JPS63175696A - Method for controlling bulking by using svi - Google Patents

Method for controlling bulking by using svi

Info

Publication number
JPS63175696A
JPS63175696A JP62007908A JP790887A JPS63175696A JP S63175696 A JPS63175696 A JP S63175696A JP 62007908 A JP62007908 A JP 62007908A JP 790887 A JP790887 A JP 790887A JP S63175696 A JPS63175696 A JP S63175696A
Authority
JP
Japan
Prior art keywords
aeration tank
sludge
svi
meter
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62007908A
Other languages
Japanese (ja)
Other versions
JPH07115025B2 (en
Inventor
Takao Sekine
孝夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62007908A priority Critical patent/JPH07115025B2/en
Publication of JPS63175696A publication Critical patent/JPS63175696A/en
Publication of JPH07115025B2 publication Critical patent/JPH07115025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To maintain good water quality by comparting an aeration tank into a plurality of parts to form the aeration tank for performing step aeration and specifying factors for changing the amount and the injection point of sewage introduced into the aeration tank. CONSTITUTION:An aeration tank 1 is comparted into 1A-1E to permit step aeration. A controlling device 4 performs prescribed operation on the basis of value measured with respective measuring equipments to process its output into both disvergence signals of valves 5A-5E provided to change the injection point of water introduced into the aeration tank 1 and the on-off signal of an excess sludge pump 15 for controlling the amount of excess sludge. The controlling algorithm in the controlling device 4 consists of both algorithm for deciding injection of water introduced into respective circuits 1A-1E and algorithm for controlling SRT. The algorithm for deciding injection is determined by the amount Qs of sewage to be introduced, turbidity Tbi of introduced water and sludge volume SVI.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は活性汚泥法における水質の制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for controlling water quality in an activated sludge process.

B0発明の概要 本発明は、活性汚泥処理法において、曝気槽を初数に区
分し、流入汚水量、流入水濁度および汚泥溶景指標の3
因子をもとに区分された個別曝気槽への流入汚水貴注入
点を変更するようにしたものである。
B0 Summary of the Invention The present invention is an activated sludge treatment method that divides the aeration tank into the first number, and divides the inflow sewage volume, inflow water turbidity, and sludge landscape index into three groups.
This system is designed to change the inflow point of sewage into individual aeration tanks, which are classified based on factors.

また、上記3因子の相互作用を考慮し、更には流入注水
量注入点制御と汚泥滞留時間制御とを組付せることによ
ってバルキング現象を抑制するよ5にしたものである。
In addition, considering the interaction of the above three factors, the bulking phenomenon is suppressed by combining inflow water injection amount injection point control and sludge retention time control.

C0従来の技術 都市下水や食品工場廃水などのよ5に有機質を多量に含
む廃水を処理する手段として、流入水を曝気槽に注入し
、適度に曝気した後に最終沈殿池に流出して汚泥を沈殿
させ、上澄水を放流する活性汚泥法が使用されている。
C0 Conventional technology As a means of treating wastewater that contains a large amount of organic matter, such as urban sewage and food factory wastewater, inflow water is injected into an aeration tank, and after being appropriately aerated, it flows into a final settling tank to collect sludge. An activated sludge method is used in which sedimentation is performed and the supernatant water is discharged.

D0発明が解決しようとする問題点 活性汚泥法による処理に携わる生物は細菌、原生動物な
どの微生物が大部分であり種類もきわめて多い混合培養
系である。混合培養系では生物種間に複雑な相互作用が
存在する一つの微生物生態系とみなすことができる。良
好な水質を維持するためには、これらの微生物生態系を
可能な限り安定に保ち、適切な管理および制御が行なわ
れなければならない、しかし、流入基質組成や水温等の
条件により微生物の211m、数量はダイナミックに変
動し、バルキングもその一つである。バルキングとは、
汚泥中に糸状性微生物がス量に発生し、活性汚泥の沈降
特性が悪化する現象で、その結果、最終沈殿池での固液
分離が悪化し、処理水中への汚泥の流出を招くことにな
る。このバルキング現象の抑制、すなわち、糸状性微生
物の量の減少、または撲滅させる方法として、従来は返
送汚泥の塩素殺菌や溶存酸素濃度(Do)レベルを変更
するなどの多くの対策案が提案されているが、何れも再
現性に乏しいものとなっている。その理由の一つに混合
培養系の解析が十分性なわれていないうえに、バルキン
グ時に出現する糸状性微生物の種類が多く、しかもその
1類毎に適正な環境条件の異なる点が挙げられ、ある種
のバルキングにある方法が有効であっても、他のバルキ
ングには効果がでない問題点を有している。
D0 Problems to be Solved by the Invention The organisms involved in treatment by the activated sludge method are mostly microorganisms such as bacteria and protozoa, and are a mixed culture system in which there are many types. A mixed culture system can be regarded as a single microbial ecosystem in which complex interactions exist between biological species. In order to maintain good water quality, these microbial ecosystems must be kept as stable as possible, and appropriate management and control must be carried out. However, depending on conditions such as inflow substrate composition and water temperature, microbial Quantities change dynamically, and bulking is one of them. What is bulking?
This is a phenomenon in which filamentous microorganisms occur in large quantities in sludge, deteriorating the settling characteristics of activated sludge.As a result, solid-liquid separation in the final settling tank deteriorates, leading to sludge flowing into the treated water. Become. In order to suppress this bulking phenomenon, that is, to reduce or eradicate the amount of filamentous microorganisms, many countermeasures have been proposed in the past, such as chlorine sterilization of returned sludge and changing the dissolved oxygen concentration (Do) level. However, they all have poor reproducibility. One of the reasons for this is that mixed culture systems have not been sufficiently analyzed, and there are many types of filamentous microorganisms that appear during bulking, and each type has different appropriate environmental conditions. Even if a certain method is effective for some types of bulking, it has the problem that it is not effective for other types of bulking.

そこで本発明が目的とするところは、バルキングの発生
を予測したり、あるいはバルキング状態になっているも
のを正常の汚泥に戻す従来確立されてない手法を確立し
、この手法に基いてバルキング発生を前梅とした制御方
法を提供せんとするものである。
Therefore, the purpose of the present invention is to establish a method that has not been established in the past for predicting the occurrence of bulking or returning bulked sludge to normal sludge, and to prevent the occurrence of bulking based on this method. The aim is to provide a control method that is very precise.

E0問題点を解決するための手段 第1の本発明は廃水の活性汚泥処理法において、曝気槽
を区分してステップエアレーション可能トなし、流入水
の注入点決定を流入汚水t(Qs)、流入水濁度(Tb
t)および汚泥容量指111(SVI)より決定する。
Means for Solving E0 Problems The first invention is a method for treating wastewater with activated sludge, in which the aeration tank is divided to enable step aeration, and the injection point of inflow water is determined by inflow sewage t (Qs), inflow sewage t (Qs), inflow Water turbidity (Tb
t) and the sludge capacity index 111 (SVI).

また変更のための基準値としては、QB(QsO)、8
VI (El’/I。’lを用いるが、それぞれの因子
は独立して変動するため、各因子の相互作用を考慮した
基単値決定法が採られる。
In addition, the reference value for change is QB (QsO), 8
VI (El'/I.'l is used, but since each factor varies independently, a basic single value determination method is adopted that takes into account the interaction of each factor.

第2の本発明は、第1の発明に基く注入水注入点制御に
、更に汚泥滞留時間(SRT)制御を組合せたものであ
る。
The second invention further combines the injection water injection point control based on the first invention with sludge retention time (SRT) control.

26作用 流入負荷の増大時、あるいはBVrが大きいバルキング
状態のときでも、流入汚水量の注入点を変更することに
よって最終沈殿池に対する曝気槽内の汚泥量の比重を高
め、曝気槽から最終沈殿池への流出汚泥量を減少させ、
処理水中への汚泥の流出を防止する。
26 Effects Even when the inflow load increases or in a bulking state where BVr is large, by changing the injection point of the inflow sewage volume, the specific gravity of the sludge volume in the aeration tank relative to the final sedimentation tank is increased, and the sludge volume is transferred from the aeration tank to the final sedimentation tank. Reduce the amount of sludge flowing into
Prevent sludge from flowing into treated water.

また、汚泥の定量引抜きの場合、注入点変更に伴って返
送汚泥濃度(余剰汚泥濃度もほぼ同じ)が変化し、余剰
汚泥として1日に引抜く汚泥量(kg/a)が変化して
SR’rを一定に維持できなくなる。そこで注入点の変
更制御KSRT制御を組合せて、注入点を変更してもS
RTは一定に制御できる。
In addition, in the case of quantitative extraction of sludge, the concentration of returned sludge (the concentration of surplus sludge is also approximately the same) changes as the injection point changes, and the amount of sludge extracted as surplus sludge (kg/a) per day changes, resulting in a change in the SR. 'r cannot be maintained constant. Therefore, by combining injection point change control KSRT control, even if the injection point is changed, S
RT can be controlled to be constant.

G、実施例 以下図に基いて本発明の一実施例を詳述する。G. Example An embodiment of the present invention will be described in detail below based on the drawings.

第1図は、代表的な都市下水の活性汚泥処理フローに本
発明を適用した場合を示したものである。
FIG. 1 shows a case where the present invention is applied to a typical activated sludge treatment flow for urban sewage.

同図においてlは曝気槽で、この曝気槽lは】A〜IN
C図ではIE)に区分されてステップエアレーション可
能となっている。2は曝気槽1の流入路側に設置された
Q、計、3は同じ<Tbt計で、これら各計測器によっ
て計測されたQ6値と’rbt値は制御装置4に出力さ
れる。5A〜5Eはゲートまたはパルプ(以下はパルプ
で説明する)で、各パルプ5A〜5Eは区分曝気槽IA
〜IEに夫々対応して設けられ、開閉用のモータ6A〜
6Eを介して各回路(区分曝気槽)への流入量を調整す
る。7は汚泥容量(SV)計、8は活性汚泥浮遊物質濃
度(MLss )計で、夫々は曝気槽lの流出側(ここ
では1E)K配設され、計測されたsv値とMLSS値
はSVI演算部9に出力されて次式によってSVI値が
求められる。
In the same figure, l is an aeration tank, and this aeration tank l is ]A~IN
In Figure C, it is divided into IE) and step aeration is possible. 2 is a Q meter installed on the inflow path side of the aeration tank 1, and 3 is the same <Tbt meter, and the Q6 value and 'rbt value measured by these measuring devices are output to the control device 4. 5A to 5E are gates or pulps (the pulp will be explained below), and each pulp 5A to 5E is a sectional aeration tank IA.
~Motor 6A for opening/closing, provided corresponding to each IE~
Adjust the flow rate to each circuit (section aeration tank) via 6E. 7 is a sludge volume (SV) meter, and 8 is an activated sludge suspended solids concentration (MLSS) meter, each of which is installed on the outflow side of the aeration tank 1 (in this case, 1E), and the measured sv value and MLSS value are SVI It is output to the arithmetic unit 9 and the SVI value is determined by the following equation.

(ここでS V tは、SV測定開始後を分波のBv値
で、tは通常30分、ML8BはSV測定用汚泥サンプ
時のサンプリング汚泥のMLaE1濃度)求められたS
VI値は制御装置4に出力されるが、SVI値は間欠測
定となるので、次回の値が出力されるまで今回値がホー
ルドされる。またMLSS値の一方は、直接制御装置4
にも出力される。10は最終沈殿池、11は返送汚泥ポ
ンプで、最終沈殿池10より曝気槽1に汚泥を返送する
ためのポンプである。12は返送汚泥濃度(CR)計、
13は返送汚泥流量(QR)計、14は余剰汚泥流量(
Qw )計で、これら各計測器によって計測された各個
は夫々制御装置4に出力される。なお、CB計12とQ
W計14は何れか−・方何のみでよい。
(Here, S V t is the Bv value of the wave after the start of SV measurement, t is usually 30 minutes, and ML8B is the MLaE1 concentration of the sampled sludge at the time of sludge sump for SV measurement.)
The VI value is output to the control device 4, but since the SVI value is measured intermittently, the current value is held until the next value is output. Also, one of the MLSS values is directly controlled by the control device 4.
is also output. 10 is a final settling tank, and 11 is a return sludge pump, which is a pump for returning sludge from the final settling tank 10 to the aeration tank 1. 12 is a return sludge concentration (CR) meter;
13 is the return sludge flow rate (QR) meter, 14 is the excess sludge flow rate (
Qw), and each individual measured by each of these measuring instruments is output to the control device 4, respectively. In addition, CB total 12 and Q
The W total 14 may be any one of the following.

15は余剰汚泥ポンプである。15 is a surplus sludge pump.

以上のような装置においてその動作を説明する。The operation of the device as described above will be explained.

曝気槽lにおいて、流入された廃水に対して適度の曝気
が行なわれるが、一般に、流入水を区分曝気槽1人に1
00%導水する標準的な活性汚泥法に比べて、本発明に
採用されたステップエアレーション法の場合が、曝気槽
全体に滞留している汚泥量は増加するが、その逆K、最
終沈殿池10に滞留している汚泥量は、ステップエアレ
ーション法の方が減少する。これは、ステップエアレー
ション法の場合、曝気槽lから最終沈殿池lOへ流出す
る活性汚泥量(または濃度)が減少するために起こる現
象である。
In the aeration tank 1, moderate aeration is performed on the inflowing wastewater, but in general, the inflow water is divided into 1 aeration tank per person.
In the case of the step aeration method adopted in the present invention, compared to the standard activated sludge method in which 00% water is introduced, the amount of sludge remaining in the entire aeration tank increases, but on the contrary, the final settling tank 10 The amount of sludge remaining in the tank is reduced by the step aeration method. In the case of the step aeration method, this phenomenon occurs because the amount (or concentration) of activated sludge flowing out from the aeration tank 1 to the final settling tank 1O decreases.

本発明は、このようなステップエアレーション法が採ら
れるが、各計測器によって計測された値に基いて制御装
wt、4が所定の演算をし、その出力は曝気槽1への流
入水の注入点を変更するために設けられたパルプ5A〜
5Eの開度信号と、余剰汚泥量制御のための余剰汚泥ポ
ンプ150オン。
In the present invention, such a step aeration method is adopted, but the control device wt, 4 performs predetermined calculations based on the values measured by each measuring device, and the output is determined by the injection of inflow water into the aeration tank 1. Pulp 5A provided for changing the point
5E opening signal and surplus sludge pump 150 turned on to control the amount of surplus sludge.

オフ信号(あるいは余剰汚泥ポンプの回転数制御信号)
となる、制御装置4における制御アルゴリズムは、大別
して各回路IA〜Igへの流入水注入点決定アルゴリズ
ムと、SRT制御アルゴリズムよりなるが、流入水注入
点決定アルゴリズムは、Q a * Tb L e B
 ” 工により決定される。
Off signal (or surplus sludge pump rotation speed control signal)
The control algorithm in the control device 4 can be roughly divided into the inflow water injection point determination algorithm for each circuit IA to Ig and the SRT control algorithm, but the inflow water injection point determination algorithm is Q a * Tb L e B
” Determined by the engineer.

以下にこれら各因子がプロセスの状態量にどのように影
害するかを具体的に述べる。
Below, we will specifically describe how each of these factors affects the state quantity of the process.

Ialfi入水注入点決定アルゴリズムについて先ず因
子Q8については、流入汚水量Qs が増加すると、一
般に最終沈殿池lOにおける界面積負荷が増大し、処理
水中よりキャリーオーバーする汚泥が増大する。したが
ってQf3計2にてQ8値を測定し、流入汚水量が増加
して前もって定められたある条件以上となった時点で制
御装置4は預次出力を発生し、流入水の注入点を回路の
前段から後段へと変更する。すなわち、今迄バルブ5A
のみを開いて回路IAに100%注入していたものが、
ある条件によりモータ6BK指令を発してパルプ5Bを
開き、IA、IBを夫々50%、50%のステップエア
レーションに変更し、以下同様に条件毎にIA〜IEの
ステップエアレーションとすることにより曝気槽1から
最終沈殿池10への流出MLBB濃度を低下させる。こ
の結果として最終沈殿池lOから処理水へのキャリーオ
ーツ(−する汚泥を減らすことができる。
Regarding the Ialfi inlet water injection point determination algorithm, first regarding factor Q8, as the amount of inflowing sewage Qs increases, the interfacial area load in the final settling tank IO generally increases, and the amount of sludge carried over from the treated water increases. Therefore, the Q8 value is measured at Qf3 total 2, and when the amount of inflowing sewage increases and exceeds a certain predetermined condition, the control device 4 generates a deposit output and changes the injection point of the inflowing water to the circuit. Change from front stage to rear stage. That is, until now valve 5A
The one that was injected 100% into the circuit IA by opening the
Depending on a certain condition, the motor 6BK command is issued to open the pulp 5B, and IA and IB are changed to step aeration of 50% and 50%, respectively, and the step aeration of IA to IE is similarly performed for each condition. The concentration of MLBB flowing out from the final settling tank 10 is reduced. As a result, the amount of sludge carried into the treated water from the final settling tank can be reduced.

次に因子TbIであるが、これは流入水の生物化学的酸
素要求量(BOD)や、化学的酸素消費量(COB)の
代りに用いたもので、流入水増加時や、後述する8VT
増加時の注入点切替え時点決定の判断要因となる。一般
に、降雨時の流入特性は、降雨初期に流入濁度が急激に
増大し、この状態が数10分継続してそれ以後は急激に
低下する。流入汚水量が同一の場合、流入水濁度Tbt
(またはBOD 、 CODおよび全有機炭素T○Cな
ど)が高い程、流入水の曝気槽での滞留時間(反応時間
)が長い方が有利である。したがって’X’bt計3に
よって’rbt値を測定し、このTbi値によって流入
水増大時やSVI増時に流入水の注入点の変更タイミン
グを早めたり、遅らせたりする要因とする。流入濁度が
高い程、曝気槽1円の反応時間を長くしなければならな
いが、このような場合には変更タイミングを遅らせる方
向に作用させることによって対応する。
Next is the factor TbI, which is used in place of the biochemical oxygen demand (BOD) and chemical oxygen consumption (COB) of the inflow water, and is used when the inflow water increases,
This will be a factor in deciding when to switch the injection point during increase. Generally, the inflow characteristics during rainfall are such that the inflow turbidity increases rapidly at the beginning of the rain, this state continues for several tens of minutes, and then it rapidly decreases. When the amount of inflow wastewater is the same, inflow water turbidity Tbt
(or BOD, COD, total organic carbon T○C, etc.), the longer the residence time (reaction time) of the inflow water in the aeration tank is advantageous. Therefore, the 'rbt value is measured by the 'X'bt meter 3, and this Tbi value is used as a factor for advancing or delaying the change timing of the inflow water injection point when the inflow water increases or when the SVI increases. The higher the inflow turbidity, the longer the reaction time for each aeration tank must be lengthened; however, in such a case, the change timing is delayed.

次にSVI信号であるが、BVI値が増加すると、最終
沈殿池lOにおける汚泥の沈降速度が減少し、その結果
、最終沈殿池からの汚泥のキャリーオーバーが増加する
。したがって、流入湧水量増加と同様に、SVX増加時
も8V工値がある条件以上となった時点で注入水の注入
点を回路の後段に変更し、最終沈殿池よりの汚泥のキャ
リーオーバーを防止する要因となる0以上は、流入水の
注入点を回路の前段(IA側)より後段(IK側)に変
更する場合について述べてきたが、流入汚水量やSVI
値などが逆に減少する場合には、注入点を前段側に戻す
操作が行なわれる。また、上記においては、流入汚水量
とSVXを別々に説明してきたが、実際のプラントにお
いては、夫々独立して変動するため、例えば流入汚水量
とSVIは共に増大する場合もある。このよ5な場合、
流入水注入点の変更タイミングを各因子−万だけ増大し
た場合より早めるようにする必要がある1以上の点をま
とめると次のようになる。
Next, regarding the SVI signal, as the BVI value increases, the sedimentation rate of sludge in the final settling tank IO decreases, and as a result, the carryover of sludge from the final settling tank increases. Therefore, in the same way as when the amount of inflow spring water increases, when the SVX increases, the injection point of the injected water is changed to the later stage of the circuit when the 8V engineering value exceeds a certain condition to prevent carryover of sludge from the final settling tank. 0 or more, which is a factor that causes
If the value or the like decreases, an operation is performed to return the injection point to the previous stage. Further, in the above, the amount of inflowing sewage and SVX have been explained separately, but in an actual plant, since they each vary independently, for example, the amount of inflowing sewage and SVI may both increase. In this case of 5,
One or more points that require the timing of changing the inflow water injection point to be earlier than when the timing is increased by each factor - 10,000 are summarized as follows.

流入水注入点変更のための因子として、流入清水量値、
流入水濁度Hz SVI値を用いる。また変更のための
基準値として流入汚水量(Q、0)SVI(8VI。)
を用いるが、夫々の因子が独立して変動するために、各
因子の相互作用を考慮して、変更のための各因子の基準
値を定める。
As a factor for changing the inflow water injection point, the inflow fresh water amount value,
Influent water turbidity Hz Use SVI value. In addition, the standard value for change is the amount of inflow sewage (Q, 0) SVI (8VI.)
However, since each factor varies independently, the reference value of each factor for modification is determined by considering the interaction of each factor.

第2図は、この基準値決定方法の一例を示したもので、
例えばTbiが一定の場合を示したもので、SVIが増
加するKつれてQ5の基準値が低下することがわかる。
Figure 2 shows an example of this standard value determination method.
For example, this shows the case where Tbi is constant, and it can be seen that as SVI increases, the reference value of Q5 decreases.

これはSVIが増加するに従ってQs の基準値を低下
させ、早目に注入点を変更する必要があることを示して
おり、このような基準値を制御装置4にテーブルとして
備えておくことにより予測制御する。
This indicates that as the SVI increases, it is necessary to lower the standard value of Qs and change the injection point early. Preparing such a standard value as a table in the control device 4 makes it possible to make predictions. Control.

lbl S RT制御アルゴリズムについて前記fa1
項によって、流入負荷の増大時、またはsv工が大きい
バルキング状態のときでも、流入汚水量の注入点を変更
することによって、最終沈殿池に対する曝気槽内の汚泥
量の比率を高め、曝気槽から最終沈殿への流出汚泥量を
減少させ、その結果、処理水中への汚泥の流出を防止す
ることができる。
Regarding the lbl S RT control algorithm, the fa1
By changing the injection point of inflow sewage, the ratio of sludge in the aeration tank to the final settling tank can be increased, even when the inflow load increases or when the SV works is in a large bulking state. It is possible to reduce the amount of sludge flowing into the final sedimentation, and as a result, prevent the sludge from flowing into the treated water.

ところで、最終沈殿池より引抜く汚泥が定量引抜きの場
合、注入点変更に伴なって返送汚泥濃度が変化し、余剰
汚泥として引抜く汚泥量(峙/d’)が変化してSRT
を一定に維持することができなくなる。
By the way, when the sludge to be withdrawn from the final settling tank is quantitatively withdrawn, the return sludge concentration changes as the injection point changes, and the amount of sludge to be withdrawn as surplus sludge (division/d') changes, resulting in SRT.
cannot be maintained constant.

そこで、本発明は更に制御効率を向上させるためにEI
RT制御を組合せるもので、以下にその制御アルゴリズ
ムを示す。
Therefore, the present invention provides EI to further improve control efficiency.
It combines RT control, and the control algorithm is shown below.

先ず処理系内に滞留している汚泥量を算出する。First, calculate the amount of sludge remaining in the treatment system.

ここで処理系内とは、主として曝気槽1と最終沈殿池1
0を指すが、その他汚泥貯留槽がある場合や、返送回路
に滞留している汚泥量が無視できない場合にはこれを加
算する。14気槽同汚泥量MAは、例えば曝気槽1円に
設置したML8B計8の測定値を用いて次の回帰式によ
り算出する。
Here, the inside of the treatment system mainly refers to the aeration tank 1 and the final settling tank 1.
0, but if there is another sludge storage tank or if the amount of sludge stagnant in the return circuit cannot be ignored, this value is added. The amount MA of sludge in a 14-air tank is calculated by the following regression formula using, for example, the measured values of a total of 8 ML8Bs installed in one aeration tank.

MA= f(ML[381−az)= [2+(― 例えばMA(kg)=aI+ a、 −MLSBE(こ
こでt=1xn 、 z=1〜m 、 at、 a、 
:回帰係数、 MLSBE:回路lEに設置したMLS
S計の出力) また、最終沈殿池汚泥1tM8は、例えば次の回帰式を
用いて算出する。
MA= f(ML[381-az)=[2+(- For example, MA(kg)=aI+ a, -MLSBE(where t=1xn, z=1~m, at, a,
: regression coefficient, MLSBE: MLS installed in circuit lE
Output of S meter) Also, the final settling tank sludge 1tM8 is calculated using, for example, the following regression formula.

MS(kg)=:f(QB−QR−MSLLB−8Vr
)++t++ f311日に余剰汚泥モとして引抜く汚
泥量Mwは次式により決定される。
MS(kg)=:f(QB-QR-MSLLB-8Vr
)++t++ The amount Mw of sludge to be extracted as surplus sludge on the f311th day is determined by the following formula.

ただし、流入水の注入点を変更すると、曝気槽内の汚泥
分布が変化するので、(2)式に示した回帰式の回帰係
数を変更する必要がある。このためには、予め各注入方
式に対応した回帰係数を求めておき、制御装置4に入力
しておく必要がある。なお、最終沈殿池の場合には、式
中にSvZ * Qs、QB などの各因子が入ってい
るのでその必要はない。
However, if the inflow water injection point is changed, the sludge distribution in the aeration tank changes, so it is necessary to change the regression coefficient of the regression equation shown in equation (2). For this purpose, it is necessary to obtain regression coefficients corresponding to each injection method in advance and input them to the control device 4. In addition, in the case of the final settling tank, it is not necessary because factors such as SvZ * Qs and QB are included in the formula.

このようなSRT制御を組合せることによって、注入点
を変更しても、8RTは一定に制御することが可能とな
る。
By combining such SRT control, even if the injection point is changed, 8RT can be controlled to be constant.

H1発明の効果 以上本発明はQ B + Tb L a SV”の因子
にて流入汚水量の注入点を変更することによって、SV
Xが大きいバルキング状態時や流入負荷の増大時でも曝
気槽内の汚泥量比率を高め、曝気槽から最終沈殿池への
流出汚泥量を減少させて処理水中への汚泥流出を防止す
ることができるものである。また、この注入点変更制御
に、更にSRT制御を組合せることによって、より向上
した活性汚泥法における質的制御が可能となるなどの効
果を奏するものである。
H1 Effects of the Invention The present invention improves SV by changing the injection point of the amount of inflow sewage by the factor of ``Q B + Tb L a SV''.
Even when X is large or the inflow load increases, it is possible to increase the sludge volume ratio in the aeration tank, reduce the amount of sludge flowing from the aeration tank to the final settling tank, and prevent sludge from flowing into the treated water. It is something. Further, by further combining SRT control with this injection point change control, effects such as improved quality control in the activated sludge method are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は注入
点変更時の基準値決定のための説明図である。 l・・・曝気槽、2・・・流入水濁計、3・・・流入水
濁度計、4・・・制御装置、7・・・汚泥容量計、8・
・・活性汚泥浮遊物質濃度計、9・・・汚泥容量指標演
算部、lO・・・最終沈殿池。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram for determining a reference value when changing an injection point. l...Aeration tank, 2...Inflow water turbidity meter, 3...Inflow water turbidity meter, 4...Control device, 7...Sludge capacity meter, 8.
...Activated sludge suspended solids concentration meter, 9...Sludge capacity index calculation unit, lO...Final settling tank.

Claims (3)

【特許請求の範囲】[Claims] (1)曝気槽の流入側に流入汚水量(Q_s)計と流入
水濁度(T_b_i)計を設けると共に、曝気槽に汚泥
容量(SV)計と活性汚泥浮遊物質濃度(MLSS)計
を設け、且つSV値とMLSS値に基いて汚泥容量指標
(SVI)を求めるSVI演算部とを備え、これら各計
測器によって測定された値を夫々制御装置に導入して水
質制御する活性汚泥処理において、前記曝気槽を複数に
区分したステップエアレーションの曝気槽となし、この
区分曝気槽への流入汚水量注入点の変更因子として、前
記Q_s、T_b_iおよびSVIを用いたことを特徴
とするSVIを用いたバルキング制御方法。
(1) Install an inflow sewage volume (Q_s) meter and inflow water turbidity (T_b_i) meter on the inflow side of the aeration tank, and install a sludge volume (SV) meter and activated sludge suspended solids concentration (MLSS) meter in the aeration tank. , and an SVI calculation unit that calculates a sludge volume index (SVI) based on the SV value and the MLSS value, and in activated sludge treatment in which water quality is controlled by introducing the values measured by each of these measuring instruments into a control device, respectively, The aeration tank is divided into a plurality of step aeration tanks, and the Q_s, T_b_i, and SVI are used as changing factors for the injection point of the amount of sewage flowing into the divided aeration tank. Bulking control method.
(2)Q_s、T_b_iおよびSVIは、互いの相互
作用に基いた基準値として前記制御装置に記憶され、こ
の記憶された基準値によって流入汚水量注入点変更制御
を行うことを特徴とした特許請求の範囲第1項記載のS
VIを用いたバルキング制御方法。
(2) A patent claim characterized in that Q_s, T_b_i and SVI are stored in the control device as reference values based on mutual interaction, and the inflow sewage amount injection point change control is performed based on the stored reference values. Range of S described in item 1
Bulking control method using VI.
(3)曝気槽の流入側にQ_s計とT_b_i計を設け
、前記曝気槽にSV計とMLSS計を設け、且つSV値
とMLSS値に基いてSVIを求めるSVI演算部とを
備え、これら各計測器によって測定された値を夫々制御
装置に導入して水質制御する活性汚泥処理において、前
記曝気槽を複数に区分したステップエアレーションの曝
気槽となし、この区分曝気槽への流入汚水量注入点の変
更制御を前記Q_s、T_b_i、SVIを用い行うと
共に、この流入汚水量注入点変更制御と、汚泥の滞留時
間を制御する汚泥滞留時間制御とを組合せて制御するこ
とを特徴とするSVIを用いたバルキング制御方法。
(3) A Q_s meter and a T_b_i meter are provided on the inflow side of the aeration tank, an SV meter and an MLSS meter are provided in the aeration tank, and an SVI calculation unit that calculates SVI based on the SV value and the MLSS value is provided, and each of these In activated sludge treatment in which water quality is controlled by introducing values measured by measuring instruments into respective control devices, the aeration tank is divided into a plurality of step aeration aeration tanks, and the inflow sewage amount injection point into the divided aeration tank is The change control is carried out by using the Q_s, T_b_i, and SVI, and the inflow sewage amount injection point change control and the sludge retention time control which controls the sludge retention time are controlled in combination. bulking control method.
JP62007908A 1987-01-16 1987-01-16 Bulking control method using SVI Expired - Lifetime JPH07115025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007908A JPH07115025B2 (en) 1987-01-16 1987-01-16 Bulking control method using SVI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007908A JPH07115025B2 (en) 1987-01-16 1987-01-16 Bulking control method using SVI

Publications (2)

Publication Number Publication Date
JPS63175696A true JPS63175696A (en) 1988-07-20
JPH07115025B2 JPH07115025B2 (en) 1995-12-13

Family

ID=11678649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007908A Expired - Lifetime JPH07115025B2 (en) 1987-01-16 1987-01-16 Bulking control method using SVI

Country Status (1)

Country Link
JP (1) JPH07115025B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755436A1 (en) * 1996-11-07 1998-05-07 Omnium Traitement Valorisa PROCESS FOR COMBATING FOAMS APPEARING IN ACTIVATED SLUDGE EFFLUENT TREATMENT PLANTS AND PLANT FOR IMPLEMENTING SUCH A PROCESS
FR2763078A1 (en) * 1997-05-09 1998-11-13 Biotrade PROCESS AND PLANT FOR AEROBIC BIOLOGICAL DEGRADATION OF LIPID COMPOSITIONS
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2011016076A (en) * 2009-07-09 2011-01-27 Ihi Corp Method and apparatus of treating organic waste water
JP2015024411A (en) * 2014-10-31 2015-02-05 メタウォーター株式会社 Sewage treatment system
JP2017121595A (en) * 2016-01-05 2017-07-13 株式会社日立製作所 Monitor and control system using activated-sludge process
CN111611707A (en) * 2020-05-19 2020-09-01 北京工业大学 Method for constructing filamentous bacterium sludge bulking mathematical model based on SBR process
JPWO2020183576A1 (en) * 2019-03-11 2020-09-17
CN112634347A (en) * 2021-01-07 2021-04-09 沈阳化工大学 Activated sludge morphology and sludge volume index SVI soft measurement method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755436A1 (en) * 1996-11-07 1998-05-07 Omnium Traitement Valorisa PROCESS FOR COMBATING FOAMS APPEARING IN ACTIVATED SLUDGE EFFLUENT TREATMENT PLANTS AND PLANT FOR IMPLEMENTING SUCH A PROCESS
WO1998019970A1 (en) * 1996-11-07 1998-05-14 Otv Omnium De Traitements Et De Valorisation Method for fighting against the presence of scum in plants for the treatment of effluents by activated sludge and plant for implementing such a method
FR2763078A1 (en) * 1997-05-09 1998-11-13 Biotrade PROCESS AND PLANT FOR AEROBIC BIOLOGICAL DEGRADATION OF LIPID COMPOSITIONS
WO1998051624A1 (en) * 1997-05-09 1998-11-19 Biotrade Aerobic biodegrading method and plant for lipid compositions
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2011016076A (en) * 2009-07-09 2011-01-27 Ihi Corp Method and apparatus of treating organic waste water
JP2015024411A (en) * 2014-10-31 2015-02-05 メタウォーター株式会社 Sewage treatment system
JP2017121595A (en) * 2016-01-05 2017-07-13 株式会社日立製作所 Monitor and control system using activated-sludge process
JPWO2020183576A1 (en) * 2019-03-11 2020-09-17
WO2020183576A1 (en) * 2019-03-11 2020-09-17 株式会社 ゴーダ水処理技研 Operation management system for wastewater treatment facility
CN113544097A (en) * 2019-03-11 2021-10-22 江田水处理技研株式会社 Operation management system of waste water treatment facility
CN113544097B (en) * 2019-03-11 2023-07-14 江田水处理技研株式会社 Operation management system of wastewater treatment facility
CN111611707A (en) * 2020-05-19 2020-09-01 北京工业大学 Method for constructing filamentous bacterium sludge bulking mathematical model based on SBR process
CN112634347A (en) * 2021-01-07 2021-04-09 沈阳化工大学 Activated sludge morphology and sludge volume index SVI soft measurement method
CN112634347B (en) * 2021-01-07 2023-09-15 沈阳化工大学 Soft measurement method for activated sludge morphology and sludge volume index SVI

Also Published As

Publication number Publication date
JPH07115025B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US5228996A (en) Method for treating waste water
US7198716B2 (en) Phased activated sludge system
CN107298484B (en) The SBR deep denitrification method of municipal sewage nitric efficiency is improved using ammonia nitrogen
JPS63175696A (en) Method for controlling bulking by using svi
CN113045107B (en) Real-time intelligent reclaimed water treatment device
KR100978706B1 (en) Apparatus for treating waste water
BE1029966B1 (en) CYCLICALLY OPERATING WASTEWATER TREATMENT PLANT WITH CONTINUOUS FLOW AND PROCESS FOR CULTIVATION, SELECTION AND MAINTAINING AEROBIC GRANULAR Sludge DURING WASTEWATER TREATMENT
Carrio et al. Practical considerations for design of a step-feed biological nutrient removal system
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP3999869B2 (en) Biological water treatment equipment
CN1583598A (en) Automatic controlling method and controller for treating urban waste water by suspending filler bed
US20010045382A1 (en) Selector contact stabilization process and apparatus for wastewater treatment
JP2017121595A (en) Monitor and control system using activated-sludge process
JP2001009497A (en) Biological water treatment and equipment therefor
CN117819702B (en) Module combined type nutrient supply control method in sewage treatment process
Finnson Simulation of a strategy to start up nitrification at Bromma sewage plant using a model based on the IAWPRC model No. 1
JPS59132999A (en) Controlling method for process of biological denitrification
JPS61212393A (en) Method for controlling oxidation ditch
EP3052446A1 (en) A method for treatment of waste water in an activated sludge plant
BE1012678A6 (en) Method for regulating an aerobe water purification device and the waterpurification device regulated in accordance to this method
Patoczka Performance and bulking control of intermittently aerated, continuous flow activated sludge systems with selector
JP2001314889A (en) Method for controlling biological removal of phosphorus from wastewater
SCISSON MYTHS OF NITRIFICATION TALES OFTEN TOLD THAT ARE NOT TRUE
Lotter et al. The usefulness of on-line monitoring in effecting savings in combined biological and chemical removal of phosphorus in activated sludge plants