2019-03-29 Petroleum residue combustion boiler and its combustion method
PCT/JP2019/014280 WO2020202362A1 (en) 2019-03-29 2019-03-29 Petroleum residue-fired boiler and combustion method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014280 WO2020202362A1 (en) 2019-03-29 2019-03-29 Petroleum residue-fired boiler and combustion method therefor

Publications (1)

Publication Number Publication Date
WO2020202362A1 true WO2020202362A1 (en) 2020-10-08

Family

ID=72666663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014280 WO2020202362A1 (en) 2019-03-29 2019-03-29 Petroleum residue-fired boiler and combustion method therefor

Country Status (6)

Country Link
US (1) US20220146090A1 (en)
JP (1) JPWO2020202362A1 (en)
KR (1) KR20210139413A (en)
BR (1) BR112021017302A2 (en)
CA (1) CA3131851A1 (en)
WO (1) WO2020202362A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127919A1 (en) * 2021-12-27 2023-07-06 川崎重工業株式会社 Burner and combustion furnace
WO2023127678A1 (en) * 2021-12-27 2023-07-06 川崎重工業株式会社 Burner and combustion furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942611A (en) * 1995-07-25 1997-02-14 Babcock Lentjes Kraftwerkstechnik Gmbh Method and burner for reducing formation of nox at time of combustion of coal duct
JP2010271001A (en) * 2009-05-25 2010-12-02 Ihi Corp Coal fired boiler
US20120129111A1 (en) * 2010-05-21 2012-05-24 Fives North America Combustion, Inc. Premix for non-gaseous fuel delivery
JP2012107825A (en) * 2010-11-18 2012-06-07 Kawasaki Heavy Ind Ltd LOW NOx/LOW SOOT COMBUSTION METHOD AND BOILER COMBUSTION CHAMBER
US20150226421A1 (en) * 2014-02-12 2015-08-13 Breen Energy Solutions Method of Co-Firing Coal or Oil with a Gaseous Fuel in a Furnace
JP2016114268A (en) * 2014-12-12 2016-06-23 川崎重工業株式会社 Combustion system
JP2017090019A (en) * 2015-11-16 2017-05-25 大阪瓦斯株式会社 Powder combustion device and powder combustion method
CN109028037A (en) * 2018-06-06 2018-12-18 大唐长山热电厂 The method that the device and biogasification gas and coal dust being mixed and burned for biogasification gas and coal dust are mixed and burned

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206032A (en) * 1978-03-17 1980-06-03 Rockwell International Corporation Hydrogenation of carbonaceous materials
US6325002B1 (en) * 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
US6085674A (en) * 1999-02-03 2000-07-11 Clearstack Combustion Corp. Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
CA2485934C (en) * 2002-05-15 2009-12-15 Praxair Technology, Inc. Low nox combustion
US20040131984A1 (en) * 2003-01-06 2004-07-08 Satek Larry C. Low NOx burner
US20090188449A1 (en) * 2008-01-24 2009-07-30 Hydrogen Technology Applications, Inc. Method to enhance and improve solid carbonaceous fuel combustion systems using a hydrogen-rich gas
US20120196240A1 (en) * 2009-08-30 2012-08-02 Technion Research & Development Foundation Ltd. Method and system for treating sewage sludge
JP5737853B2 (en) * 2010-03-29 2015-06-17 千代田化工建設株式会社 Method for producing hydrogen for storage and transportation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942611A (en) * 1995-07-25 1997-02-14 Babcock Lentjes Kraftwerkstechnik Gmbh Method and burner for reducing formation of nox at time of combustion of coal duct
JP2010271001A (en) * 2009-05-25 2010-12-02 Ihi Corp Coal fired boiler
US20120129111A1 (en) * 2010-05-21 2012-05-24 Fives North America Combustion, Inc. Premix for non-gaseous fuel delivery
JP2012107825A (en) * 2010-11-18 2012-06-07 Kawasaki Heavy Ind Ltd LOW NOx/LOW SOOT COMBUSTION METHOD AND BOILER COMBUSTION CHAMBER
US20150226421A1 (en) * 2014-02-12 2015-08-13 Breen Energy Solutions Method of Co-Firing Coal or Oil with a Gaseous Fuel in a Furnace
JP2016114268A (en) * 2014-12-12 2016-06-23 川崎重工業株式会社 Combustion system
JP2017090019A (en) * 2015-11-16 2017-05-25 大阪瓦斯株式会社 Powder combustion device and powder combustion method
CN109028037A (en) * 2018-06-06 2018-12-18 大唐长山热电厂 The method that the device and biogasification gas and coal dust being mixed and burned for biogasification gas and coal dust are mixed and burned

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127919A1 (en) * 2021-12-27 2023-07-06 川崎重工業株式会社 Burner and combustion furnace
WO2023127678A1 (en) * 2021-12-27 2023-07-06 川崎重工業株式会社 Burner and combustion furnace

Also Published As

Publication number Publication date
KR20210139413A (en) 2021-11-22
CA3131851A1 (en) 2020-10-08
BR112021017302A2 (en) 2021-11-16
JPWO2020202362A1 (en) 2021-10-14
US20220146090A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US6314896B1 (en) Method for operating a boiler using oxygen-enriched oxidants
KR890001113B1 (en) Method of reducing nox and sox emission
CN102269402B (en) Method and system for realizing NOx discharge reduction and stable combustion of power station boiler
NO178478B (en) Method and apparatus for reducing N2O emissions when nitrogen-containing fuels are burned in fluid bed reactors
WO2020202362A1 (en) Petroleum residue-fired boiler and combustion method therefor
US6532881B2 (en) Method for operating a boiler using oxygen-enriched oxidants
US4986199A (en) Method for recovering waste gases from coal partial combustor
JP5392230B2 (en) Blast furnace gas combustion method with combustion burner
WO2010126171A1 (en) Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
CN202350013U (en) W-shaped flame boiler
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
JP4359768B2 (en) Boiler equipment
JP4533203B2 (en) Combustion burner for combustible gas generated from waste gasification
RU2582722C2 (en) Vortex furnace
CN114777111B (en) British bar type W flame boiler device and method for gasification coupled combustion
WO2023234428A1 (en) Ammonia combustion furnace
CN115013804B (en) Braway type W flame boiler device and method for gasification coupled combustion
JP5981696B2 (en) Gasification melting equipment melting furnace
Baubekov A study of the mechanism through which nitrogen oxides are generated in boiler furnaces during staged combustion of gas
CN114963160A (en) FW type W flame boiler device and method for coupling combustion of gasification crude synthesis gas and coal
JP5392229B2 (en) Combustion method of low calorific value gas by combustion burner
RU2071010C1 (en) Method for removal of fluid slag from boiler furnace
JPH05332510A (en) Method and apparatus for low nox ignition in boiler and the like
JPS6245689A (en) Simple gas generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511736

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3131851

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021017302

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033786

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021017302

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210831

122 Ep: pct application non-entry in european phase

Ref document number: 19922769

Country of ref document: EP

Kind code of ref document: A1