JPS63177420A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPS63177420A
JPS63177420A JP62008030A JP803087A JPS63177420A JP S63177420 A JPS63177420 A JP S63177420A JP 62008030 A JP62008030 A JP 62008030A JP 803087 A JP803087 A JP 803087A JP S63177420 A JPS63177420 A JP S63177420A
Authority
JP
Japan
Prior art keywords
exposure
film
pattern
substrate
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62008030A
Other languages
Japanese (ja)
Other versions
JP2566567B2 (en
Inventor
Toshihiko Tanaka
稔彦 田中
Hiroshi Fukuda
宏 福田
Norio Hasegawa
昇雄 長谷川
Morio Taniguchi
彬雄 谷口
Toshiharu Matsuzawa
松澤 敏晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62008030A priority Critical patent/JP2566567B2/en
Priority to US07/144,065 priority patent/US4904569A/en
Publication of JPS63177420A publication Critical patent/JPS63177420A/en
Application granted granted Critical
Publication of JP2566567B2 publication Critical patent/JP2566567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form a fine pattern with sufficiently high accuracy even if a step exists on its surface by projecting to expose a plurality of positions on the relatively different optical axes of a mask pattern focused surface and a resist film, and photosensing the resist only by exposing at near relative positions. CONSTITUTION:A plurality of positions on the different optical axes of a mask pattern focused surface and a resist film are projected to be exposed, and a resist is selectively photosensed only by the exposure at the near relative positions of the focused surface and the resist film face. For example, a photoresist layer 2 is formed on a substrate 1 having a step on its surface, and a light transmissible selective film 3 which has properties to be opaque to an exposed light at the time of unexposure and transparent upon irradiation of the exposed light and returns to an opaque film upon interruption of the exposed light is formed. The pattern is exposed by a projecting exposure device, and then developed to form a resist pattern 4. In this exposure, first exposure is conducted by bringing the focused surface to the protruded surface 1' of the substrate 1, and second exposure is conducted by then bringing the focused surface to the recess surface 1'' of the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえば半導体素子、磁気バブル素子、超伝
導素子等の作製における投影露光法を用いたパターン形
成方法に係り、詳しくは、縮小投影露光法による微細パ
ターンの形成に特に有効なパターン形成方法にをする。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a pattern forming method using a projection exposure method in the production of, for example, semiconductor devices, magnetic bubble devices, superconducting devices, etc. The present invention provides a pattern forming method that is particularly effective for forming fine patterns by exposure.

〔従来の技術〕[Conventional technology]

周知のように、半導体装置や磁気バブルメモリ装置など
の有する各種微細パータンの形成には、投影露光法が広
く用いられている。投影露光法、特に縮小投影露光法は
微細のパターン形成に有用である。投影露光法ではレン
ズの開口数の増加および露光波長の短波長化により解像
度が向上する。
As is well known, projection exposure methods are widely used to form various fine patterns included in semiconductor devices, magnetic bubble memory devices, and the like. Projection exposure methods, particularly reduction projection exposure methods, are useful for forming fine patterns. In the projection exposure method, resolution is improved by increasing the numerical aperture of the lens and shortening the exposure wavelength.

しかし、従来の投影露光法においては、露光光学系の焦
点深度は投影レンズの開口数と露光波長に強く依存して
いた。投影レンズの焦点深度はその開口数の2乗に反比
例し、露光波長に比例するため、解像度を上げるために
開口数を大きくしたり、短波長化を行なったりすると、
それにともなって焦点深度は浅くなってしまう。このた
め、投影レンズの像面歪や基板表面の凹凸段差によって
生ずる障害への対処が次第に困難となってきている。
However, in conventional projection exposure methods, the depth of focus of the exposure optical system strongly depends on the numerical aperture of the projection lens and the exposure wavelength. The depth of focus of a projection lens is inversely proportional to the square of its numerical aperture and proportional to the exposure wavelength, so if you increase the numerical aperture or shorten the wavelength to increase resolution,
As a result, the depth of focus becomes shallow. For this reason, it is becoming increasingly difficult to deal with obstacles caused by image plane distortion of the projection lens and irregularities on the surface of the substrate.

比較的微細なパターンによって生ずる段差による障害に
ついては、これまで周知の多層レジスト法による平滑化
によって対処されてきた。しかし、この方法を用いても
大面積パターンによって生じた段差を完全に平坦化する
ことはできず、段差の上部もしくは、下部に結像不良が
生ずるのは避けられなかった。
Problems caused by steps caused by relatively fine patterns have been dealt with by smoothing using a well-known multilayer resist method. However, even if this method is used, it is not possible to completely flatten the level difference caused by the large-area pattern, and it is inevitable that imaging defects will occur above or below the level difference.

なお、多層レジスト法については特開昭51−1077
75号などに記載されている。
Regarding the multilayer resist method, please refer to Japanese Patent Application Laid-Open No. 51-1077.
It is described in issue 75 etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年の半導体集積回路の高集積化にともない、パターン
の微細化と基板表面の凹凸段差が著しく増大し、それら
への対応が要求されている。パターン形成に投影露光法
を用いる場合、凹凸段差の増大に対応するためには、露
光光学系としてはより深い焦点深度が必要となる。しか
し解像度を向上させるには投影レンズの開口数を大きく
する必要があるため、焦点深度は逆に浅くなっている。
As semiconductor integrated circuits have become more highly integrated in recent years, patterns have become finer and the unevenness of the substrate surface has increased significantly, and measures to cope with these problems are required. When a projection exposure method is used to form a pattern, the exposure optical system needs to have a deeper depth of focus in order to cope with an increase in uneven steps. However, in order to improve the resolution, it is necessary to increase the numerical aperture of the projection lens, so the depth of focus becomes shallower.

また、投影レンズの像面歪により結像面は完全平面では
ないため、露光領域全面にわたり、その表面凹凸段差に
対応して焦点深度を確保するのが困難になってきている
Furthermore, because the image plane is not completely flat due to image plane distortion of the projection lens, it has become difficult to ensure a depth of focus over the entire exposure area in response to the unevenness of the surface.

前記従来技術では大面積パターンによって生ずる凹凸段
差を完全に平坦化することはできず、また完全平坦化が
達成されたとしてもレンズの像面歪のため露光領域全面
にわたってマスクパターンの結像面を基板表面と一致さ
せることができず、上記問題に対処するのが困難であっ
た。
With the above-mentioned conventional technology, it is not possible to completely flatten the unevenness caused by a large-area pattern, and even if complete flattening is achieved, the image plane of the mask pattern cannot be completely flattened over the entire exposure area due to the image plane distortion of the lens. It was difficult to deal with the above problem because it could not be made to match the surface of the substrate.

前記従来技術では大面積パターンによって生ずる凹凸段
差を完全に平坦化することはできず、また完全平坦化が
達成されたとしてもレンズの像面歪のため露光領域全面
にわたってマスクパーンの結像面を基板表面と一致させ
ることができず、上記問題に対処するのが困難であった
With the above-mentioned conventional technology, it is not possible to completely flatten the unevenness caused by a large-area pattern, and even if complete flattening is achieved, the imaging plane of the mask pan is not completely flattened over the entire exposure area due to the image plane distortion of the lens. It was difficult to deal with the above problem because it could not be made to match the surface of the substrate.

本発明の目的は段差が表面に存在しても、十分高い精度
で微細なパターンを形成できるパターン形成方法を提供
することである。本発明の他の目的はレンズの開口数が
大きい場合および露光波長が短かい場合にも光学系の実
質的な焦点深度の低下を防止し、段差の有無にかかわら
ず露光領域全面にわたって結像不良のない良好な微細パ
ターンを形成することである。
An object of the present invention is to provide a pattern forming method that can form fine patterns with sufficiently high precision even if there are steps on the surface. Another object of the present invention is to prevent the substantial depth of focus of the optical system from decreasing even when the numerical aperture of the lens is large and the exposure wavelength is short, and to prevent image formation defects over the entire exposed area regardless of the presence or absence of steps. The goal is to form a fine pattern with no blemishes.

C問題点を解決するための手段〕 上記目的はフォトレジスト上に可逆性を有するブリーチ
ング膜を形成し、その後、結像面位置を変えて多重露光
することにより達成される。ここで、可逆性を有するブ
リーチング膜とは、未露光時は露光光に対し不透明であ
るが、露光光の照射にともない透明化する性質を有し、
かつ露光光の照射を停止すると不透明膜にもどる性質を
有する膜のことである。
Means for Solving Problem C] The above object is achieved by forming a reversible bleaching film on a photoresist, and then performing multiple exposures by changing the position of the imaging plane. Here, a reversible bleaching film is opaque to exposure light when unexposed, but has the property of becoming transparent as it is irradiated with exposure light.
It also refers to a film that has the property of returning to its opaque state when irradiation with exposure light is stopped.

〔作用〕[Effect]

微細パターンを形成する場合、結像位置から離れた位置
での、いわゆるデフォーカスした像の光強度分布は裾の
広がったゆるやがな山型となり、孟のピーク強度は結像
位置上の像のピーク強度に比べ低下する。
When forming a fine pattern, the light intensity distribution of a so-called defocused image at a position far from the imaging position becomes a gentle mountain shape with a wide base, and the peak intensity of the light intensity is the same as that of the image at the imaging position. It decreases compared to the peak intensity of .

可逆性ブリーチング膜は一定光量以下の光を遮光し、あ
る閾値を越えると透明化して光を透過させる性質がある
。また可逆性を有するため、光照射を停止すると再び初
期の不透明状態にもどり、リセットされる。したがって
結像位置を変えて多重露光し、かつ光量を適当に選択す
ると、デフォーカスした像はブリーチング膜による遮光
され、フォレジストを感光せず、結像位置の合った、い
わゆるベストフォーカスの像ブリーチング膜を透過して
フォトレジストを感光させる。ブリーチング膜の可逆性
により、デフォーカスした像による露光の履歴は残らず
、その影響を取り除くことができる。場所により焦点が
合う位置が異なる場合も結像位置を変えて多重露光して
いるため、いずれかの露光にベストフォーカスの像があ
り、その像のみが選択的にフォトレジストを感光するの
で、基板段差にともなう焦点ボケ、およびレンスの像面
歪による焦点ボケの開運を解決できる。
A reversible bleaching film has the property of blocking light below a certain amount of light, and becoming transparent and transmitting light when a certain threshold is exceeded. Furthermore, since it has reversibility, when light irradiation is stopped, it returns to its initial opaque state and is reset. Therefore, if multiple exposure is performed by changing the imaging position and the light intensity is appropriately selected, the defocused image will be blocked by the bleaching film, and the foresist will not be exposed to light. The photoresist is exposed to light through the bleaching film. Due to the reversibility of the bleaching film, no history of exposure due to a defocused image remains, and its influence can be removed. Even if the focus position differs depending on the location, multiple exposures are performed by changing the imaging position, so there is an image with the best focus in one of the exposures, and only that image selectively exposes the photoresist, so the substrate Problems with out-of-focus caused by steps and out-of-focus caused by field distortion of the lens can be resolved.

〔実施例〕〔Example〕

実施例1゜ 以下、本発明の一実施例を第1図を用いて説明する。 Example 1゜ An embodiment of the present invention will be described below with reference to FIG.

第1図(a)に示すようにフォトレジストを表面に段差
のある基板1上に塗布し、フォトレジスト層2を形成し
た。その後、第1図(b)に示すようにフォトレジスト
層2上に光選択透過膜3を形成した。光選択透過膜3は
4−ジメチルアミノ−4′−ニトロアゾベンゼンをポリ
ビニルアルコールの水溶液に溶かした液を回転塗布する
ことにより形成した。膜厚は約0.5μmとしたが、ブ
リーチング効果が得られればこの膜厚に限らない。
As shown in FIG. 1(a), a photoresist was applied onto a substrate 1 having a step on its surface to form a photoresist layer 2. As shown in FIG. Thereafter, a light selective transmission film 3 was formed on the photoresist layer 2 as shown in FIG. 1(b). The selectively transmitting light membrane 3 was formed by spin coating a solution of 4-dimethylamino-4'-nitroazobenzene dissolved in an aqueous solution of polyvinyl alcohol. Although the film thickness was set to about 0.5 μm, it is not limited to this film thickness as long as a bleaching effect can be obtained.

その後、投影露光装置(図示せず)を用いてパターンを
露光し、続いて現像を行なって第1図(c)に示すよう
にレジストパターン4を形成した。この露光は次ように
して行なった。まず基板1の凸面上1′に結像面がくる
ように基板を固定したステージを移動し、その場所で一
回目の露光を行なった。次に基板1の凹面上1′に結像
面がくるようにステージを光軸方向に移動し、上記パタ
ーンの二回目の露光を行なった。この露光は第1回目の
露光後0.5秒以上の間隔をおいて杼打なった。
Thereafter, a pattern was exposed using a projection exposure apparatus (not shown), and then development was performed to form a resist pattern 4 as shown in FIG. 1(c). This exposure was carried out as follows. First, the stage on which the substrate was fixed was moved so that the imaging plane was located on the convex surface 1' of the substrate 1, and the first exposure was performed at that location. Next, the stage was moved in the optical axis direction so that the image plane was positioned above the concave surface 1' of the substrate 1, and a second exposure of the above pattern was performed. The exposures were carried out at intervals of 0.5 seconds or more after the first exposure.

なお、上記投影露光装置としては、日立RAIOIHL
型縮小投影露光装置を使用した。露光波長は436nm
である。
The projection exposure apparatus mentioned above is Hitachi RAIOIHL.
A mold reduction projection exposure system was used. Exposure wavelength is 436nm
It is.

本方法により2μm以上の段差がある場合でも段差の上
下ともに0.7μmの微細パターンを形状劣化なく形成
できた。一方、従来法では段差が約1.5μmを越える
と解像不良を起こした。
By this method, even when there was a step difference of 2 μm or more, a fine pattern of 0.7 μm both above and below the step could be formed without deterioration in shape. On the other hand, in the conventional method, resolution failure occurred when the step exceeded about 1.5 μm.

なお、上記実施例においてはフォトレジストとしてTS
MR8800(東京応化工業(株)商品名)を用いたが
、これのみではなく、MP1400(Shipley社
商品名)、0FPR5000(東京応化工業(株)商品
名)、AZ 1300 S F D(Hochst社商
品名)、Kodak809 (Kodak社商品名) 
PMMA、PGMA、PMIPKなどのポジレジストオ
ヨびRD20ON、RUlooON (日立化成工業(
株)社商品名)などのポリビニルフェノール系ネガレジ
スト、CBR(日本合成ゴム(株)社商品名)などの環
化ゴム系ネガレジストなど、各種レジストを用いること
ができる。また三層レジスト構造および二層レジスト構
造でも同様に効果がある。また実施例では光選択透過膜
の色素として4−ジメチルアミノ−4′−ニトロアゾベ
ンゼンを用いたが、この材料に限らず、3−メチルアミ
ノ−4−ニトロアゾベンゼン、4−ニトロアゾベンゼン
、4−ジメチルアミノアゾベンゼン、3−メチル−4−
ジメチルアミノ−4′−ニトロアゾベンゼンなどのアゾ
ベンゼン系誘導体あるいはスピロピラン系誘導体など可
逆性ブリーチング材料であればよい。また本実施例では
この色素を水に溶かしたが、この溶媒に限らず、プロパ
ツールと水の混合物、プロパツール、メチルシクロヘキ
サンとトルエンの混合物、メチルシクロペタンとメチル
シクロヘキサンの混合物なども用いることができる。こ
の溶媒がフォトレジストを浸食する場合、例えばプロパ
ツールの場合はポリシロキサン、その他の溶媒に対して
はパーフルオロポリエーテルなど、上記溶媒に溶けず、
しかもフォトレジストを浸食しない中間膜をフォトレジ
ストと光選択透過膜の間に設けることにより、浸食の問
題を完全にとりのぞくことができる。また第1回目の露
光と2回目の露光の間隔を約0.5秒以上としたが、こ
れは色素の光透過率が初期状態にもどるのに必要な時間
で決まる値であり、材料により異なる。短時間化するた
めには温度を上げればよい。
In addition, in the above embodiment, TS was used as the photoresist.
MR8800 (trade name of Tokyo Ohka Kogyo Co., Ltd.) was used, but not only this, MP1400 (trade name of Shipley Co., Ltd.), 0FPR5000 (trade name of Tokyo Ohka Kogyo Co., Ltd.), AZ 1300 S F D (product of Hochst Co., Ltd.) were used. name), Kodak809 (Kodak company product name)
Positive resists such as PMMA, PGMA, PMIPK, RD20ON, RUlooON (Hitachi Chemical Co., Ltd.)
Various resists can be used, such as a polyvinylphenol negative resist such as Co., Ltd. (trade name), and a cyclized rubber negative resist such as CBR (trade name, Nippon Synthetic Rubber Co., Ltd.). Also, a three-layer resist structure and a two-layer resist structure are similarly effective. In addition, in the examples, 4-dimethylamino-4'-nitroazobenzene was used as the dye for the light selectively transmitting film, but the material is not limited to this material. Aminoazobenzene, 3-methyl-4-
Any reversible bleaching material such as an azobenzene derivative such as dimethylamino-4'-nitroazobenzene or a spiropyran derivative may be used. Furthermore, although this dye was dissolved in water in this example, it is not limited to this solvent; a mixture of propatool and water, a mixture of propatool, methylcyclohexane and toluene, a mixture of methylcyclopentane and methylcyclohexane, etc. can also be used. can. If this solvent corrodes the photoresist, e.g. polysiloxane for propatool, perfluoropolyether for other solvents, etc., which are not soluble in the above solvent,
Moreover, by providing an intermediate film that does not corrode the photoresist between the photoresist and the selectively transmitting light film, the problem of corrosion can be completely eliminated. In addition, the interval between the first and second exposures was set to approximately 0.5 seconds or more, but this value is determined by the time required for the light transmittance of the dye to return to its initial state, and varies depending on the material. . To shorten the time, just raise the temperature.

本実施例では露光後、現像を行なってパターンを形成し
た。これは現像液にテトラメチルアンモニウム塩の水溶
液を用い、光選択透過膜として水溶性の膜を用いたため
、現像時に自動的に光選択透過膜が除去できたためであ
る。光選択透過膜が現像液で除去できない膜の場合は、
光選択透過膜を除去した後現像を行なう必要がある。な
お本実施例では投影レンズの開口数を0.38としたが
、開口数を変えても顕著な効果が認められた。
In this example, after exposure, development was performed to form a pattern. This is because an aqueous solution of tetramethylammonium salt was used as the developer and a water-soluble membrane was used as the selectively transmitting light membrane, so that the selectively transmitting light membrane could be automatically removed during development. If the selectively transmitting light film cannot be removed with a developer,
It is necessary to perform development after removing the selectively transmitting light film. In this example, the numerical aperture of the projection lens was set to 0.38, but significant effects were observed even when the numerical aperture was changed.

本実施例では露光波長を436nmとしたが、光選択透
過膜がブリーチングを起こす波長であればこの値に限ら
ず用いることができる。例えば4−ジメチルアミノアゾ
ベンゼンを色素とする光選択透過膜を用いた場合は、露
光波長を4Q5nmとすることができる。
Although the exposure wavelength was set to 436 nm in this embodiment, it is not limited to this value and can be used as long as the wavelength causes bleaching of the selectively transmitting light film. For example, when using a light selective transmission film containing 4-dimethylaminoazobenzene as a dye, the exposure wavelength can be set to 4Q5 nm.

実施例2゜ 第2図(a)に示すように段差のある基板11上にフォ
トレジストを塗布し、フォトレジスト層12を形成した
。その後第2図(b)に示すようにポリシロキサンを塗
布し、中間層13を形成した。その後、第2図(c)に
示すように光選択透過膜14を形成した。光選択透過膜
の色素としては4−ニトロアゾベンゼンを用い、溶媒は
プロパツールとし回転塗布により光選択透過膜14を形
成した。その後XeClエキシマパルスレーザ−を用い
て投影露光を行なった。露光波長は308nmである。
Example 2 As shown in FIG. 2(a), a photoresist layer 12 was formed by applying a photoresist onto a substrate 11 having a step. Thereafter, as shown in FIG. 2(b), polysiloxane was applied to form the intermediate layer 13. Thereafter, a light selective transmission film 14 was formed as shown in FIG. 2(c). The selectively transmitting light film 14 was formed by spin coating, using 4-nitroazobenzene as the dye and propatool as the solvent. Thereafter, projection exposure was performed using a XeCl excimer pulse laser. The exposure wavelength was 308 nm.

この露光は次のようにして行なった。This exposure was carried out as follows.

まず、基板表面の主平面15が投影光学系の結像面より
10μm下方(投影光学系から離れる方向)に設定して
露光を行なった後、基板を固定したステージを光軸に沿
って約1μmずつ上方に移動させ、そのつと露光を行な
った。この操作を基板表面の主平面が結像面より10μ
m上方にくるまで続けた。
First, exposure is performed with the main plane 15 of the substrate surface set 10 μm below the imaging plane of the projection optical system (in the direction away from the projection optical system), and then the stage on which the substrate is fixed is moved approximately 1 μm along the optical axis. The light was moved upward one by one, and each exposure was performed. This operation is performed so that the main plane of the substrate surface is 10μ from the image plane.
Continue until you reach m above.

その後、プロパツールを用いて光選択透過膜14を除去
し、続いてキシレンを用いて中間層13を除去し、その
後現像を行なって第2図(d)に示すようにレジストパ
ターン16を形成した。
Thereafter, the selectively transmitting light film 14 was removed using a propatool, and then the intermediate layer 13 was removed using xylene, and then development was performed to form a resist pattern 16 as shown in FIG. 2(d). .

本実施例では基板段差が最大3μm、投影光学レンズの
像面歪が最大約2μm、露光面内の基板の傾きが最大約
1μmあり、投影光学系に一番近い部分と一番遠い部分
の基板表面の位置の差は約6μmあった。この位置の差
にかかわらず、急峻で微細かつ高精度なパターンを露光
面内全域にわたって得ることができた。例えば0.45
μmのライン&スペースパターンを寸法精度±0.1μ
mで形成できた。一方、従来法では基板段差が約2μm
を越えると段差が土か下で解像不良が生じ、パターンを
形成することができないばかりでなく、平・坦面でも像
面歪のため、露光周辺領域の一部で解像不良が起こった
。また本方法を用いた場合は光選択透過膜がCEL膜(
ContrastEnhancement Layer
)としても機能するため、従来法に比ベパターン形状は
急峻なものとなった。例えば0.5μmパターンの断面
傾斜角は従来法の82°から87″′へ向上した。
In this example, the substrate height difference is at most 3 μm, the image plane distortion of the projection optical lens is at most about 2 μm, and the substrate inclination within the exposure plane is at most about 1 μm. The difference in surface position was about 6 μm. Regardless of this positional difference, a steep, fine, and highly accurate pattern could be obtained over the entire exposed surface. For example 0.45
Dimensional accuracy of μm line & space pattern ±0.1μ
It was possible to form the m. On the other hand, in the conventional method, the substrate level difference is approximately 2 μm.
Beyond this, poor resolution occurs because the step is below the ground, and not only is it impossible to form a pattern, but also poor resolution occurs in a part of the exposed peripheral area due to image plane distortion even on a flat/flat surface. . In addition, when this method is used, the light selective transmission film is a CEL film (
Contrast Enhancement Layer
), the pattern shape is steeper than that of the conventional method. For example, the cross-sectional inclination angle of a 0.5 μm pattern was improved from 82° in the conventional method to 87''.

本方法では可逆性にブリーチングをおこすため、露光量
や露光回数の設定でフォトレジストの感度とブリーチン
グ特性のマツチングをとることができるため、CEL膜
としての効率も高かった。なお、デフォーカスしたパタ
ーンも露光されているが、光選択透過膜のブリーチング
特の可逆性により、その悪影響を受けずに、良好なパタ
ーンを形成することができた。
Since this method causes reversible bleaching, the sensitivity of the photoresist and the bleaching characteristics can be matched by setting the exposure amount and the number of exposures, so the efficiency as a CEL film was also high. Although a defocused pattern was also exposed, due to the reversibility of bleaching of the selectively transmitting light film, a good pattern could be formed without any adverse effects.

本実施例では基板を最大21μm移動させた。In this example, the substrate was moved by a maximum of 21 μm.

移動量を長目にとると、基板の段差、レンズの像面歪、
基板の傾き量などが正確にわからなくても良好なパター
ンを形成することができるが、露光に要する時間がかか
る。そこで基板表面の最も高い位置が結像面より約1μ
m上方にくるようにステージ位置を調整して露光を行な
い、その後基板表面の最も低い位置近傍になるまで光軸
に沿って基板を約1μmずつ上方に移動させ、そのつど
露光を行なった。この場合、基板の移動量の和は約5μ
mであり、それにともない上記場合に比べ露光に要する
時間は約1/4に減少した。なお、基板の位置移動量を
1μmずつとしたがこれに限らず、投影光学系の焦点深
度以内とすれば同様に効果がある。またステップ状でな
く、連続的に位置を掃引してもよい。しかし焦点深度よ
り大きな値とすると段差の一部で解像不良が生ずる。例
えば位置移動のステップを2μmとした場合、基板段差
3μmの部分で解像不良が生じた。
If the amount of movement is long, differences in the board level, field distortion of the lens,
Although it is possible to form a good pattern even if the amount of tilt of the substrate is not accurately known, it takes time for exposure. Therefore, the highest point on the substrate surface is approximately 1 μm higher than the imaging plane.
The stage position was adjusted so as to be above m, and exposure was performed, and then the substrate was moved upward by about 1 μm along the optical axis until it was near the lowest point on the substrate surface, and exposure was performed each time. In this case, the total amount of movement of the substrate is approximately 5 μ
m, and accordingly, the time required for exposure was reduced to about 1/4 compared to the above case. Although the amount of positional movement of the substrate is set to be 1 μm at a time, the present invention is not limited to this, and the same effect can be obtained if the distance is within the depth of focus of the projection optical system. Further, the position may be swept continuously instead of in a stepwise manner. However, if the value is larger than the depth of focus, poor resolution will occur in a part of the step. For example, when the step of positional movement was 2 μm, poor resolution occurred at a portion where the substrate step was 3 μm.

本実施では、結像面と基板表面の相対的位置は、基板を
のせるステージの位置移動によって変えていた。この方
法に限らず、マスクパターンの存在するレチクルを光軸
方向に移動させる、露光光学系中に空気と異なる屈折率
を有する物質を挿入する、露光光学系の全体または一部
を含む部分の気圧を変動させる、多焦点レンズを用いる
、設定結像面の異なる複数の光学系からの光を重ね合わ
せる、同一光学系を用いて複数の異なるまたは連続した
波長の光により露光するなど、種々な方法を用いて結像
面と基板表面の相対的位置を変えてもよい。
In this embodiment, the relative position between the imaging plane and the substrate surface was changed by moving the position of the stage on which the substrate was placed. This method is not limited to this method, but includes moving the reticle on which the mask pattern is present in the optical axis direction, inserting a substance with a refractive index different from air into the exposure optical system, and atmospheric pressure in the part containing all or part of the exposure optical system. various methods, such as varying the wavelength, using a multifocal lens, superimposing light from multiple optical systems with different set imaging planes, and exposing the same optical system to light of multiple different or continuous wavelengths. may be used to change the relative position of the imaging plane and the substrate surface.

本実施例では光・選択透過膜として4−ニトロアゾベン
ゼンを用いたが、これに限らずアゾベンゼンなどアゾベ
ンゼン系誘導体およびスピロピラン系誘導体などでも同
様に効果があった。
In this example, 4-nitroazobenzene was used as the light/selective transmission film, but the present invention is not limited to this, and azobenzene derivatives such as azobenzene, spiropyran derivatives, and the like were similarly effective.

実施例3゜ 10μmの急峻な段差を持つ基板上に有機膜を下層膜と
して形成し、その上に無機膜を形成し、その上にフォト
レジストを塗布して周知の三層レジスト構造を形成した
。その後実施例2と同様、中間膜、光選択透過膜を形成
し、露光し、光選択透過膜、中間膜を順次除去した後現
像を行なって上層レジストパターンを形成した。その後
、異方性エツチングを行なって三層レジストパターンを
形成した。
Example 3 An organic film was formed as a lower layer film on a substrate having a steep step of 10 μm, an inorganic film was formed on top of the organic film, and a photoresist was applied on top of the organic film to form a well-known three-layer resist structure. . Thereafter, in the same manner as in Example 2, an intermediate film and a selectively transmitting light film were formed, exposed, and after sequentially removing the selectively transmitting light film and the intermediate film, development was performed to form an upper resist pattern. Thereafter, anisotropic etching was performed to form a three-layer resist pattern.

本方法により、基板段差部を含め、段差の上、下ともに
0.5μmのパターンを形成することができた。一方、
従来法では段差の上あるいは下にしかパターンを形成す
ることができなかった。
By this method, it was possible to form a pattern of 0.5 μm both above and below the step including the substrate step. on the other hand,
With conventional methods, patterns could only be formed above or below the step.

なお、上記下層膜用有機膜としてはRB3900B(日
立化成(株)商品名)を回転塗布し約200℃で熱処理
したものを用いたがこれに限らず、通常のレジストを熱
処理したもの、あるいはポリイミド膜など三層レジスト
法における下層膜として使用できるものであればよい。
Note that the organic film for the lower layer used was RB3900B (trade name, Hitachi Chemical Co., Ltd.) spin-coated and heat-treated at about 200°C; however, it is not limited to this, and may also be a heat-treated ordinary resist or polyimide. Any material may be used as long as it can be used as a lower layer film in a three-layer resist method, such as a film.

中間膜である無機膜にはS OG (Spin on 
Glass)を用いたが、CVD  5in2、スパッ
タSiN、TiOxなど三層レジスト法の中間膜として
機能する材料であればこれに限らず用いることができる
。また三層レジスト法に限らず、二層レジスト法を用い
た場合も同様に効果があった。
SOG (Spin on
Although a material such as CVD 5in2, sputtered SiN, or TiOx can be used as long as it functions as an intermediate film in a three-layer resist method. Furthermore, not only the three-layer resist method but also the two-layer resist method was similarly effective.

実施例4゜ 平坦な基板上に実施例2と同様の手法を用いて0.35
μmのライン&スペースパターンを形成した。但し、ス
テージの送りを約0.5μmずつとした。
Example 4 0.35° was applied on a flat substrate using the same method as in Example 2.
A μm line and space pattern was formed. However, the stage was moved in increments of approximately 0.5 μm.

本方法では露光領域全域にわたってパターンを形成する
ことができたが、像面歪により従来法では約70%の領
域・にしかパターンを形成することができなかった。ま
た1本方法を用いると基板の位置を移動させた量だけ焦
点裕度がどれるので、いくらでも焦点裕度を確保するこ
とができた。
Although this method was able to form a pattern over the entire exposed area, the conventional method was only able to form a pattern in about 70% of the area due to image plane distortion. Furthermore, when one method is used, the focus latitude can be adjusted by the amount by which the position of the substrate is moved, so any amount of focus latitude can be secured.

実施例5゜ 本方法を約2μmの段差を有するデバイスの導通用微補
穴形成工程および配線工程への適用した。
Example 5 This method was applied to the process of forming fine conductive holes and the wiring process of a device having a step of about 2 μm.

本適用により導通不良、配線の断線・ショートを完全に
防止でき、歩留まりが約60%から約80%へ向上した
By applying this method, it was possible to completely prevent conduction defects, disconnections and short circuits in the wiring, and the yield increased from about 60% to about 80%.

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、本発明によれば投影露光
法における実効的焦点深度を増大させることができるの
で、投影レンズの高開口数化、像面歪、基板表面の凹凸
段差の増大に対応することが可能である。焦点裕度の増
加量は結像面と基板表面の相対位置をどれだけ変えて露
光したかによって変わるが、この変化量を増やすことに
よりいくらでも焦点裕度を増やすことができる。このた
め、10μmの基板段差がある場合にもパターンを形成
することができる。
As is clear from the above description, according to the present invention, it is possible to increase the effective depth of focus in the projection exposure method, so it is possible to cope with the increase in the numerical aperture of the projection lens, the distortion of the image plane, and the increase in unevenness and level difference on the surface of the substrate. It is possible to do so. The amount of increase in focus latitude varies depending on how much the relative position between the imaging plane and the substrate surface is changed during exposure, but by increasing this amount of change, the focus latitude can be increased as much as desired. Therefore, a pattern can be formed even when there is a substrate step difference of 10 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の異なる実施例を
示す工程図である。 1・・・基板、2・・・レジスト層、3・・・光選択透
過膜、4・・・レジストパターン、11・・・基板、1
2・・・フォトレジスト層、13・・・中間層、14・
・・光選択透過膜、15・・・基板表面の主平面、16
・・・レジストパターン。
FIG. 1 and FIG. 2 are process diagrams showing different embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Resist layer, 3...Selective light transmission film, 4...Resist pattern, 11...Substrate, 1
2... Photoresist layer, 13... Intermediate layer, 14.
・・Light selective transmission film, 15 ・・Major plane of the substrate surface, 16
...Resist pattern.

Claims (1)

【特許請求の範囲】 1、所望の形状を有するマスクパターンを介してレジス
ト膜へ投影露光する工程と、上記レジスト膜を現像する
工程を含んでレジストパターンを形成するパターン形成
方法において、上記投影露光を上記マスクパターンの結
像面と上記レジスト膜の相対的に異なる光軸上の複数の
位置において行ない、その露光の中から結像面とレジス
ト膜面の相対位置が近い露光のみ選択的にレジストを感
光させることを有することを特徴とするパターン形成方
法。 2、上記選択的感光が、上記レジスト膜上に光透過選択
膜を形成し、その膜を介して上記レジスト膜に露光する
ことにより行なわれることを特徴とした特許請求の範囲
第1項記載のパターン形成方法。 3、上記光透過選択膜が、未露光時には露光々に対し不
透明であり、露光光の照射に伴ない透明化する性質を有
し、かつ露光光を遮光すると不透明膜にもどる光学的可
逆性を有する膜であることを特徴とする特許請求の範囲
第2項記載のパターン形成方法。 4、上記光透過選択膜がアゾベンゼン系誘導体を含む膜
であることを特徴とする特許請求の範囲第2項記載のパ
ターン形成方法。 5、上記光透過選択膜がスピロピラン系誘導体を含む膜
であることを特徴とする特許請求の範囲第2項記載のパ
ターン形成方法。 6、上記結像面が基板段差の凸面および凹面近傍上に設
定されることを特徴とする特許請求の範囲第1項記載の
パターン形成方法。 7、上記結像面が2箇所以上あり、その1つが基板上面
の最も高い(投影露光光学系に最も近い)位置と同じ位
置か、あるいはそれよりも投影光学系に近い位置に設定
され、一方が基板上面の最も低い位置と同じ位置かある
いはそこよりも投影光学系から遠い位置に設定され、3
箇所以上の場合は残りの結像面がその両者の間に設定さ
れることを特徴とする特許請求の範囲第1項記載のパタ
ーン形成方法。 8、上記結像面が2箇所以上あり、その1つが基板表面
上の最も高い位置から光学系の焦点深度だけ高い位置よ
りも投影光学系から遠い位置に設定され、3箇所以上の
場合は残りの結像面がその両者の間に設定されることを
特徴とする特許請求の範囲第1項記載のパターン形成方
法。 9、上記結像面の位置が少なくとも基板上面上の最も高
い位置から最も低い(光学系から最も遠い)位置に至る
まで掃引しながら上記露光を行なうことを特徴とする特
許請求の範囲の第1項記載のパターン形成方法。 10、上記露光は複数回行なわれることを特徴とする特
許請求の範囲第1項記載のパターン形成方法。
[Scope of Claims] 1. A pattern forming method for forming a resist pattern including a step of projecting exposure onto a resist film through a mask pattern having a desired shape and a step of developing the resist film, the method comprising: is performed at a plurality of positions on the optical axis that are relatively different between the imaging plane of the mask pattern and the resist film, and selectively resists only the exposure where the imaging plane and the resist film surface are close in relative position. 1. A pattern forming method comprising exposing to light. 2. The method according to claim 1, wherein the selective exposure is performed by forming a light transmission selective film on the resist film and exposing the resist film to light through the film. Pattern formation method. 3. The light transmission selective film has optical reversibility such that it is opaque to exposed light when unexposed, becomes transparent as it is irradiated with exposure light, and returns to its opaque state when the exposure light is blocked. 3. The pattern forming method according to claim 2, wherein the pattern forming method is a film comprising: 4. The pattern forming method according to claim 2, wherein the light transmission selective film is a film containing an azobenzene derivative. 5. The pattern forming method according to claim 2, wherein the light transmission selective film is a film containing a spiropyran derivative. 6. The pattern forming method according to claim 1, wherein the image forming plane is set near a convex surface and a concave surface of a substrate step. 7. There are two or more image forming planes, one of which is set at the same position as the highest position on the top surface of the substrate (closest to the projection exposure optical system), or at a position closer to the projection optical system, and one is set at the same position as the lowest position on the top surface of the substrate or at a position farther from the projection optical system than that, and 3
2. The pattern forming method according to claim 1, wherein in the case of more than one spot, the remaining imaging plane is set between the two. 8. If there are two or more imaging planes, one of which is set at a position farther from the projection optical system than the highest position on the substrate surface by the depth of focus of the optical system, and if there are three or more, the remaining 2. The pattern forming method according to claim 1, wherein the imaging plane is set between the two. 9. The exposure is performed while the position of the imaging plane is swept from at least the highest position on the upper surface of the substrate to the lowest position (furthest from the optical system). The pattern forming method described in section. 10. The pattern forming method according to claim 1, wherein the exposure is performed multiple times.
JP62008030A 1986-08-08 1987-01-19 Pattern forming method Expired - Fee Related JP2566567B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62008030A JP2566567B2 (en) 1987-01-19 1987-01-19 Pattern forming method
US07/144,065 US4904569A (en) 1986-08-08 1988-01-15 Method of forming pattern and projection aligner for carrying out the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008030A JP2566567B2 (en) 1987-01-19 1987-01-19 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS63177420A true JPS63177420A (en) 1988-07-21
JP2566567B2 JP2566567B2 (en) 1996-12-25

Family

ID=11681940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008030A Expired - Fee Related JP2566567B2 (en) 1986-08-08 1987-01-19 Pattern forming method

Country Status (1)

Country Link
JP (1) JP2566567B2 (en)

Also Published As

Publication number Publication date
JP2566567B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US7803521B2 (en) Photoresist compositions and process for multiple exposures with multiple layer photoresist systems
US9012132B2 (en) Coating material and method for photolithography
JP3067114B2 (en) Micro lens formation method
US4904569A (en) Method of forming pattern and projection aligner for carrying out the same
US20050147920A1 (en) Method and system for immersion lithography
US8084185B2 (en) Substrate planarization with imprint materials and processes
KR101238925B1 (en) Solid immersion lens lithography
TW200809403A (en) Positive photosensitive composition and pattern forming method
JP4755529B2 (en) Method for forming image on photoresist layer, and overcoat layer material
JP2000031025A (en) Formation of resist pattern
JPS63177420A (en) Pattern forming method
JP2008090303A (en) Reduction in watermark defect by resist optimization
JP2002184673A (en) Resist pattern formation method
US20060147846A1 (en) Method of forming photoresist pattern and semiconductor device employing the same
JP2555046B2 (en) Pattern forming method
JP3785353B2 (en) Manufacturing method of semiconductor device
JPS6342122A (en) Pattern formation
JP2588192B2 (en) Pattern forming method
JPH07226356A (en) Pattern forming method using multilayer resistance
JP2004061665A (en) Method for manufacturing semiconductor device
KR100579994B1 (en) Lithography apparatus and method for measuring alignment mark
KR100323443B1 (en) Method for fabricating semiconductor device
KR20080106696A (en) A manufacturing method using a top coating pattern as a supplementary etching mask
JPH09292706A (en) Resist pattern forming method
KR20060078472A (en) Exposure apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees