JPH03283321A - Manufacture of nb3al multicore superconductor - Google Patents

Manufacture of nb3al multicore superconductor

Info

Publication number
JPH03283321A
JPH03283321A JP2085905A JP8590590A JPH03283321A JP H03283321 A JPH03283321 A JP H03283321A JP 2085905 A JP2085905 A JP 2085905A JP 8590590 A JP8590590 A JP 8590590A JP H03283321 A JPH03283321 A JP H03283321A
Authority
JP
Japan
Prior art keywords
alloy
solid solution
copper
heat treatment
supersaturated solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085905A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Masaru Kawakami
勝 川上
Haruto Noro
治人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2085905A priority Critical patent/JPH03283321A/en
Publication of JPH03283321A publication Critical patent/JPH03283321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To stably manufacture long-size wires by subjecting to degressing process a complex comprising a plurality of Nb-Al alloy rods or Nb-Al alloy wires arranged in a copper or copper-alloy matrix, in which alloy Al is dissolved in a supersaturated solid solution, and subjecting the complex to heat treatment at specified temperature. CONSTITUTION:A plurality of Nb-Al alloy rods or Nb-Al alloy wires in which Al is dissolved in a supersaturated solid solution are arranged in a copper or copper alloy matrix to form a complex and the complex is subjected to degressing process and then subjected to heat treatment at temperatures between 700 and 900 deg.C. An Nb-Al alloy which is a thermodynamically metastable bcc supersaturated solid solution is deposited through transformation by heat treatment at relatively low temperature after processing. An Nb3Al phase thus deposited from the bcc supersaturated solid solution through phase- transformation has a very fine crystal structure and high critical current density and good processability esp. good drawing processability is offered. Thereby a long-size wire of multiple filament structure is stably manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導線の製造方法に係わり、特に加工性に優
れ、従って長尺の線材を安定に製造することができる上
、高い臨界電流密度(Jc)を有するNb、Al多芯超
電導線を製造する方法の改良に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing superconducting wires, which has particularly excellent workability and can therefore stably manufacture long wires, as well as having a high critical current density. The present invention relates to an improvement in a method for manufacturing a Nb, Al multicore superconducting wire having (Jc).

[従来の技術] 化合物系の超電導材料は合金系の超電導材料に比較して
優れた超電導特性を有しており、特にNb3^Iは上部
臨界磁界が高く、かつ機械的性質に優れることが知られ
ているが、その生成温度が高い上、熱処理に長時間を要
するという問題がある。
[Prior art] Compound-based superconducting materials have superior superconducting properties compared to alloy-based superconducting materials, and it is known that Nb3^I in particular has a high upper critical magnetic field and excellent mechanical properties. However, there are problems in that the generation temperature is high and the heat treatment takes a long time.

このような熱処理の条件を改善する方法として、ジェリ
ーロール法や粉末法が知られている。
A jelly roll method and a powder method are known as methods for improving such heat treatment conditions.

ジェリーロール法は、NbとAlのシートを積層して巻
回し、これを金属管中に収容して加工後熱処理を施す方
法であり、一方、粉末法はNbとAlの混合粉末を金属
管中に充填して加工後熱処理を施すものである。
The jelly roll method is a method in which Nb and Al sheets are laminated and wound, then placed in a metal tube and subjected to heat treatment after processing.On the other hand, in the powder method, a mixed powder of Nb and Al is layered in a metal tube. After processing, heat treatment is performed.

上記の方法においては、NbをAl中に薄くまたは微細
に分散させ、粒界拡散を支配的に進行させることにより
熱処理条件を改善するものであるが、NbとAlの拡散
距離を短くするため強加工を施す必要があり、このため
断線し易く、安定して長尺の線材を製造することが困難
であるという問題がある。また臨界電流密度(Jc)を
高めるために900℃以上の高温度で熱処理を施す必要
があり、このためNb等の高融点材料をマトリックスに
使用しなければならずCuマトリックス等を用いた場合
に比較して加工性が低下するという欠点があった。
In the above method, the heat treatment conditions are improved by thinly or finely dispersing Nb in Al and allowing grain boundary diffusion to proceed dominantly, but in order to shorten the diffusion distance between Nb and Al, strong There is a problem in that it is necessary to perform processing, and therefore it is easy to break, making it difficult to stably manufacture long wire rods. In addition, in order to increase the critical current density (Jc), it is necessary to perform heat treatment at a high temperature of 900°C or higher, and for this reason, a high melting point material such as Nb must be used for the matrix, and when using a Cu matrix etc. There was a drawback that processability was lower than that.

[発明が解決しようとする課題] 本発明は上記の問題点を解決するためになされたもので
、加工性を改善することにより長尺の線材を安定に製造
し、かつ高い臨界電流密度(Jc)を有するNb3Al
多芯超電導線を製造する方法を提供することをその目的
とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the above problems, and it is possible to stably manufacture long wire rods by improving workability, and to achieve high critical current density (Jc ) with Nb3Al
The object is to provide a method for manufacturing multicore superconducting wire.

[課題を解決するための手段] 上記目的を達成するために、本発明に係わるNb3Al
多芯超電導線の製造方法は、銅または銅合金マトリック
ス中に、AIを過飽和に固溶したNb−Al合金ロッド
あるいはNb−Al合金線の複数本を配置して複合体を
形成し、前記複合体に減面加工を施した後、700〜9
00℃の温度で熱処理を施すものである。
[Means for Solving the Problem] In order to achieve the above object, the Nb3Al according to the present invention
A method for manufacturing a multicore superconducting wire involves arranging a plurality of Nb-Al alloy rods or Nb-Al alloy wires in which AI is supersaturated as a solid solution in a copper or copper alloy matrix to form a composite. After surface reduction processing on the body, 700-9
Heat treatment is performed at a temperature of 00°C.

上記のAlを過飽和に固溶したNb−Al合金ロッドあ
るいはNb−Al合金線は、電子ビーム照射によりNb
−At合金を溶解後、急冷したものを使用することが好
ましい。このような例としては、電子ビーム溶解後、連
続鋳造する方法が好適する。
The Nb-Al alloy rod or Nb-Al alloy wire containing the above-mentioned Al in a supersaturated solid solution is made of Nb by electron beam irradiation.
-It is preferable to use an At alloy that has been melted and then rapidly cooled. For such an example, a method of continuous casting after electron beam melting is suitable.

複合体は、銅または銅合金マトリックス中に、Alを過
飽和に固溶したNb−Al合金の複数本を配置して構成
されるが、多芯線を製造する場合には、銅または銅合金
管中にAlを過飽和に固溶したNb−Al合金ロッドを
収容し、これに伸線加工を施した複合線の多数本を鋼管
中に収容して複合体を構成することが好適する。
The composite is constructed by arranging multiple pieces of Nb-Al alloy in which Al is supersaturated as a solid solution in a copper or copper alloy matrix, but when producing a multifilamentary wire, it is necessary to It is preferable to construct a composite body by accommodating a Nb-Al alloy rod in which Al is supersaturated as a solid solution, and accommodating a large number of composite wires obtained by wire-drawing the rod in a steel pipe.

本発明の方法においては、Alを過飽和に固溶したNb
−Al合金を用いるため、700〜900℃の比較的低
温度で熱処理を施すことが可能になる。
In the method of the present invention, Nb in which Al is supersaturated as a solid solution is used.
- Since an Al alloy is used, heat treatment can be performed at a relatively low temperature of 700 to 900°C.

[作用〕 本発明の方法においては、熱力学的に準安定なりcc過
飽和固溶体であるNb−Al合金が、加工後の比較的低
温度の熱処理により、変態析出する。このようにbcc
過飽和固溶体から相変態により析出したNb3 AI相
は非常に微細な結晶組織を有しており、高い臨界電流密
度(Jc)を有する。またマトリックスに銅を用いてい
るため、加工性、特に伸線加工性はNb−Tl合金と同
様に良好な結果が得られる。
[Function] In the method of the present invention, the Nb-Al alloy, which is thermodynamically metastable and is a cc-supersaturated solid solution, is transformed and precipitated by heat treatment at a relatively low temperature after processing. bcc like this
The Nb3 AI phase precipitated from a supersaturated solid solution by phase transformation has a very fine crystal structure and a high critical current density (Jc). Furthermore, since copper is used in the matrix, good results in workability, particularly wire drawability, can be obtained similar to that of the Nb-Tl alloy.

[実施例] 以下本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

20at%のAlを配合したNb−Al合金を、電子ビ
ーム照射により溶解して連続鋳造法により直径6■φ、
長さ500−  のNb−Al合金ロッドを製造した。
A Nb-Al alloy containing 20 at% Al was melted by electron beam irradiation, and a diameter of 6 φ was formed by continuous casting.
A Nb-Al alloy rod with a length of 500 mm was manufactured.

このNb−Al合金ロッドは急冷によりbee過飽和固
溶体となっている。
This Nb-Al alloy rod becomes a bee supersaturated solid solution by rapid cooling.

上記のNb−Al合金ロッドを外径8m1lφ、内径6
.1■φの鋼管中に収容して、これに伸線加工を施し対
辺間距離2.71の断面六角形の線材を製造した。この
線材の187本をその側面を当接して外径49腸■φ、
内径Almmφの銅管内に収容収容して複合体を形成し
た。次いで、この複合体にに静水圧押出加工および伸線
加工を施して外径1.0■φの複合線を製造した。この
の複合線に850℃で72時間の熱処理を施して多芯超
電導線を製造した。
The above Nb-Al alloy rod has an outer diameter of 8mlφ and an inner diameter of 6mm.
.. It was housed in a 1 φ steel pipe and subjected to wire drawing to produce a wire rod having a hexagonal cross section with a distance between opposite sides of 2.71 mm. 187 pieces of this wire are brought into contact with their sides, and the outer diameter is 49 mm,
A composite body was formed by housing it in a copper tube with an inner diameter of Al mmφ. Next, this composite was subjected to hydrostatic extrusion and wire drawing to produce a composite wire with an outer diameter of 1.0 mm. This composite wire was heat treated at 850° C. for 72 hours to produce a multicore superconducting wire.

このようにして得られた多芯超電導線の臨界電流密度(
Jc)は4.2に、 +5Tで100OOA/ cシ、
また臨界温度(Tc)は15.5にの値を示した。
The critical current density of the multicore superconducting wire obtained in this way (
Jc) is 4.2, 100OOA/c at +5T,
Moreover, the critical temperature (Tc) showed a value of 15.5.

C発明の効果] 以上述べたように、本発明によれば、多フイラメント構
造の長尺の線材を安定に製造することができるとともに
、高い臨界電流密度(」C)を有するNba Al多芯
超電多芯超電導線を製造することが可能になる。
Effects of the invention C] As described above, according to the present invention, it is possible to stably produce a long wire rod with a multifilament structure, and also to produce an Nba Al multifilament super wire rod having a high critical current density ('C). It becomes possible to manufacture multicore superconducting wire.

疑咲シMisakishi

Claims (2)

【特許請求の範囲】[Claims] (1)銅または銅合金マトリックス中に、Alを過飽和
に固溶したNb−Al合金ロッドあるいはNb−Al合
金線の複数本を配置して複合体を形成し、前記複合体に
減面加工を施した後、700〜900℃の温度で熱処理
を施すことを特徴とするNb_3Al多芯超電導線の製
造方法。
(1) A composite is formed by arranging a plurality of Nb-Al alloy rods or Nb-Al alloy wires containing a supersaturated solid solution of Al in a copper or copper alloy matrix, and the composite is subjected to area reduction processing. A method for producing a Nb_3Al multicore superconducting wire, which comprises performing heat treatment at a temperature of 700 to 900° C.
(2)Alを過飽和に固溶したNb−Al合金は電子ビ
ーム溶解後、急冷されてなる請求項1記載のNb_3A
l多芯超電導線の製造方法。
(2) The Nb_3A according to claim 1, wherein the Nb-Al alloy containing Al in a supersaturated solid solution is rapidly cooled after electron beam melting.
l A method for manufacturing multicore superconducting wire.
JP2085905A 1990-03-30 1990-03-30 Manufacture of nb3al multicore superconductor Pending JPH03283321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085905A JPH03283321A (en) 1990-03-30 1990-03-30 Manufacture of nb3al multicore superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085905A JPH03283321A (en) 1990-03-30 1990-03-30 Manufacture of nb3al multicore superconductor

Publications (1)

Publication Number Publication Date
JPH03283321A true JPH03283321A (en) 1991-12-13

Family

ID=13871858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085905A Pending JPH03283321A (en) 1990-03-30 1990-03-30 Manufacture of nb3al multicore superconductor

Country Status (1)

Country Link
JP (1) JPH03283321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620532A (en) * 1992-11-30 1997-04-15 Hitachi, Ltd. Method for manufacturing Nb3 Al group superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620532A (en) * 1992-11-30 1997-04-15 Hitachi, Ltd. Method for manufacturing Nb3 Al group superconductor

Similar Documents

Publication Publication Date Title
JP2007141796A (en) Nb or nb-based alloy rod for manufacture of superconductive wire rod, and manufacturing method of nb3sn superconductive wire rod
Renaud et al. Production of high-conductivity, high-strength in-situ Cu-Nb multifilamentary composite wire and strip
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JP3433937B2 (en) Method of manufacturing superconducting alloy
JPH03283321A (en) Manufacture of nb3al multicore superconductor
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
RU2134462C1 (en) PROCESS OF MANUFACTURE OF SUPERCONDUCTOR BASED ON COMPOUND Nb3Sn
JP4754158B2 (en) Superconducting conductors containing a low temperature stabilizer based on aluminum
EP0582565B1 (en) Superconductor and process of manufacture
Sudyev et al. Recent progress in a development of Nb3Sn internal tin strand for fusion application
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
Pyon et al. Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors
JP3108496B2 (en) Superconducting wire manufacturing method
JP2004296124A (en) Manufacturing method of nb3sn superconductive wire rod
JPH02177217A (en) Manufacture of nb3al superconducting wire
JPH06283059A (en) Manufacture of nb3al very fine multicore superconductive wire
De Moranville et al. Development of a high Jc bronze route Nb3Sn conductor using Nb-Ta composite filaments
JPH03283322A (en) Manufacture of nb3al superconductor
Chernyj et al. Production of a large diameter high-current Nb-Ti wire
Inoue et al. Pinning force densities of continuous ultra-fine Nb3Al multifilamentary conductor
Takeuchi et al. Superconductivity of Nb/sub 3/Al formed by solid state reaction of Nb with Ag-based alloy
JPH03147211A (en) Manufacture of nb-ti multiple core superconducting wire
JPH03134917A (en) Manufacture of ceramic superconductor
JPS5858765B2 (en) Gokuhosotashin Fukugouchiyoudendousen
JPS6357750A (en) Manufacture of nb3sn superconducting wire