JPS63176488A - Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery - Google Patents

Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery

Info

Publication number
JPS63176488A
JPS63176488A JP62004160A JP416087A JPS63176488A JP S63176488 A JPS63176488 A JP S63176488A JP 62004160 A JP62004160 A JP 62004160A JP 416087 A JP416087 A JP 416087A JP S63176488 A JPS63176488 A JP S63176488A
Authority
JP
Japan
Prior art keywords
electrode
carbon fiber
side end
electrolytic
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62004160A
Other languages
Japanese (ja)
Other versions
JPH0335391B2 (en
Inventor
Morihito Kanzawa
神沢 守仁
Koji Saito
斉藤 幸次
Katsuhiro Ichikawa
市川 克弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP62004160A priority Critical patent/JPS63176488A/en
Publication of JPS63176488A publication Critical patent/JPS63176488A/en
Publication of JPH0335391B2 publication Critical patent/JPH0335391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent disintegration of carbon fiber and to enhance and stabilize electrolytic efficiency by subjecting the side end face of an electrode made of carbon fiber for an electrolytic cell or a secondary battery to coating treatment with organic solvent liquid of PVC. CONSTITUTION:In an electrolytic cell or the secondary battery provided with an electrode made of carbon fiber, the side end face 8 is subjected to coating treatment with organic solvent liquid of PVC. Coating 7 is formed on the surfaces of carbon fiber 6 positioned at the side end face 8 of the electrode by this treatment. Thereby the disintegration of carbon fiber 6 is prevented and both reduction of performance and instabilization of performance resulting from small pieces of floating carbon fiber are prevented. Furthermore generation of a clearance is preferably prevented by joining the side end face of the electrode subjected to coating treatment which is parallel to the flowing direction of an electrolyte or an electrolytic product to the cell wall such as the spacer wall of the electrode while using the organic solvent liquid of PVC and the flowing velocity of the electrolyte in the electrode part can be uniformized and stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維製の電極を備えた電解槽又は2次電
池の性能を向上させるための、前記電極側端面処理方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating the end face of an electrode in order to improve the performance of an electrolytic cell or a secondary battery equipped with carbon fiber electrodes. .

〔従来の技術〕[Conventional technology]

近年、強酸性の電解質を電解するための電解槽、及び電
気エネルギーを電解質の電気エネルギーに変換するため
の2次電池においては、電極材として炭素繊維製のフェ
ルト又は織布が使用され始めている。
In recent years, carbon fiber felt or woven fabric has begun to be used as an electrode material in electrolytic cells for electrolyzing strongly acidic electrolytes and secondary batteries for converting electrical energy into electrical energy of the electrolyte.

第4図は上記電解槽(又は2次電池)の一般的構造を示
すもので、セル2個を直列に配備した例である。この電
解槽では電極1+、1gはその耐蝕性及び導電性を高め
ると共にその表面積を広くするために炭素繊維製のフェ
ルト又は織布が使用されている。この電極1+、1gは
イオン交換膜2とバイポーラ板3との間に挟み込んだ構
造になっており、電解質をマニホールド41.4□を経
て各電極(正負極)に供給して電解反応を行わしめ、こ
の反応による生成物をマニホールド4.。
FIG. 4 shows the general structure of the electrolytic cell (or secondary battery), and is an example in which two cells are arranged in series. In this electrolytic cell, carbon fiber felt or woven fabric is used for the electrodes 1+ and 1g in order to increase their corrosion resistance and conductivity and to widen their surface area. These electrodes 1+ and 1g are sandwiched between an ion exchange membrane 2 and a bipolar plate 3, and electrolyte is supplied to each electrode (positive and negative electrodes) through a manifold 41.4□ to perform an electrolytic reaction. , the product of this reaction is transferred to the manifold 4. .

44を介して外部に排出するようになっている。It is designed to be discharged to the outside via 44.

なお、5は電極スペーサで、電解槽の一部を形成してい
る。
Note that 5 is an electrode spacer, which forms a part of the electrolytic cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前記電極用の炭素繊維製のフェルト及び織布
は一般に脆弱で、わずかの力や変形により繊維が破断し
易い、特に、その切断加工部である側端面では、切断加
工時に既に崩壊が始まり、以後のハンドリング時、ある
いは使用中の電解質や電解生成物の流動力によって崩壊
が進み、炭素繊維小片が離脱する。電解槽の性能を向上
させるためには電極・バイポーラ板間、及び電極・イオ
ン交換膜間の接触電気抵抗を小さくする必要があり、こ
のために前記電極と、バイポーラ板及びイオン交換膜と
の間に圧縮荷重を作用させることが多いが、この場合、
電極側端面の崩壊はより多くなる1頃向がある。
However, the carbon fiber felt and woven fabric for the electrodes are generally fragile, and the fibers tend to break due to slight force or deformation.Especially, the side end faces, which are the cutting parts, have already begun to disintegrate during the cutting process. During subsequent handling or during use, the disintegration progresses due to the flow force of the electrolyte or electrolysis product, and small pieces of carbon fiber are separated. In order to improve the performance of the electrolytic cell, it is necessary to reduce the electrical contact resistance between the electrode and the bipolar plate and between the electrode and the ion exchange membrane. A compressive load is often applied to the
There is a tendency for the electrode side end face to collapse more frequently.

このような電極材側端面の崩壊が起こると炭素繊維小片
が発生し、電解生成物に混入したり、管路系の閉塞を引
き起こす原因となる。マニホールド41.42及び4*
、4mは短絡電流を極力小さくするために一般に断面積
が小さく、かつ長さを長くしであるので、これらマニホ
ールドの閉塞及び流体抵抗の増大は特に生じ易い。さら
に、電解質及び電解生成物は、その少なくとも一部を循
環して使用される場合が多く、このため、電解生成物排
出側のマニホールド43.44を通過した炭素繊維小片
のが通用フィルター及び電解生成物精製用フィルターの
短期閉塞を起し易い。
When such collapse of the electrode material side end surface occurs, small pieces of carbon fiber are generated, which may be mixed into the electrolysis product or cause blockage of the pipe system. Manifold 41, 42 and 4*
, 4m generally have a small cross-sectional area and a long length in order to minimize short-circuit current, so blockage of these manifolds and increase in fluid resistance are particularly likely to occur. Furthermore, the electrolyte and the electrolytic product are often used by circulating at least a part of them, and therefore, the carbon fiber pieces that have passed through the manifold 43, 44 on the electrolytic product discharge side are used as a common filter and the electrolytic product. Easy to cause short-term blockage of filters for product purification.

これら上記の現象は、電解槽(及び2次電池)の性能低
下や性能不安定につながるので、炭素繊維製電極の側端
面の崩壊を防止することは、極めて重要である。
These above-mentioned phenomena lead to a decrease in the performance of the electrolytic cell (and the secondary battery) and to instability of the performance, so it is extremely important to prevent the side end faces of the carbon fiber electrode from collapsing.

また、電解質もしくは電解生成物の流過方向と平行の電
解槽槽壁もしくは2次電池槽槽壁と、電極側端面との接
触部は、何らかの方法で接合しておかない限り、流体力
や組立誤差等により隙間を形成し易い、これは、電極材
が著しく軟弱で、含有湿度や温度、ハンドリング時及び
使用時の極くわずかな力で形状・寸法が変化するためで
ある。
In addition, unless the electrode side end surface and the electrolytic cell wall parallel to the flow direction of the electrolyte or electrolyzed product or the secondary battery cell wall are in contact with each other, fluid force or assembly may occur. Gaps are likely to form due to errors, etc. This is because the electrode material is extremely soft and its shape and dimensions change depending on the contained humidity, temperature, and extremely slight force during handling and use.

そして、上記隙間を電解質又は電解生成物が集中的に流
れ、電極内の流れが遅くなるので、殆ど未反応の電解質
が電解生成物側に吐出されたり、電極内の反応効率の低
下を招く。
Then, the electrolyte or the electrolytic product flows intensively through the gap, and the flow within the electrode is slowed down, resulting in almost unreacted electrolyte being discharged to the electrolytic product side, resulting in a decrease in reaction efficiency within the electrode.

したがって、前記槽壁と電極側端面との接触部に隙間が
発生しないようにすることも、電解槽及び2次電池の高
性能化、安定化に不可欠である。
Therefore, it is also essential to prevent gaps from forming at the contact portion between the tank wall and the electrode side end face in order to improve the performance and stability of the electrolytic cell and the secondary battery.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来のものの上記問題点を解消し、高い電解
効率の維持、安定化が可能な電解槽又は2次電池を提供
することを目的とするものであって、これらの装置にお
ける炭素繊維製電極の側端面をポリ塩化ビニルの有機溶
媒溶液で処理することを骨子とするものである。
The present invention aims to solve the above-mentioned problems of the conventional ones and provide an electrolytic cell or a secondary battery that can maintain and stabilize high electrolytic efficiency. The main idea is to treat the side end surfaces of the manufactured electrode with an organic solvent solution of polyvinyl chloride.

すなわち、本発明は、炭素繊維製の電極を備えた電解槽
又は2次電池において、前記電極の側端面をポリ塩化ビ
ニルの有機溶媒溶液で被覆処理することを特徴とする、
電解槽又は2次電池における電解効率の向上、安定化処
理方法である。
That is, the present invention is characterized in that, in an electrolytic cell or a secondary battery equipped with carbon fiber electrodes, the side end surfaces of the electrodes are coated with an organic solvent solution of polyvinyl chloride.
This is a method for improving and stabilizing electrolytic efficiency in an electrolytic cell or a secondary battery.

また、本発明は、炭素繊維製の電極を備えた電解槽又は
2次電池において、前記電極の側端面をポリ塩化ビニル
の有機溶媒溶液で被覆処理すると共に、該被覆処理を施
した電極の、電解質又は電解生成物の流動方向と平行の
側端面を、ポリ塩化ビニルの有機溶媒溶液により前記電
解槽又は2次電池の槽壁に接合することを特徴とする、
電解槽又は2次電池における電解効率の向上、安定化処
理方法である。
The present invention also provides an electrolytic cell or a secondary battery equipped with carbon fiber electrodes, in which the side end surfaces of the electrodes are coated with an organic solvent solution of polyvinyl chloride, and the coated electrodes are coated with an organic solvent solution of polyvinyl chloride. A side end surface parallel to the flow direction of the electrolyte or electrolytic product is bonded to the electrolytic cell or the tank wall of the secondary battery using an organic solvent solution of polyvinyl chloride.
This is a method for improving and stabilizing electrolytic efficiency in an electrolytic cell or a secondary battery.

次に、本発明の実施態様を第1図乃至第3図に基づいて
説明する。
Next, embodiments of the present invention will be described based on FIGS. 1 to 3.

ポリ塩化ビニルの有機溶媒溶液を、炭素繊維製フェルト
又は織布からなる電極の側端面8に塗布したり、該側端
面を前記溶液に浸漬するなどの被覆処理を施したのち乾
燥させると、第1図に示すように炭素繊維6の外面にポ
リ塩化ビニルの被覆7が形成され互いに近接あるいは接
触している繊維同士を接着するので、無処理の電極材に
比べ崩壊が大幅に減少する。前記被覆7の厚さは、ポリ
塩化ビニルの有機溶媒溶液の濃度を調整することにより
十分薄(できるので、電極材の空間密度っまり電解質又
は電解生成物の流路断面積の減少や圧縮弾性の変化は十
分小さく押さえることができる。
When a solution of polyvinyl chloride in an organic solvent is applied to the side end surface 8 of an electrode made of carbon fiber felt or woven fabric, or the side end surface is subjected to a coating treatment such as immersed in the solution and then dried, As shown in FIG. 1, a polyvinyl chloride coating 7 is formed on the outer surface of the carbon fibers 6 and adheres the fibers that are close to or in contact with each other, so that collapse is significantly reduced compared to an untreated electrode material. The thickness of the coating 7 can be made sufficiently thin by adjusting the concentration of the organic solvent solution of polyvinyl chloride (as it can be made thin enough to reduce the spatial density of the electrode material, the reduction in the flow path cross-sectional area of the electrolyte or electrolysis product, and the compressive elasticity). The change in can be kept sufficiently small.

また、被覆7が形成されている領域はほぼ導電性を失う
ので電極の有効表面積の減少となるが、電極周辺部のみ
、例えば幅lfi〜数1の範囲を処理すれば電極の有効
面積の減少はわずかなものに押さえられる。しかもポリ
塩化ビニルは多くの強酸類に対して耐蝕性に優れ、低度
で、取り扱いも容易であるという利点を有している。
In addition, the area where the coating 7 is formed almost loses its conductivity, resulting in a decrease in the effective surface area of the electrode, but if only the peripheral area of the electrode is treated, for example, in the range of width lfi to several 1, the effective area of the electrode is reduced. is suppressed to a small number. In addition, polyvinyl chloride has the advantage that it has excellent corrosion resistance against many strong acids, has a low corrosion resistance, and is easy to handle.

さらに、前記側端面処理を施した電極材を電極スペーサ
5に組み込み、第2図に示すように電解質又は電解生成
物の流動方向と平行の電極スペーサ壁9とlj側端面1
0との接触部あるいは近接部11にポリ塩化ビニルの有
機溶媒溶液を塗布すると、第3図に示すように、電極ス
ペーサ壁9と電極側端面10とは互いに接着され、電極
スペーサ壁9と電極側端面10間にポリ塩化ビニルの接
合層12が形成されるので、隙間の発生を防止すること
かて゛きる。
Furthermore, the electrode material subjected to the side end surface treatment is incorporated into the electrode spacer 5, and as shown in FIG.
When an organic solvent solution of polyvinyl chloride is applied to the contact portion with the electrode 0 or the adjacent portion 11, the electrode spacer wall 9 and the electrode side end surface 10 are bonded to each other, as shown in FIG. 3, and the electrode spacer wall 9 and the electrode Since the polyvinyl chloride bonding layer 12 is formed between the side end surfaces 10, it is possible to prevent the generation of gaps.

電極スペーサ5が硬質ポリ塩化ビニルの場合には、完全
で非常に強固な接着が実現し最も効果的であり、電極ス
ペーサ5が硬質塩化ビニル以外の材質の場合にも、電極
スペーサ壁9と接着により形成された前記接合層12と
の間は塗装膜と同程度の接合力を有しており、隙間防止
に有効である。
When the electrode spacer 5 is made of hard polyvinyl chloride, complete and very strong adhesion is achieved, which is the most effective. Even when the electrode spacer 5 is made of a material other than hard polyvinyl chloride, it can be bonded to the electrode spacer wall 9. The adhesive layer 12 formed by the bonding layer 12 has a bonding force comparable to that of a paint film, and is effective in preventing gaps.

〔実施例〕〔Example〕

以下、本発明の実施例を具体的に説明し、従来の無処理
例と比較する。
Examples of the present invention will be specifically described below and compared with conventional non-processed examples.

長さく電解質又は電解生成物の流動方向の寸法)24c
m、幅18cm、厚さ3龍の炭素繊維製フェルト電極を
用いた5セル型の電解槽において、電極の側端面にポリ
塩化ビニル2.8部、テトラヒドロフラン80部、メチ
ルエチルケトン20部からなる溶液を筆で塗布し自然乾
燥後、硬質塩化ビニル製電極枠に組み込み、電極の側端
面と電極スペーサとの接触面にポリ塩化ビニル7.4部
、テトラヒドロフラン80部、メチルエチルケトン20
部からなる溶液を筆で塗布し自然乾燥した。
length (dimension in the direction of flow of electrolyte or electrolytic product) 24c
In a 5-cell electrolytic cell using carbon fiber felt electrodes with a width of 18 cm and a thickness of 3 cm, a solution consisting of 2.8 parts of polyvinyl chloride, 80 parts of tetrahydrofuran, and 20 parts of methyl ethyl ketone was applied to the side end surface of the electrode. After applying with a brush and air drying, it was assembled into a hard vinyl chloride electrode frame, and 7.4 parts of polyvinyl chloride, 80 parts of tetrahydrofuran, and 20 parts of methyl ethyl ketone were applied to the side end surface of the electrode and the contact surface with the electrode spacer.
A solution consisting of 50% was applied with a brush and allowed to air dry.

この電極槽において、電解質として強塩酸酸性溶液を供
給圧0.3 ktf /ajで供給した場合、流量は1
ffi/winで長時間安定、つまり圧損が全く増えず
電解効率も十分に高く、かつ長時間に亘って安定であっ
た。
In this electrode tank, when a strong hydrochloric acid acidic solution is supplied as an electrolyte at a supply pressure of 0.3 ktf/aj, the flow rate is 1
It was stable for a long time at ffi/win, that is, the pressure loss did not increase at all, the electrolytic efficiency was sufficiently high, and it was stable for a long time.

〔比較例〕[Comparative example]

一方、電極側端面は無処理つまり裁断のままとし、電極
スペーサとの接着処理も行わない比較電解槽(従来の電
解槽)においては、前記実施例と同一電解条件において
流量、性能とも電解開始直後は実施例に比べ遜色ないも
のであったが、2時間後には流量がQ、81/sinに
減少し、電解効率は実施例の75%に低下した。これら
の性能低下は以後、その進行速度は緩やかではあったが
時間と共に進行した。
On the other hand, in a comparative electrolytic cell (conventional electrolytic cell) in which the electrode side end face was left untreated, that is, cut, and no adhesive treatment with the electrode spacer was performed, both flow rate and performance were obtained immediately after the start of electrolysis under the same electrolytic conditions as in the above example. Although the flow rate was comparable to that of the example, the flow rate decreased to Q, 81/sin after 2 hours, and the electrolysis efficiency decreased to 75% of that of the example. These performance deteriorations progressed over time, although at a slower rate.

また、実施例、この比較従来例とも30時間電解に供し
たのち分解点検した結果、比較例ではマニホールドの一
部及び電解槽の後流側に置いたフィルターに炭素繊維小
片が付着していたのに対し、実施例では全く繊維小片が
認められず、本発明の有効性が確認された。
In addition, as a result of disassembling and inspecting both the example and the comparative conventional example after subjecting them to electrolysis for 30 hours, it was found that in the comparative example, small pieces of carbon fiber were attached to a part of the manifold and the filter placed on the downstream side of the electrolytic tank. In contrast, no fiber particles were observed in the Examples, confirming the effectiveness of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明は、炭素繊維製の電極を有する電解槽又は2次電
池において、ポリ塩化ビニルの有機溶媒溶液で電極の側
端面を塗布等により被覆処理し、該側端部だけの炭素繊
維の外面に薄いポリ塩化ビニル被覆層を形成すると共に
繊維同士を接着することによって電極の崩壊を防止つま
り炭素繊維小片の発生を防止するものであり、高い電解
効率と、その維持安定及び電解生成物の汚染防止を可能
とする効果を生じる。
The present invention provides an electrolytic cell or a secondary battery having an electrode made of carbon fiber, in which the side end surface of the electrode is coated with an organic solvent solution of polyvinyl chloride by coating, etc., and the outer surface of the carbon fiber only at the side end is coated. By forming a thin polyvinyl chloride coating layer and adhering the fibers to each other, it prevents the collapse of the electrode, that is, the generation of carbon fiber particles, resulting in high electrolytic efficiency, its maintenance stability, and prevention of pollution of electrolyzed products. It produces an effect that makes it possible.

また本発明は、前記崩壊防止処理を施した電極の、電解
質又は電解生成物の流動方向と平行の側端面を、ポリ塩
化ビニルの有8S!溶媒溶液を用いて電極スペーサつま
り電解槽等の槽壁の一部に棲合し、該槽壁と電極側端面
の間に隙間が発生するのを防止することにより、電極部
における電解質又は電解生成物の流動速度を均一、安定
化し、高い電解効率とその維持安定化を可能とする効果
をもたらすものである。
Further, the present invention provides that the side end surfaces of the electrode subjected to the collapse prevention treatment, which are parallel to the flow direction of the electrolyte or the electrolytic product, are made of polyvinyl chloride (8S!). By using a solvent solution to inhabit the electrode spacer, that is, a part of the tank wall of an electrolytic tank, etc., and preventing the generation of a gap between the tank wall and the electrode side end surface, electrolyte or electrolytic generation in the electrode part can be prevented. This has the effect of uniformly and stabilizing the flow rate of substances, making it possible to achieve high electrolytic efficiency and maintain and stabilize it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施B様に係るもので、第
1図は電極の側端面部の拡大断面図、第2図は電極と電
極スペーサとの近接部の断面図、第3図はこの近接部に
ポリ塩化ビニルの有m溶媒溶液を塗布して得られる接合
層の拡大断面図であり、第4図は炭素繊維製電極を用い
た従来の電解槽又は2次電池の断面図である。 l2.1□・・・電極、2・・・イオン交換膜、3・・
・バイポーラ板、41〜44・・・マニホールド、5・
・・電極スペーサ、6・・・炭素繊維、7・・・被覆、
8・・・側端面、9・・・電極スペーサ壁、10・・・
側端面、11・・・近接部、12・・・接合層。
1 to 3 relate to embodiment B of the present invention, in which FIG. 1 is an enlarged cross-sectional view of the side end surface of the electrode, FIG. 2 is a cross-sectional view of the adjacent portion between the electrode and the electrode spacer, and FIG. Figure 3 is an enlarged cross-sectional view of a bonding layer obtained by applying a solvent solution of polyvinyl chloride to this adjacent area, and Figure 4 is an enlarged cross-sectional view of a bonding layer obtained by applying a solvent solution of polyvinyl chloride to the adjacent area, and Figure 4 is an enlarged cross-sectional view of a bonding layer obtained by applying a polyvinyl chloride solvent solution to this adjacent area. FIG. l2.1□... Electrode, 2... Ion exchange membrane, 3...
・Bipolar plate, 41-44...manifold, 5・
...electrode spacer, 6...carbon fiber, 7...coating,
8... Side end surface, 9... Electrode spacer wall, 10...
Side end surface, 11... Proximity portion, 12... Bonding layer.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維製の電極を備えた電解槽又は2次電池に
おいて、前記電極の側端面をポリ塩化ビニルの有機溶媒
溶液で被覆処理することを特徴とする、電解槽又は2次
電池における電解効率の向上、安定化処理方法。
(1) Electrolysis in an electrolytic cell or secondary battery equipped with carbon fiber electrodes, characterized in that the side end surfaces of the electrodes are coated with an organic solvent solution of polyvinyl chloride. Improved efficiency, stabilization processing method.
(2)炭素繊維製の電極を備えた電解槽又は2次電池に
おいて、前記電極の側端面をポリ塩化ビニルの有機溶媒
溶液で被覆処理すると共に、該被覆処理を施した電極の
、電解質又は電解生成物の流動方向と平行の側端面を、
ポリ塩化ビニルの有機溶媒溶液により前記電解槽又は2
次電池の槽壁に接合することを特徴とする、電解槽又は
2次電池における電解効率の向上、安定化処理方法。
(2) In an electrolytic cell or secondary battery equipped with carbon fiber electrodes, the side end surfaces of the electrodes are coated with an organic solvent solution of polyvinyl chloride, and the electrolyte or electrolyte of the coated electrodes is The side end surface parallel to the flow direction of the product is
Said electrolytic cell or 2 by an organic solvent solution of polyvinyl chloride
A method for improving and stabilizing electrolytic efficiency in an electrolytic cell or a secondary battery, the method comprising bonding to the tank wall of the secondary battery.
JP62004160A 1987-01-13 1987-01-13 Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery Granted JPS63176488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004160A JPS63176488A (en) 1987-01-13 1987-01-13 Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004160A JPS63176488A (en) 1987-01-13 1987-01-13 Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery

Publications (2)

Publication Number Publication Date
JPS63176488A true JPS63176488A (en) 1988-07-20
JPH0335391B2 JPH0335391B2 (en) 1991-05-28

Family

ID=11576989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004160A Granted JPS63176488A (en) 1987-01-13 1987-01-13 Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery

Country Status (1)

Country Link
JP (1) JPS63176488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440080B2 (en) * 2006-05-17 2013-05-14 Ozomax Inc. Portable ozone generator and use thereof for purifying water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440080B2 (en) * 2006-05-17 2013-05-14 Ozomax Inc. Portable ozone generator and use thereof for purifying water

Also Published As

Publication number Publication date
JPH0335391B2 (en) 1991-05-28

Similar Documents

Publication Publication Date Title
US3414486A (en) Method for producing flakes of nickel
KR101198220B1 (en) Pem water electrolyser using 3-dimension mesh
JP4805250B2 (en) Electromembrane method and apparatus
JPS63176488A (en) Treatment for enhancing and stabilizing electrolytic efficiency in electrolytic cell or secondary battery
JP2699256B2 (en) Electric regeneration type continuous ion exchange device and its use
JP3072333B2 (en) Water electrolyzer using solid polymer electrolyte membrane
JP3122734B2 (en) Water electrolysis tank using solid polymer electrolyte membrane
SE8303726L (en) Cathode for electrolysis of acid solution and process thereof
CA1143334A (en) Composite electrodes for diaphragmless electrolytic cells for the production of chlorates and hypochlorites i
JP2000106199A (en) Separator for fuel cell
JP2003068320A (en) Manufacturing method of film electrode jointed body for fuel cell
JPH07161359A (en) Gas diffusion electrode
JPS59196585A (en) Electrode for zinc-halogen battery
JP3192763B2 (en) How to reuse an electrolytic cell
JP2972925B2 (en) Water electrolyzer using solid polymer electrolyte membrane
CN1632974A (en) Surface treating method for graphite bipolar plate
JP2004358452A (en) Electrolytic treatment apparatus
JPH0737606A (en) Manufacture of thin lead-acid battery
CN106830222A (en) A kind of method that Electro Sorb removes magnesium ion in water removal
JPH04507433A (en) Electrolyzer for gas generation electrolysis
JPS62252074A (en) Matrix for fuel cell
CN105664721A (en) Flat-plate permeable membrane element with columnar dielectrophoresis electrodes
JPS58115123A (en) Surface treatment of carbon fiber
JPS5935689A (en) Electrolytic cell by ion exchange membrane
JPS55161078A (en) Electrolyzing method for aqueous alkali salt solution with ion exchange membrane