JPS6317916A - Production of silane-crosslinked polyolefin - Google Patents

Production of silane-crosslinked polyolefin

Info

Publication number
JPS6317916A
JPS6317916A JP16149386A JP16149386A JPS6317916A JP S6317916 A JPS6317916 A JP S6317916A JP 16149386 A JP16149386 A JP 16149386A JP 16149386 A JP16149386 A JP 16149386A JP S6317916 A JPS6317916 A JP S6317916A
Authority
JP
Japan
Prior art keywords
silane
polyolefin
modified polyolefin
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16149386A
Other languages
Japanese (ja)
Other versions
JPH0453882B2 (en
Inventor
Shigeji Yamamoto
山本 繁治
Soichi Komaki
小牧 総一
Toshihiro Ishii
敏博 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Polymer Co Ltd
Nissan Chemical Corp
Original Assignee
Maruzen Polymer Co Ltd
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Polymer Co Ltd, Nissan Chemical Corp filed Critical Maruzen Polymer Co Ltd
Priority to JP16149386A priority Critical patent/JPS6317916A/en
Publication of JPS6317916A publication Critical patent/JPS6317916A/en
Publication of JPH0453882B2 publication Critical patent/JPH0453882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the titled polymer improved in strength at yield point and elongation at break, by modification of polyolefin with a specific silane compound to enable the extrusion energy to be reduced in preparing a silane- modified polyolefin as intermediate product. CONSTITUTION:First, (A) polyolefin and (B) 0.1-10pts.wt. based on the component A, or a trialkoxysilyl butadiene (pref. trimethoxysilyl butadiene) are allowed to react in a kneading extruder in the presence of a free radical generator (pref. dicumyl peroxide) to prepare a silane-modified polyolefin. The resultant modified polyolefin is brought to catalytic reaction with water, normally in the presence of a silanol condensation catalyst such as dibutyltin dilaurate, thus obtaining the objective polymer. The reaction in the kneading extruder mentioned above is preferably carried out at 140-250 deg.C for <10min.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポリオレフィンとシラン化合物を反応させてシ
ラン変性ポリオレフィンを製造する方法に関する。より
詳しくは当該シラン変性ポリオレフィンを経済上有利に
製造できる方法を提供すると同時に当該シラン変性ポリ
オレフィンをシラノール縮合触媒の存在下に水と処理し
て機械的物性の改善されたシラン架橋ポリオレフィンを
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a silane-modified polyolefin by reacting a polyolefin with a silane compound. More specifically, it provides an economically advantageous method for producing the silane-modified polyolefin, and at the same time, a method for producing a silane-crosslinked polyolefin with improved mechanical properties by treating the silane-modified polyolefin with water in the presence of a silanol condensation catalyst. Regarding.

鴛】ull− 従来、架橋ポリエチレンは主として有機過酸化物を用い
る架橋法により製造されていたが、この方法は成形性に
おいて充分満足すべきものではなかった。放射線照射に
よりポリオレフィンを改質する方法も採用されてきたが
、この方法では成形品をそのまま処理する必要があり、
この為装置が大型化し経済性の良いものではなかった。
Traditionally, crosslinked polyethylene has been produced mainly by a crosslinking method using organic peroxides, but this method has not been fully satisfactory in terms of moldability. A method of modifying polyolefins by irradiation with radiation has also been adopted, but this method requires that the molded product be processed as is.
For this reason, the device became large and was not economically efficient.

こうした難点を克服するものとして、近年、ポリオレフ
ィンをシラン化合物で処理し、シラン変性ポリオレフィ
ンを製造し、さらにシラノール縮合触媒の存在下に水で
処理し、耐熱性、耐ESC。
In order to overcome these difficulties, in recent years, polyolefins have been treated with silane compounds to produce silane-modified polyolefins, which are further treated with water in the presence of a silanol condensation catalyst to achieve heat resistance and ESC resistance.

耐薬品性の優れたシラン架橋ポリオレフィンを製造し、
電カケープル、薬品ボトル等に応用することは既に知ら
れている。このような例として1例えば、特公昭48−
1711 (ミソドランドシリコーンズリミテソド)で
はオレフィン重合体および共重合体をシラン化合物、遊
離基発生剤と処理し、これにシラノール縮合触媒と水と
を作用せしめて。
We manufacture silane cross-linked polyolefins with excellent chemical resistance.
It is already known that it can be applied to electric power cables, medicine bottles, etc. An example of this is 1, for example,
1711 (Misodoland Silicones Limited), olefin polymers and copolymers are treated with a silane compound and a free radical generator, and then treated with a silanol condensation catalyst and water.

シラン架橋ポリオレフィンを製造する方法を提示してい
る、しかし、この出願においては原理的に架橋ポリオレ
フィンを得る方法のみで工業的製造面からの特徴は記述
されていない。
A method for producing a silane crosslinked polyolefin is proposed, but this application only describes the method for obtaining the crosslinked polyolefin in principle and does not describe any features from an industrial production perspective.

また、他の例として特開昭57−153004 (日本
石油化学株式会社)のシラン架橋ポリオレフィンの製造
方法があげられる。この出願では対象とするポリオレフ
ィンの製造方法を限定しているため。
Another example is a method for producing a silane crosslinked polyolefin disclosed in Japanese Patent Application Laid-Open No. 57-153004 (Nippon Petrochemicals Co., Ltd.). This is because this application limits the manufacturing method of the target polyolefin.

使用されるべきシラン化合物相互の優劣は必ずしも明確
にされていないと考えられる。
It is considered that the superiority of the silane compounds to be used is not necessarily clear.

本発明の解決すべき問題点 本発明者はこれらの先願を詳細に検討し、さらに工業化
への意図をもって鋭意研究した結果、シランの種別によ
りシラン変性ポリオレフィンの加工性及び最終製品とし
て得られるシラン架橋ポリオレフィンの機械的物性が異
なることを発見した。
Problems to be Solved by the Present Invention The present inventor has examined these prior applications in detail, and as a result of intensive research with the intention of industrialization, the processability of silane-modified polyolefin and the silane obtained as a final product, depending on the type of silane. It was discovered that the mechanical properties of crosslinked polyolefins are different.

すなわち、ポリオレフィンにシラン化合物、遊離基発生
剤を添加し1両者を混練押出機内で反応させる際、シラ
ン化合物により混練機にかかるトルクが低下し、樹脂圧
力が軽減されるため、押出エネルギーの削減が可能で、
経済上、好ましいことを見出した。
In other words, when a silane compound and a free radical generator are added to polyolefin and the two are reacted in a kneading extruder, the silane compound reduces the torque applied to the kneader and reduces the resin pressure, resulting in a reduction in extrusion energy. possible,
We found it to be economically advantageous.

また、最終製品たるシラン架橋ポリオレフィンにおいて
も明らかに架橋反応が起こっていることを確認し、引張
特性において降伏点強度と破断点伸びが改善されること
が明らかとなった。
It was also confirmed that a crosslinking reaction had clearly occurred in the final product, the silane crosslinked polyolefin, and it was revealed that the yield point strength and elongation at break were improved in terms of tensile properties.

本発明の解決した事項 本発明に用いるポリオレフィンは低圧法ポリエチレン、
高圧法ポリエチレン、線状低密度ポリエチレンが好適で
ある。
Problems solved by the present invention The polyolefin used in the present invention is low pressure polyethylene,
High-pressure polyethylene and linear low-density polyethylene are preferred.

本発明に用いるシラン化合物は、一般式(Rは炭素数1
〜4の炭化水素基を示す、)で示される特定のシラン化
合物であり、特にトリメトキシシリルブタジェンが好適
である。シランの使用割合は反応条件あるいは変性の程
度により任意に変え得るものであるが、一般的には変性
に供するポリオレフィンに対して0.1〜10重量部。
The silane compound used in the present invention has the general formula (R is 1 carbon number
It is a specific silane compound represented by ) which shows a hydrocarbon group of ~4, and trimethoxysilylbutadiene is particularly suitable. The proportion of silane used can be arbitrarily changed depending on the reaction conditions or degree of modification, but is generally 0.1 to 10 parts by weight based on the polyolefin to be modified.

好ましくは0.5〜5重量部である。Preferably it is 0.5 to 5 parts by weight.

本発明に用いる遊離基発生剤は有機過酸化物およびパー
エステルであり、これらの具体的な例としては過酸化ベ
ンゾイル、過酸化ジクロルベンゾイル、ジクミルパーオ
キシド、ジー第三−ブチルパーオキシド、2,5−ジ(
パーオキシベンゾエート)ヘキシン−3,L3−ビス(
第三−ブチルパーオキシイソプロピル)ベンゼン、過酸
化ラウロイル、第三−ブチルパーアセテート1,3−ビ
ス(第三−ブチルパーオキシイソプロピル)ベンゼン、
2,5−ジメチル−2,5−ジ(第三−ブチルパーオキ
シ)ヘキシン−3,2,5−ジメチル−2,5−ジ(第
三−ブチルパーオキシ)ヘキサン及び第三−ブチルバー
ベンゾエートを挙げることができ、ジクミルパーオキシ
ド及び1,3−ビス(第三−ブチルパーオキシイソプロ
ピル)ベンゼンが特に好ましい、これら遊離基発生剤の
使用量は変性に供するポリオレフィンに対して0.05
〜0.5重量部、好ましくは0.1〜0.2重量部であ
る。
Free radical generators used in the present invention are organic peroxides and peresters, specific examples of which include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-di(
peroxybenzoate) hexyne-3,L3-bis(
tert-butylperoxyisopropyl)benzene, lauroyl peroxide, tert-butylperacetate 1,3-bis(tert-butylperoxyisopropyl)benzene,
2,5-dimethyl-2,5-di(tert-butylperoxy)hexane-3,2,5-dimethyl-2,5-di(tert-butylperoxy)hexane and tert-butylbarbenzoate Dicumyl peroxide and 1,3-bis(tert-butylperoxyisopropyl)benzene are particularly preferred, and the amount of these free radical generators used is 0.05% based on the polyolefin to be modified.
-0.5 parts by weight, preferably 0.1-0.2 parts by weight.

本発明に用いるシラノール縮合触媒は例えば。Examples of the silanol condensation catalyst used in the present invention include:

ジブチル錫ジラウレート、酢酸第一錫、オクタン酸第−
錫、カプリル酸第−錫、ナフテン酸鉛、カプリル酸亜鉛
、2−エチルヘキサン酸鉄、ナフテン酸コバルトのよう
なカルボン酸塩、チタン酸エステル及びキレート化物の
ような有機金属化合物。
Dibutyltin dilaurate, stannous acetate, stannous octanoate
Organometallic compounds such as carboxylates, titanate esters and chelates such as tin, stannous caprylate, lead naphthenate, zinc caprylate, iron 2-ethylhexanoate, cobalt naphthenate.

例えばチタン酸テトラブチルエステル、チタン酸テトラ
ノニルエステル及びビス(アセチルアセトニトリル)ジ
−イソプロピルチタネートが挙げられる。好適な触媒は
有機錫化合物9例えばジブチル錫ジラウレートである。
Examples include tetrabutyl titanate, tetranonyl titanate and bis(acetylacetonitrile) di-isopropyltitanate. Suitable catalysts are organotin compounds 9 such as dibutyltin dilaurate.

シラノール縮合触媒は水と接触させる前に、シラン変性
ポリオレフィン中に混合させておくのが良い、すなわち
、シラン化合物とポリオレフィンとの反応前に、あるい
は反応中に、あるいは反応後にシラノール縮合触媒を混
入させることにより成し得る。
The silanol condensation catalyst is preferably mixed into the silane-modified polyolefin before contacting with water, i.e., the silanol condensation catalyst is mixed before, during, or after the reaction between the silane compound and the polyolefin. This can be achieved by

シラノール縮合触媒の添加量は、未変性ポリオレフィン
に対して0.01〜0.5重量部であり、特に0.02
〜0.2重量部が好ましい。
The amount of the silanol condensation catalyst added is 0.01 to 0.5 parts by weight, particularly 0.02 parts by weight, based on the unmodified polyolefin.
~0.2 part by weight is preferred.

本発明で採用するポリオレフィンのシラン変性方法は、
ポリオレフィンとシラン化合物および遊離基発生剤を任
意の適当な反応装置8例えば押出機、バンバリーミキサ
−、ロールミル、ブラベンダープラスチコーダー等で混
合する。この場合。
The method of silane modification of polyolefin adopted in the present invention is as follows:
The polyolefin, silane compound, and free radical generator are mixed in any suitable reactor 8, such as an extruder, Banbury mixer, roll mill, Brabender plasticorder, or the like. in this case.

反応温度はポリオレフィンの融点以上の温度であって、
ポリオレフィンの分解温度以下の任意の温度から選ばれ
るが、好ましくは140〜250℃で10分間までの期
間で行うのが好適である。かくして得られたシラン変性
ポリオレフィンを架橋する方法としては、公知の方法が
用いられる。すなわち。
The reaction temperature is a temperature higher than the melting point of the polyolefin,
The temperature may be selected from any temperature below the decomposition temperature of the polyolefin, but it is preferably carried out at 140 to 250°C for a period of up to 10 minutes. A known method can be used to crosslink the silane-modified polyolefin thus obtained. Namely.

シラン変性ポリオレフィンを押出あるいはその他の処理
により成形した後シラノール縮合触媒の存在下において
水と接触反応させることにより架橋ポリオレフィンを得
ることができる。か(して得られた組成物をシラン架橋
させるための水との接触は、大気中に存在する湿気によ
っても通常充分ではあるが、架橋速度を高めるために、
水あるいは熱水中への浸漬もしくは水蒸気雰囲気にさら
す等の方法により行なわれる。
A crosslinked polyolefin can be obtained by molding a silane-modified polyolefin by extrusion or other treatment and then contacting it with water in the presence of a silanol condensation catalyst. Although contact with water to effect silane crosslinking of the resulting composition is usually sufficient due to moisture present in the atmosphere, to increase the rate of crosslinking,
This is done by immersion in water or hot water, or exposure to a steam atmosphere.

本発明においては、水に接触させる前の組成物には必要
に応じて他の助剤3例えば、カーボンブラック、タルク
、炭酸カルシウム、発泡剤、潤滑剤、酸化防止剤、紫外
線安定剤1重金属劣化防止剤3着色剤、電圧安定剤など
各種の添加剤を適宜配合することができる。
In the present invention, the composition before being brought into contact with water may contain other auxiliary agents (3), such as carbon black, talc, calcium carbonate, foaming agents, lubricants, antioxidants, ultraviolet stabilizers (1) heavy metal deterioration. Inhibitor 3 Various additives such as a colorant and a voltage stabilizer can be appropriately blended.

実施例 実施例1 (トルク比較) メルトフローレート4.9g/10分および密度0.9
62g/cm3を有する高密度ポリエチレン(日産丸善
ポリエチレン社製、グレード2050) 100重量部
に。
Examples Example 1 (torque comparison) Melt flow rate 4.9 g/10 min and density 0.9
100 parts by weight of high-density polyethylene (manufactured by Nissan Maruzen Polyethylene Co., Ltd., grade 2050) having a density of 62 g/cm3.

第1表に示すシラン化合物2重量部及び第1表に示す遊
離基発生剤0.15重量部を添加して得た混合物をブラ
ベンダー社製プラスチコーダーにてジャケット温度19
0℃、ローター回転数4Qrpmで8分間、グラフト重
合を行なわせた。グラフト重合時のトルクを測定した結
果を第1表に示す。
A mixture obtained by adding 2 parts by weight of the silane compound shown in Table 1 and 0.15 parts by weight of the free radical generator shown in Table 1 was heated at a jacket temperature of 19
Graft polymerization was carried out for 8 minutes at 0° C. and a rotor rotation speed of 4 Q rpm. Table 1 shows the results of measuring the torque during graft polymerization.

得られた試料1−A、1−B、1−Cにつき熱プレスに
より作製したシートを5時間アセトンで抽出した後、赤
外吸収スペクトルを測定したところ、 5i−0に基づ
く吸収が1195cm−’に、C−0に基づく吸収が1
090cm −’に、 5i−Cに基づく吸収が 80
0cm−’付近に認められ、トリメトキシシリルブタジ
ェンがグラフトされていることを確認した。赤外吸収ス
ペクトルのポリエチレンの1303cm−’の吸光度に
対するグラフトに生ずる1195call−’の吸光度
の割合DII95/ DI303  よりグラフト率を
算出したところ、添加したトリメトキシシリルブタジェ
ンの約90χがグラフト反応していた。
For the obtained samples 1-A, 1-B, and 1-C, sheets produced by heat pressing were extracted with acetone for 5 hours, and then the infrared absorption spectra were measured, and the absorption based on 5i-0 was 1195 cm-' , the absorption based on C-0 is 1
At 090 cm −', the absorption based on 5i-C is 80
It was observed near 0 cm-', and it was confirmed that trimethoxysilylbutadiene was grafted. When the grafting rate was calculated from the ratio DII95/DI303 of the absorbance of 1195 call-' caused by grafting to the absorbance of 1303 cm-' of polyethylene in the infrared absorption spectrum, it was found that about 90χ of the added trimethoxysilylbutadiene had undergone a graft reaction. .

実施例2 (樹脂圧力比較) メルトフローレート4.9g/10分および密度0.9
62g/cm”を有する高密度ポリエチレン(日産丸善
ポリエチレン社製、グレード2050) 100重量部
に。
Example 2 (Resin pressure comparison) Melt flow rate 4.9 g/10 min and density 0.9
62 g/cm'' high-density polyethylene (manufactured by Nissan Maruzen Polyethylene Co., Ltd., grade 2050) to 100 parts by weight.

第2表に示すシラン化合物2重量部及び第2表に示す遊
離基発生剤0.15重量部を添加して得た混合物を25
11I/IIlφ押出機(L/D・20)を用いて押出
温度200℃、スクリュー回転数25rpII+でスト
ランド状に押出しペレット化した。この時の樹脂圧力を
測定した結果を第2表に示す。
25 parts by weight of a mixture obtained by adding 2 parts by weight of the silane compound shown in Table 2 and 0.15 parts by weight of the free radical generator shown in Table 2.
The mixture was extruded into strands using a 11I/IIlφ extruder (L/D・20) at an extrusion temperature of 200° C. and a screw rotation speed of 25 rpII+ to form pellets. Table 2 shows the results of measuring the resin pressure at this time.

実施例3 (シラン架橋物の比較) 触媒マスターバッチの製造 メルトフローレート4.9g/10分および密度0.9
62g/cm3を有する高密度ポリエチレン(日産丸善
ポリエチレン社製、グレード2050) 100重量部
に。
Example 3 (Comparison of silane crosslinked products) Production of catalyst masterbatch Melt flow rate 4.9 g/10 min and density 0.9
100 parts by weight of high-density polyethylene (manufactured by Nissan Maruzen Polyethylene Co., Ltd., grade 2050) having a density of 62 g/cm3.

ジブチル錫ジラウレート1重量部および2,2−チオビ
ス(4−メチル−6−第三ブチル−フェノール)(チバ
ガイギー社製 商品名 イルガノックス1081) 2
重量部を添加して得た混合物を25m/+iφ押出機(
L/D =20)を用いて押出温度200℃、スクリュ
ー回転数25rpmでストランド状に押出し、ペレット
化した。
1 part by weight of dibutyltin dilaurate and 2,2-thiobis(4-methyl-6-tert-butyl-phenol) (manufactured by Ciba Geigy, trade name Irganox 1081) 2
The mixture obtained by adding parts by weight was passed through a 25 m/+iφ extruder (
L/D = 20) at an extrusion temperature of 200° C. and a screw rotation speed of 25 rpm to form a strand and pelletize it.

シラン架橋ポリオレフィンの製造 実施例2で得た2−A、l−B、2−Cのベレット化物
95重量部に対し、触媒マスターパンチのペレット化物
をそれぞれ5重量部ずつ混合し得られた混合品を25m
/mφ押出機(L/D・20)を用いて、押出温度20
0℃、スクリュー回転数25rpIIlにて再ペレット
化した。この再ペレット化物を用いて180℃でプレス
板を成形した後、このプレス板を100℃の水に6時間
浸漬して架橋処理を行った。得られた架橋シートについ
て JIS K 6760に従って引張特性を測定した
。また、シートの架橋度は90℃のキシレン溶液を抽出
媒体とし、24時間抽出操作によっても抽出されないシ
ート成分の百分率(ゲル分率)にて評価した。得られた
結果を第3表に示す。
Production of silane-crosslinked polyolefin A mixture obtained by mixing 95 parts by weight of the pellets of 2-A, 1-B, and 2-C obtained in Example 2 with 5 parts by weight of each of the pellets of catalyst master punch. 25m
/mφ extruder (L/D・20), extrusion temperature 20
It was re-pelletized at 0° C. and a screw rotation speed of 25 rpm. After molding a press plate at 180°C using this re-pelletized product, this press plate was immersed in water at 100°C for 6 hours to perform a crosslinking treatment. The tensile properties of the obtained crosslinked sheet were measured according to JIS K 6760. Further, the degree of crosslinking of the sheet was evaluated using a xylene solution at 90° C. as an extraction medium and the percentage of sheet components that were not extracted even after a 24-hour extraction operation (gel fraction). The results obtained are shown in Table 3.

(以下余白) 発明の効果 シラン変性ポリオレフィン製造時のトルク(実施例1)
及び樹脂圧力(実施例2)の比較から。
(Left below) Effects of the invention Torque during production of silane-modified polyolefin (Example 1)
and resin pressure (Example 2).

トリメトキシシリルブタジェンを用いた場合は。When using trimethoxysilylbutadiene.

ビニルトリメトキシシランを用いた場合より、トルク及
び樹脂圧力が低くなることが明らかである。
It is clear that the torque and resin pressure are lower than when using vinyltrimethoxysilane.

又、シラン架橋ポリオレフィン(実施例3)での比較か
ら、トリメトキシシリルブタジェンを用いた場合はビニ
ルトリメトキシシランを用いた場合より降伏点強度及び
破断点伸びが改善されることが明らかである。従ってい
ずれもビニルシランよりシリルブタジェンの方が優れて
おり3本発明の当初の目的を満たすものである。
Furthermore, from a comparison with silane-crosslinked polyolefin (Example 3), it is clear that when trimethoxysilylbutadiene is used, the yield point strength and elongation at break are improved compared to when vinyltrimethoxysilane is used. . Therefore, in all cases, silylbutadiene is superior to vinylsilane and satisfies the original purpose of the present invention.

特許出願人 日産化学工業株式会社 日産丸善ポリエチレン株式会社Patent applicant: Nissan Chemical Industries, Ltd. Nissan Maruzen Polyethylene Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ポリオレフィンとシラン化合物を遊離基発生剤の存在下
に混練押出機内で反応させてシラン変性ポリオレフィン
を製造するに際しシラン化合物としてトリアルコキシシ
リルブタジエンをポリオレフィンに対して0.1〜10
重量部使用することを特徴とするシラン架橋ポリオレフ
ィンの製造方法。
When manufacturing a silane-modified polyolefin by reacting a polyolefin and a silane compound in the presence of a free radical generator in a kneading extruder, trialkoxysilylbutadiene is used as the silane compound at a concentration of 0.1 to 10% relative to the polyolefin.
A method for producing a silane crosslinked polyolefin, characterized in that part by weight of the silane is used.
JP16149386A 1986-07-09 1986-07-09 Production of silane-crosslinked polyolefin Granted JPS6317916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16149386A JPS6317916A (en) 1986-07-09 1986-07-09 Production of silane-crosslinked polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16149386A JPS6317916A (en) 1986-07-09 1986-07-09 Production of silane-crosslinked polyolefin

Publications (2)

Publication Number Publication Date
JPS6317916A true JPS6317916A (en) 1988-01-25
JPH0453882B2 JPH0453882B2 (en) 1992-08-27

Family

ID=15736117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16149386A Granted JPS6317916A (en) 1986-07-09 1986-07-09 Production of silane-crosslinked polyolefin

Country Status (1)

Country Link
JP (1) JPS6317916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011955A1 (en) * 2001-07-31 2003-02-13 Compco Pty Ltd Methods of recycling and/or upgrading olefin (co)polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011955A1 (en) * 2001-07-31 2003-02-13 Compco Pty Ltd Methods of recycling and/or upgrading olefin (co)polymers

Also Published As

Publication number Publication date
JPH0453882B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
EP0809672B1 (en) Silane, free radical generator, amine blends for crosslinking of olefin polymers
DE60007849T2 (en) SILANE-GRAFTED COPOLYMERS FROM ISOMONOOLEFINES AND VINYLAROMATIC MONOMERS
US4247667A (en) Method of crosslinking poly-α-olefin series resins
US9074062B2 (en) Process for preparing high melt strength propylene polymers
US5464907A (en) Process for the modification of α-olefin (co) polymers
KR101711636B1 (en) Room Temperature Cross linking Type, Halogen-free Flame Retardant Composition and manufacturing method thereof
EP3080194B1 (en) Process for the production of silane-crosslinked polyolefin in the presence of non-tin catalyst and resulting crosslinked polyolefin
JP6306176B2 (en) Method for modifying ethylene-based polymers and copolymers
CN111892794A (en) PBAT-talcum powder full-biodegradable blend and preparation method thereof
WO1997012936A1 (en) Process for producing silane-crosslinked polyolefin
RU2440633C1 (en) Electrically insulating cross-linking composition
JPS6317916A (en) Production of silane-crosslinked polyolefin
KR100236488B1 (en) Polypropylene-based resin composition
JPS5845942B2 (en) Method for producing silane crosslinked polyolefin resin composition molded article
DE19629429C2 (en) Process for the preparation of crosslinkable olefinic polymers
JPH0616745A (en) Electric wire-cable
JP3003837B2 (en) Crosslinkable polyethylene composition and electric wires and cables
JPH07130238A (en) Manufacture of wear resisting electric wire and cable
JP3359573B2 (en) Silane cross-linked polyolefin resin composition and insulated cable
JPS6143377B2 (en)
JP3354501B2 (en) Silane crosslinkable polyolefin resin composition and insulated cable
CN116622028A (en) Silane crosslinked rubber composition, method for producing same, and electric wire and cable
JP3352631B2 (en) Silane cross-linked polyolefin resin composition and insulated cable
JPH076634A (en) Electric wire cable
KR100292921B1 (en) Modification method of alpha-olefin (co) polymer