JPS63178419A - Superconducting wire and its manufacture - Google Patents

Superconducting wire and its manufacture

Info

Publication number
JPS63178419A
JPS63178419A JP62008646A JP864687A JPS63178419A JP S63178419 A JPS63178419 A JP S63178419A JP 62008646 A JP62008646 A JP 62008646A JP 864687 A JP864687 A JP 864687A JP S63178419 A JPS63178419 A JP S63178419A
Authority
JP
Japan
Prior art keywords
nbti
conductive metal
metal rod
tube
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62008646A
Other languages
Japanese (ja)
Inventor
Shigeru Okuda
奥田 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62008646A priority Critical patent/JPS63178419A/en
Publication of JPS63178419A publication Critical patent/JPS63178419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To heighten critical current density and to reduce manufacturing cost by a method wherein core parts of plural pieces of linear segments are made of an NbTi alloy, a thin film made of a superconducting element is formed thereon and a Cu or Cu alloy layer is formed further thereon. CONSTITUTION:In a superconducting wire where plural pieces of linear segments are arranged in a Cu or Cu alloy matrix, the core part of each linear segment is made of an NbTi alloy, a thin film made of a superconducting element is formed thereon and a Cu or Cu alloy layer is formed further thereon. Thereby, in a manufacturing process of the superconducting wire, no intermetallic compound of Cu and Ti is formed on the surface of an NbTi metal rod, as a result, breaking wire of an NbTi filament and lowering of critical current density caused by generation of the intermetallic compound of Cu and Ti can be prevented and manufacturing cost is reduced due to a rising yield.

Description

【発明の詳細な説明】 この発明は銅(以下、Cuという)またはC(1合金の
7トリクス中に複数本の線状セグメントを配置してなる
超電導線およびその製造方法に関寸るものである。
[Detailed Description of the Invention] This invention relates to a superconducting wire in which a plurality of linear segments are arranged in 7 trixes of copper (hereinafter referred to as Cu) or C (one alloy), and a method for manufacturing the same. be.

[従来の技術] 超電導線は超電導材料を導体として用いた送電線で、磁
気浮上列車、N M R−CTに用いられている超磁場
発生用超電導マグネットの巻a等に使用されている。
[Prior Art] A superconducting wire is a power transmission line using a superconducting material as a conductor, and is used as winding a of a superconducting magnet for generating a supermagnetic field used in magnetic levitation trains and NMR-CT.

CuまたはCu合金をマトリクスとし、その芯部がニオ
ブとブタンからつくられる合金〈以下、NbTi合金と
いう)である、超1f導線の製造方法の第1の従来例を
まず説明する。
First, a first conventional example of a method for manufacturing a super 1f conducting wire, in which the matrix is Cu or a Cu alloy and the core is an alloy made of niobium and butane (hereinafter referred to as NbTi alloy), will be described.

CuJ、たはCu合金からなる8!電金fi管内にNb
Ti合金からなる金属棒〈以下、Nb Ti金属棒と略
す。)を挿入してNbl’i金属棒挿入導電金属管を形
成する。次いで、このNbTl金属棒挿入導電金属管を
伸縮する1、伸線した侵のNbTl金属棒挿入導電金属
管を六角ダイスに通す。六角ダイスに通したものを長さ
方向に分割切断し、六角セグメントを得る。この六角セ
グメンi・の多数本をCI+またはCu合金からなる導
電金属管内に挿入する。そして、該導電金属管の両端を
銅蓋で蓋をし、導電金属管と該銅蓋の部分を電子ご一ム
溶接により溶接する。これにより多数本の六角セグメン
トが導電金属管内に真空封入される。この六角セグメン
1〜が真空封入されたS重金属管を熱間押出あるいは静
水圧押出により減面加工(該導電金属管の断面積を減ら
す加工)する。そして、減面加工された該導電金属管を
ざらに伸線加工および熱処理することにより、所定の臨
界電流!IQを持つ所定のサイズの超電導線を得る。
8! Made of CuJ or Cu alloy! Nb in the electric metal fi tube
Metal rod made of Ti alloy (hereinafter abbreviated as NbTi metal rod). ) to form an Nbl'i metal rod insertion conductive metal tube. Next, the conductive metal tube into which the NbTl metal rod is inserted is expanded and contracted. 1. The drawn conductive metal tube into which the NbTl metal rod is inserted is passed through a hexagonal die. The material passed through a hexagonal die is cut into pieces in the length direction to obtain hexagonal segments. A large number of hexagonal segments i· are inserted into a conductive metal tube made of CI+ or Cu alloy. Then, both ends of the conductive metal tube are covered with copper lids, and the conductive metal tube and the copper lid are welded together by electronic welding. As a result, a large number of hexagonal segments are vacuum sealed within the conductive metal tube. The S heavy metal tube in which the hexagonal segments 1 to 1 are vacuum-sealed is subjected to area reduction processing (processing to reduce the cross-sectional area of the conductive metal tube) by hot extrusion or hydrostatic extrusion. Then, by roughly wire drawing and heat treating the area-reduced conductive metal tube, a predetermined critical current can be achieved! A superconducting wire of a predetermined size with IQ is obtained.

[発明が解決しようとする問題点] 前記した超電導線の製造方法はNb7iのフィシメン1
〜径が50μm以上の場合には問題がなかった。しかし
、超電導マグネッ1−の安定性の向上のために、10μ
m以下のフィラメント径が必要となることもあるが、こ
のような場合に上記方法をそのまま使用すると問題が生
じた。ずなわら、上記方法をそのまま応用すると、押出
時あるいは時効熱燻f’I!(臨界電流密度の確保のた
めに必要な処理)時の熱の影響により、CUマ[・リク
スとNbTlフィラメントの界面に、Cu y 1− 
を等のCUとT iとの金属間化合物が生成する。この
CuどT1との金属間化合物は非常に硬く、伸線加工時
に変形しないので、Nb lフィラメントの断線の原因
となる。断線が生じると、臨界電流密度の低下が生じて
問題rある。また、OLIとT1の金属間化合物の層は
超電導材料ではないので、たとえば10μmのNb T
iフィラメント径に対して1μmの化合物層が生成した
場合を仮定すると、超電)9電流が流れるNb Tiフ
ィラメント径は8μmとなり、U!iI+1.iX流密
度は、該金属間化合物の層がない場合の64%となる。
[Problems to be Solved by the Invention] The method for manufacturing the superconducting wire described above is based on Nb7i fisimen 1.
There was no problem when the diameter was 50 μm or more. However, in order to improve the stability of superconducting magnet 1-,
Although there are cases where a filament diameter of less than m is required, problems arise when the above method is used as is in such cases. However, if the above method is applied as is, extrusion or aging heat smoke f'I! Due to the influence of heat during the process (processing required to ensure critical current density), Cu y 1-
Intermetallic compounds of CU and Ti, such as , are formed. This intermetallic compound with Cu and T1 is very hard and does not deform during wire drawing, which causes the NbI filament to break. If a disconnection occurs, the critical current density will decrease, causing a problem. Also, since the intermetallic compound layer of OLI and T1 is not a superconducting material, for example, 10 μm of NbT
Assuming that a compound layer of 1 μm is generated for the i filament diameter, the diameter of the Nb Ti filament through which the superelectric current flows is 8 μm, and U! iI+1. The iX flow density is 64% of that without the intermetallic compound layer.

次に、上記第1の従来例の問題点を解決するためになさ
れている超電導線の製造方法の第2の従来例について説
明する。
Next, a second conventional example of a method for manufacturing a superconducting wire that has been developed to solve the problems of the first conventional example will be described.

NbTi金属棒の周囲にNbで形成されたシート(以下
、Nbシートという)を巻きつける。そして、Nbシー
トが巻きつけられたNbTi金属棒をCuまたは(1合
金からなる導電金属管内に挿入する。次いで、導電金属
管の両端を銅の答で蓋をし、導電金属管と蓋の部分を電
子ビーム溶接により溶接する。これによりNb Ti金
属棒が真空封入されたNb T+ :a属棒挿入S電金
底管が形成される。このNb Ti金属棒挿入導電金属
管を熱間押、出あるいは静水圧押出にJ:り減面加工す
る。
A sheet made of Nb (hereinafter referred to as Nb sheet) is wrapped around the NbTi metal rod. Then, the NbTi metal rod wrapped with the Nb sheet is inserted into a conductive metal tube made of Cu or (1 alloy).Next, both ends of the conductive metal tube are covered with copper covers, and the parts between the conductive metal tube and the lid are are welded by electron beam welding.As a result, an Nb T+ :A metal rod insertion S electric metal bottom tube in which the Nb Ti metal rod is vacuum-sealed is formed.This Nb Ti metal rod insertion conductive metal tube is hot-pressed, Extrusion or isostatic extrusion is used to reduce the surface area.

この工程は第1の従来例にはない工程で、Nbシートと
NbTi金属棒との密着性を向上さけるための工程であ
る。そして、この減面加工されたNbTim属棒挿入導
電金属管を伸線する。伸線した後のNb Ti金属棒挿
入導電金属管を六角ダイスに通す。六角ダイスに通した
ものを長さん向に分割し、六角セグメントを得る。ここ
で得られた六角セグメントは、CLIとNb Ti金属
棒の界面にNb膜があるので、以後の工程において、熱
によるCuとl−i との間の金属間化合物の層形成は
避けられる。次いで、この六角セグメン(・をCLIま
たはCu合金からなる導電金属管内に挿入する。
This step is not included in the first conventional example, and is a step for improving the adhesion between the Nb sheet and the NbTi metal rod. Then, the NbTim metal rod-inserted conductive metal tube whose area has been reduced is wire-drawn. After wire drawing, the conductive metal tube into which the Nb Ti metal rod is inserted is passed through a hexagonal die. The material passed through the hexagonal die is divided lengthwise to obtain hexagonal segments. Since the hexagonal segment obtained here has a Nb film at the interface between the CLI and the NbTi metal rod, the formation of a layer of intermetallic compound between Cu and l-i due to heat can be avoided in subsequent steps. This hexagonal segment () is then inserted into a conductive metal tube made of CLI or Cu alloy.

そして、該導電金属管の両端を銅蓋で蓋をし、該導電金
属管と蓋の部分を電子ビーム溶接により溶接する。この
溶接により、多数本の六角セグメントが導電金m管内に
真空封入される。該六角セグメントが真空封入された導
電金属管を熱間押出あるいは静水圧押出により減面加工
する。そして、この減面加工された導電金属管をさらに
伸線加工および熱処理することにより、所定の臨界電流
密度を持つ所定のサイズの超電導線をIEする。
Then, both ends of the conductive metal tube are covered with copper lids, and the conductive metal tube and the lid are welded together by electron beam welding. By this welding, a large number of hexagonal segments are vacuum-sealed within the conductive gold tube. The conductive metal tube in which the hexagonal segments are vacuum-sealed is subjected to area reduction processing by hot extrusion or hydrostatic extrusion. Then, this area-reduced conductive metal tube is further subjected to wire drawing and heat treatment to produce a superconducting wire of a predetermined size and a predetermined critical current density.

上記のごとく、この第2の従来例においては、CLIま
lcはCu合金からなる導電金属管とNbl’:金属棒
との間にNbシートを介入させているので、Nb“「1
金属棒の表面にCLIとTiの金属間化合物の層が形成
されることはない。したがって、減面加工によるN b
 i’ iのフィラメント径を小さくしていった場合で
も、フィラメントの断線率の増加はほとんどなり4【る
。また、Nbは超電導性元素であるので、Nb Ti7
45378士にNbからなる薄膜が形成されても、第1
の従来例に見られるほどの臨界電流密度の大幅な低下は
ない。
As mentioned above, in this second conventional example, the CLImarc has an Nb sheet interposed between the conductive metal tube made of a Cu alloy and the Nbl':metal rod.
A layer of intermetallic compound of CLI and Ti is not formed on the surface of the metal rod. Therefore, N b due to surface reduction processing
Even when the filament diameter of i' i is made smaller, the increase in the filament breakage rate is almost 4. Also, since Nb is a superconducting element, Nb Ti7
45378 Even if a thin film made of Nb is formed on the first
There is no significant decrease in critical current density as seen in the conventional example.

しかしながら、第1の従来例に比べてこの第2の従来例
においては、臨界電流密度の低下が抑えられた超電導線
が得られるという利点はあるものの、Nbシー1−とN
bTi金属棒との密着性を向上させるために熱[11押
出あるいは静水圧押出のごとき押出工程を必ず経由しな
ければならない。第1の従来例による製造方法であると
、伸線のみにより六角セグメントを作製するので、六角
1=グメント中のNbTiの!l!吊と投入したNh 
Tiの東予との比(以下、NbTiの歩留りという)は
0゜90であったが、第2の従来例による製造方法であ
ると上記押出工程を含むがためにNbT’iの歩留りが
0.65に減少する。NbTi金属棒は高価なものであ
るのC1歩留りが低下すると、超電導線の製造コストを
大幅に上昇させることになり、問題である。
However, although the second conventional example has the advantage of producing a superconducting wire in which the decrease in critical current density is suppressed compared to the first conventional example,
In order to improve the adhesion with the bTi metal rod, it must necessarily go through an extrusion process such as thermal extrusion or hydrostatic extrusion. In the manufacturing method according to the first conventional example, hexagonal segments are produced only by wire drawing, so hexagonal 1 = NbTi in the segment! l! Nh added and suspended
The ratio of Ti to Toyo (hereinafter referred to as NbTi yield) was 0.90, but since the second conventional manufacturing method includes the extrusion step, the NbT'i yield was 0.90. It decreases to 65. NbTi metal rods are expensive, and if the C1 yield decreases, it will significantly increase the manufacturing cost of superconducting wires, which is a problem.

以上のように、第1の従来例にかかる製造方法において
は得られた超電導線の臨界電流密度が低下するという問
題点、第2の従来例にかかる製造方法においてはNb 
Tiの歩留りが低下する結果超電導線の製造コストが大
幅に増加ザるという問題点があった。
As mentioned above, the manufacturing method according to the first conventional example has the problem that the critical current density of the obtained superconducting wire decreases, and the manufacturing method according to the second conventional example has the problem that Nb
There was a problem in that the manufacturing cost of superconducting wires increased significantly as a result of the decrease in the yield of Ti.

この発明は上記のような問題点を解決するためになされ
たもので、臨界電流!5度が高くかつ製造コストの安い
超電導線およびその¥J造方法を提供することを目的と
する。
This invention was made to solve the above problems, and critical current! The purpose of the present invention is to provide a superconducting wire with high 5 degrees and low manufacturing cost, and a method for manufacturing the same.

[問題点を解決するための手段] この出願の第1の発明の超m導線は、CuまたはCt+
合金のマトリクス中に11数本の線状セグメントを配置
してなる超電導線にかかるものである。
[Means for solving the problem] The supermolar conducting wire of the first invention of this application is made of Cu or Ct+
This is a superconducting wire made up of eleven or more linear segments arranged in an alloy matrix.

そして、前記各線状セグメントはその芯部がNb]゛1
合金であり、その上に超電導性元素からなる薄膜を形成
し、さらにその上にCuまたはCu合金の層を形成して
いることを特徴とする。
The core of each of the linear segments is Nb]゛1
It is characterized by forming a thin film made of a superconducting element thereon, and further forming a layer of Cu or a Cu alloy thereon.

この出願の第2の発明は、前記第1の超電導線を製造す
る方法の発明ひあって、CuあるいはCu合金からなる
導電金属管内にNbl”i金属棒を挿入してNb’T’
ifL屈棒挿入導電金属管を形成し、前記Nb Ti金
属棒挿入導電金属管を引き伸ばした模、該引き伸ばされ
たNb Ti金属棒挿入導電金属管を長さ方向に分割し
て該Nb Ti金属棒挿入導電金属管のセグメントを形
成し、前記Nb Ti金属棒挿入導電金属管のセグメン
トを複数本束ねてCIJあるいはCu合金からなる導電
金属管内に挿入して、レグメン1〜挿入導電金IiI管
を形成し、 次いで、前記セグメント挿入導電金属管を引き伸ばすこ
とにより超電導線を製造する方法にかかるものである。
The second invention of this application is based on the invention of the first method for manufacturing a superconducting wire, and a method for manufacturing a superconducting wire by inserting an Nbl"i metal rod into a conductive metal tube made of Cu or a Cu alloy.
IfL curved rod-inserted conductive metal tube is formed, and the Nb Ti metal rod-inserted conductive metal tube is stretched, the stretched Nb Ti metal rod-inserted conductive metal tube is divided in the length direction to form the Nb Ti metal rod. A segment of the inserted conductive metal tube is formed, and a plurality of segments of the Nb Ti metal rod inserted conductive metal tube are bundled and inserted into a conductive metal tube made of CIJ or Cu alloy to form legmen 1 to inserted conductive gold IiI tube. Then, the present invention relates to a method of manufacturing a superconducting wire by stretching the segment-inserted conductive metal tube.

そして、前記NbT’i金属棒を前記)S電金属管内に
挿入するに先立ち、該Nb Ti金属棒の表面に超電導
性元素から’Jる薄膜を形成することを特徴とする。
A thin film made of a superconducting element is formed on the surface of the NbTi metal rod before the NbTi metal rod is inserted into the electric metal tube.

[作用] 本発明に係る超電SSSはCLIまたはCu合金のマト
リクス中にNb Tiの線状セグメントを配置している
ものであり、Nb”[用フィラメントとOUまたはCI
J合金からなる導電金属管との界面に超電導性元素から
なる薄膜を介入さVているので、伸線時の熱等によりC
LIとT1との閤の金属間化合物が形成されない。
[Function] The superelectric SSS according to the present invention has linear segments of Nb Ti arranged in a matrix of CLI or Cu alloy.
Since a thin film made of a superconducting element is interposed at the interface with the conductive metal tube made of J alloy, C
No intermetallic compound between LI and T1 is formed.

この発明の超電導線の製造方法においては、NbTi金
属棒をLM導電金属管内挿入するに先qち、該N1)T
i金属棒の表面に超電導元素の薄膜を形成するので、該
超電導線の製造工程において、NbTi金属棒の表面に
CIJとTiとの間の金属間化合物が形成されることは
ない。また、Nl) TI金属捧の表面に超電導性元素
からなる薄膜を形成さけるのて゛、Nbシートを用いる
場合のごとき密着性を向上させるための押出工程は不要
となる。
In the method for manufacturing a superconducting wire of the present invention, before inserting the NbTi metal rod into the LM conductive metal tube, the N1) T
Since a thin film of a superconducting element is formed on the surface of the i-metal rod, an intermetallic compound between CIJ and Ti is not formed on the surface of the NbTi metal rod during the manufacturing process of the superconducting wire. Furthermore, since a thin film made of a superconducting element is avoided on the surface of the Nl)TI metal strip, an extrusion process for improving adhesion, as in the case of using a Nb sheet, is not necessary.

[実施例1 以下、この発明にかかる超電導線の製造方法の一例を実
施例により説明するが、本発明はこれに限定されるもの
rはない。
[Example 1] Hereinafter, an example of the method for manufacturing a superconducting wire according to the present invention will be explained using an example, but the present invention is not limited thereto.

X濃例1 直径16mmφ、長さ3000 nuの棒状のNb−T
−1金屈棒をプラズマCV D反応装置内に入れる。
X-concentration example 1 Rod-shaped Nb-T with a diameter of 16 mmφ and a length of 3000 nu
-1 Kinku rod is placed in the plasma CVD reactor.

これとは別にNt)CQsをガス化装置に入れ、250
℃に加熱する。このガス化装置内にH2ガスを、主1/
リアガスどして、0.3Q/winの割合で送り込む。
Separately, put Nt)CQs into the gasifier and
Heat to ℃. In this gasifier, H2 gas is supplied to the main 1/
Rear gas is sent at a rate of 0.3Q/win.

そして、ガス化装置から出てくるガスを前記プラズマ0
D反応装置内に導入する。
Then, the gas coming out of the gasifier is turned into the plasma 0.
D. Introduce into reactor.

次いで、このプラズマCVDHIffi内を400℃に
加熱しながら13.56MHzのラジオ波を印加し、1
時間保持する。すると、NbTi金属棒の表面に80μ
mの厚さのNbからなる薄膜が形成される。Nbから4
≧るi9膜が形成されたNb”ri金属棒を外径20m
n、内径17mm、長さ3000amの導電金属管であ
るQu管に入れ、Nb−Ti金属棒挿入導電金属管をつ
くる。得られたNb Ti金属棒挿入導電金属管を、伸
線により、引き伸ばし加工する。
Next, a 13.56 MHz radio wave was applied while heating the inside of this plasma CVDHiffi to 400°C.
Hold time. Then, 80μ was applied to the surface of the NbTi metal rod.
A thin film of Nb with a thickness of m is formed. Nb to 4
≧ A Nb”ri metal rod with an i9 film formed on it has an outer diameter of 20 m.
Nb--Ti metal rod is inserted into a Qu tube, which is a conductive metal tube with an inner diameter of 17 mm and a length of 3000 am, to create a conductive metal tube. The obtained conductive metal tube into which the Nb Ti metal rod is inserted is stretched by wire drawing.

次いで、この伸線されたNbTi金属棒挿入導電金属管
を六角ダイスに通し、対辺距離が5IRI11の六角棒
に加工する。その後、該六角棒を長さ方向に500n1
mごとに分割切断し、六角レグメン1〜を1!:lる。
Next, this drawn NbTi metal rod-inserted conductive metal tube is passed through a hexagonal die to be processed into a hexagonal rod having a distance across opposite sides of 5IRI11. After that, the hexagonal bar is 500n1 in the length direction.
Divide and cut every m, and make 1 to 1 hexagonal legmen! :l.

この場合、Nb Tiの歩留りは0.93であった。押
出加工を行なっていないので、高い歩留りが得られた。
In this case, the yield of Nb Ti was 0.93. Since extrusion processing was not performed, a high yield was obtained.

次いで18られた六角セグメントを1200本束ねて、
外径2601、内径210mm、長さ500m1llの
導電金属管であるCu管に挿入ザる。そして、Cu管の
両端を銅器で益をし、CLI管と蓋の部分を電子ビーム
により溶接する。これにより1200木の六角セグメン
トがCu管に真空封入される。
Next, bundle 1200 hexagonal segments,
It is inserted into a Cu tube which is a conductive metal tube with an outer diameter of 2601 mm, an inner diameter of 210 mm, and a length of 500 ml. Then, both ends of the Cu tube are fixed with a copper tool, and the CLI tube and the lid are welded together using an electron beam. This vacuum-seals 1200 wood hexagonal segments into the Cu tube.

該六角セグメントが真空封入されたCLItf、すなわ
らセグメント挿入導電金属管を550℃の炉中に入れて
、押出機で6Qmmφの径に押出す。そして、この押出
されたセグメント挿入導電金属管を伸線加工して31φ
のCu管とし、380℃で50h間の時効熱処理をし、
さらに2mmφまで伸線する。するど、5テスラの磁場
中で臨界電流2500アンペアの超電導線を1:ノられ
た。
The CLItf in which the hexagonal segments are vacuum-sealed, that is, the conductive metal tube into which the segments are inserted, is placed in a furnace at 550° C., and extruded with an extruder to a diameter of 6 Q mmφ. Then, this extruded segment-inserted conductive metal tube was wire-drawn to a diameter of 31φ.
Cu tube, subjected to aging heat treatment at 380°C for 50 hours,
The wire is further drawn to 2 mmφ. Suddenly, a superconducting wire with a critical current of 2,500 amperes was blown in a 5 Tesla magnetic field.

【1九L 412の従来例にかかる製造方法を比較例1として説1
ダ1する。
[19 Theory 1 The manufacturing method according to the conventional example of L 412 is used as Comparative Example 1.
Do 1.

直径が60mmφ、長さ500 mmの円柱状のN b
T t 金属棒に、0. 21111厚サノNll シ
ートラ374゜に■きつ()る。次いで、このNbシー
トを巻きつ(プたNb Ti金属捧を外径70mm、内
径62mm。
Cylindrical N b with a diameter of 60 mmφ and a length of 500 mm
T t 0.0 on the metal rod. 21111 Thickness Nll Seatler Tighten to 374°. Next, this Nb sheet was wrapped around a Nb Ti metal strip with an outer diameter of 70 mm and an inner diameter of 62 mm.

IQさ520 mmのCu管に挿入する。そして、Cu
管の両側を銅板で蓋をした後、Qu管と銅の蓋を電子ビ
ームにより溶接する。これによりNbTl金属棒が真空
封入されたNb Ti金属棒挿入CLI管が形成される
。このNbT’i金属棒挿入Cu管を550℃の炉中に
入れて加熱し、押出機F25IIfflφの径に押出す
。この押出により、NbシートがNbT川金用棒にW5
着する。得られたNb Ti金属棒挿入Cu管を伸線機
により伸線する。伸線した後のNb Ti金属棒挿入C
u管を六角ダイスに通し、対辺距離が5+nmの六角棒
に加工する。その後、長さ方向に500 mmごとに分
割切断し、六角セグメントを得る。
Insert into a Cu tube with an IQ of 520 mm. And Cu
After covering both sides of the tube with copper plates, the Qu tube and the copper lid are welded together using an electron beam. As a result, a NbTi metal rod insertion CLI tube in which the NbTl metal rod is vacuum-sealed is formed. This NbT'i metal rod insertion Cu tube is placed in a 550° C. furnace, heated, and extruded to a diameter of extruder F25IIfflφ. Through this extrusion, the Nb sheet is transformed into a NbT river gold rod with W5
wear it. The obtained Nb Ti metal rod-inserted Cu tube is wire-drawn using a wire-drawing machine. Insertion of Nb Ti metal rod after wire drawing C
Pass the U-tube through a hexagonal die and process it into a hexagonal bar with a distance across opposite sides of 5+nm. Thereafter, it is cut into sections every 500 mm in the length direction to obtain hexagonal segments.

この場合、Nb Tiの歩留りは0.65ぐあった。押
出加工を行なっているので低い値が得られた。
In this case, the yield of NbTi was 0.65g. Low values were obtained because extrusion processing was performed.

次いで、得られた六角ヒゲメン1〜を1200本束ねC
1外径2601+1L内径210mm、[%さ500m
mのCu管に挿入する。そして、Cu管の両端を銅板で
蓋をし、Cu管と銅蓋の部分を電子ビームにより溶接す
る。これにより1200本の六角セグメントがCIJ管
に真空封入される。該六角セグメントの真空封入された
Qu管を550℃の炉中に入れて押出機で6Qnunφ
の径に押出す。そして、この押出されたCu管を伸線加
工して、3IIIIllφのCu管とし、380℃で5
0時間の時効熱処理し、さらに2+11+Ilφまで伸
ねする。すると、5jスラの磁場中で臨界電流2500
アンペアの超電導線を得る。
Next, bundle 1200 of the obtained hexagonal hairmen 1 to C.
1 outer diameter 2601+1L inner diameter 210mm, [% 500m
Insert into the Cu tube of m. Then, both ends of the Cu tube are covered with copper plates, and the Cu tube and the copper lid are welded together using an electron beam. As a result, 1200 hexagonal segments are vacuum-sealed into the CIJ tube. The vacuum-sealed Qu tube of the hexagonal segment was placed in a 550°C furnace and extruded into 6Qnunφ.
extrude to a diameter of Then, this extruded Cu tube was wire-drawn to make a 3IIIllφ Cu tube, and was heated at 380°C to
It is subjected to aging heat treatment for 0 hours and further stretched to 2+11+Ilφ. Then, in the magnetic field of 5j sura, the critical current is 2500
Obtain ampere superconducting wire.

(qられた前記超電導線の分 実施例1、比較例1、第1の従来例(比較例2とする)
で得られた超電導線を60CI11切取り、両端を5c
m切除する。そして、1qられた50cmの超電導線を
硝酸に浸漬して、CIJを溶かす。次いで、断線してい
ないNbTiフィラメントの本数を数える。そして、逆
算して断線本数を求める。結果を第1表にまとめる。同
時にNb Tiの歩留りも併記する。
(Example 1, Comparative Example 1, First Conventional Example (Comparative Example 2))
Cut 60CI11 of the superconducting wire obtained, and cut both ends with 5c.
m to be excised. Then, 1q of superconducting wire of 50 cm is immersed in nitric acid to dissolve the CIJ. Next, the number of unbroken NbTi filaments is counted. Then, calculate the number of broken wires by calculating backwards. The results are summarized in Table 1. At the same time, the yield of Nb Ti is also shown.

第1表より明らかなように、本件発明にかかる実施例1
の断線本数は、Nbシートを用いた比較例1の場合とほ
ぼ同じである。一方、実施例1のNb Tiの歩留りは
比較例1に比べて執しく高い。
As is clear from Table 1, Example 1 according to the present invention
The number of wire breaks is almost the same as in Comparative Example 1 using the Nb sheet. On the other hand, the yield of Nb Ti in Example 1 is significantly higher than that in Comparative Example 1.

なお、上記実施例では導電金属管にCu管を用いた場合
を示したが、本発明はこれに限られず、C11合金管を
用いても実施例と同様の効果が得られる。
In addition, although the said Example showed the case where Cu tube was used as a conductive metal tube, this invention is not limited to this, Even if a C11 alloy tube is used, the same effect as an Example can be obtained.

また、上記実施例ではNbTi金属捧金属面に形成され
る薄膜の好ましい例としUNtlからなる薄膜を例示し
て示したが、本発明(まこrtに限られず、TaWの他
の超電導性元素からなる薄膜であっても実施例と同様の
効果が実現りる。
In addition, in the above embodiment, a thin film made of UNtl was exemplified as a preferable example of the thin film formed on the NbTi metal support surface, but the present invention (not limited to Makort, but made of other superconducting elements such as TaW) Even with a thin film, the same effects as in the embodiment can be achieved.

さらに、上記実施例では薄膜形成をlクズ1CVD法に
よって行なう場合を示したが、本発明はこれに限られず
、イオンブレーティング法、スパッタリング法、イオン
蒸る法等の薄膜形成方法を採用してら、実施例と同様の
効果を実現する。
Further, in the above embodiment, a case is shown in which thin film formation is carried out by the 1-scrap CVD method, but the present invention is not limited to this, and thin film forming methods such as ion blating method, sputtering method, and ion evaporation method may be employed. , achieves the same effect as the embodiment.

[発明の効果] 以」−のようにこの発明にかかる超電導線の装))方法
においては、Nb Ti金属棒をS電金属恰内に挿入す
るに先立ち、該NbTi金屈棒金属面に超電導性元素か
らなる薄膜を形成するので、超電導線の製造工程中にお
いてNb Ti金属棒の表面にCuとT1との金属間化
合物が形成されることはない。その結果、CLIとTi
 との金属間化合物の71−成に起因する、NbT’i
 フィラメントの断線問題J′3よび臨界電流密度の低
下という問題は解決される。
[Effects of the Invention] As described below, in the superconducting wire mounting method according to the present invention, prior to inserting the NbTi metal rod into the S electric metal, superconductivity is applied to the metal surface of the NbTi metal rod. Since a thin film made of a chemical element is formed, an intermetallic compound of Cu and T1 is not formed on the surface of the NbTi metal rod during the manufacturing process of the superconducting wire. As a result, CLI and Ti
NbT'i due to the 71-formation of intermetallic compounds with
The filament breakage problem J'3 and the problem of reduced critical current density are solved.

またN h i’ i金属棒の表面に超電導性元素から
なるA’l膜を形成さけるので、Nbシートを用いる場
合のごとき密首竹を向上さけるための押出工程は不要と
なる1、その結果、Nb Tiの歩61りが上胃し製造
−1ストが安くなる。
In addition, since the formation of an A'l film made of superconducting elements on the surface of the Nh i' i metal rod is avoided, an extrusion process to avoid tightness, such as when using a Nb sheet, is not required1. , the price of Nb Ti is 61% upper gastrointestinal, and the production cost per 1st is cheaper.

また、たとえば前)ホの方法により得られた、この発明
にかかる超電導線は、NbTiフィラメントとCu管と
の間に超電導性元素の薄膜を介している。したがって、
このものに熱を与えても、Cu−ri金属間化合物はN
h TiフイラメンI・上に形成されない。それゆえ、
断線本数の少ない、臨界電流密度の高い超電導線となる
Further, the superconducting wire according to the present invention obtained by the method described in (e) above, for example, has a thin film of a superconducting element interposed between the NbTi filament and the Cu tube. therefore,
Even if heat is applied to this material, the Cu-ri intermetallic compound
h Not formed on Ti filament I. therefore,
This results in a superconducting wire with a high critical current density and fewer disconnections.

Claims (5)

【特許請求の範囲】[Claims] (1)CuまたはCu合金のマトリクス中に複数本の線
状セグメントを配置してなる超電導線において、 前記各線状セグメントはその芯部がNbTi合金であり
、その上に超電導性元素からなる薄膜を形成し、さらに
その上にCuまたはCu合金の層を形成していることを
特徴とする超電導線。
(1) A superconducting wire comprising a plurality of linear segments arranged in a matrix of Cu or Cu alloy, each linear segment having a core made of an NbTi alloy, on which a thin film made of a superconducting element is coated. A superconducting wire characterized in that a layer of Cu or a Cu alloy is further formed on the superconducting wire.
(2)前記超電導性元素がNbである特許請求の範囲第
1項記載の超電導線。
(2) The superconducting wire according to claim 1, wherein the superconducting element is Nb.
(3)CuあるいはCu合金からなる導電金属管内にN
bTi金属棒を挿入してNbTi金属棒挿入導電金属管
を形成し、 前記NbTi金属棒挿入導電金属管を引き伸ばした後、
該引き伸ばされたNbTi金属棒挿入導電金属管を長さ
方向に分割して該NbTi金属棒挿入導電金属管のセグ
メントを形成し、 前記NbTi金属棒挿入導電金属管のセグメントを複数
本束ねてCuあるいはCu合金からなる導電金属管内に
挿入して、セグメント挿入導電金属管を形成し、 次いで、前記セグメント挿入導電金属管を引き伸ばすこ
とにより超電導線を製造する方法において、 前記NbTi金属棒を前記導電金属管内に挿入するに先
立ち、該NbTi金属棒の表面に超電導性元素からなる
薄膜を形成することを特徴とする超電導線の製造方法。
(3) N in a conductive metal tube made of Cu or Cu alloy
After inserting a bTi metal rod to form a NbTi metal rod insertion conductive metal tube and stretching the NbTi metal rod insertion conductive metal tube,
The stretched NbTi metal rod-inserted conductive metal tube is divided in the length direction to form segments of the NbTi metal rod-inserted conductive metal tube, and a plurality of segments of the NbTi metal rod-inserted conductive metal tube are bundled to form Cu or In a method for manufacturing a superconducting wire by inserting the NbTi metal rod into a conductive metal tube made of a Cu alloy to form a segment-inserted conductive metal tube, and then stretching the segment-inserted conductive metal tube, the NbTi metal rod is inserted into the conductive metal tube. A method for producing a superconducting wire, which comprises forming a thin film made of a superconducting element on the surface of the NbTi metal rod before inserting it into the wire.
(4)前記超電導性元素がNbである特許請求の範囲第
3項記載の超電導線の製造方法。
(4) The method for manufacturing a superconducting wire according to claim 3, wherein the superconducting element is Nb.
(5)前記超電導性元素からなる薄膜の形成をCVD法
によって行なう特許請求の範囲第3項または第4項記載
の超電導線の製造方法。
(5) The method for manufacturing a superconducting wire according to claim 3 or 4, wherein the thin film made of the superconducting element is formed by a CVD method.
JP62008646A 1987-01-17 1987-01-17 Superconducting wire and its manufacture Pending JPS63178419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008646A JPS63178419A (en) 1987-01-17 1987-01-17 Superconducting wire and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008646A JPS63178419A (en) 1987-01-17 1987-01-17 Superconducting wire and its manufacture

Publications (1)

Publication Number Publication Date
JPS63178419A true JPS63178419A (en) 1988-07-22

Family

ID=11698708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008646A Pending JPS63178419A (en) 1987-01-17 1987-01-17 Superconducting wire and its manufacture

Country Status (1)

Country Link
JP (1) JPS63178419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192618A (en) * 1989-01-20 1990-07-30 Mitsubishi Electric Corp Manufacture of superconductive alloy wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192618A (en) * 1989-01-20 1990-07-30 Mitsubishi Electric Corp Manufacture of superconductive alloy wire rod

Similar Documents

Publication Publication Date Title
JPS63178419A (en) Superconducting wire and its manufacture
JP3629527B2 (en) Manufacturing method of Nb3Al compound-based superconducting wire and superconducting wire obtained by the method
JPH11102617A (en) Nb3al compound superconductor and manufacture therefor
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JP5207304B2 (en) Nb3Al superconducting wire manufacturing method
Pyon et al. Development of Nb/sub 3/Sn conductors for fusion and high energy physics
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JPH09167531A (en) Manufacture of multi-conductor nb3sn superconducting wire
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP3663948B2 (en) Nb3Al compound-based superconducting wire and manufacturing method thereof
JPH0714442A (en) Nbti superconducting wire for palse or ac
JPS58169712A (en) Method of producing composite superconductive wire
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP2004356046A (en) Nb3AL COMPOUND GROUP SUPERCONDUCTING WIRE, AND MANUFACTURING METHOD AND MANUFACTURING DEVICE OF THE SAME
JP2002063816A (en) MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP2002093253A (en) METHOD OF MANUFACTURING Nb3Al SUPERCONDUCTING WIRE
JPH07254317A (en) Manufacture of nb3sn superconducting wire
JPH02192618A (en) Manufacture of superconductive alloy wire rod
JPH03283321A (en) Manufacture of nb3al multicore superconductor
JPH07122136A (en) Nbti superconducting billet
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPH0428120A (en) Manufacture of nb3 sn compound superconductive wire