JPS631751B2 - - Google Patents

Info

Publication number
JPS631751B2
JPS631751B2 JP55018315A JP1831580A JPS631751B2 JP S631751 B2 JPS631751 B2 JP S631751B2 JP 55018315 A JP55018315 A JP 55018315A JP 1831580 A JP1831580 A JP 1831580A JP S631751 B2 JPS631751 B2 JP S631751B2
Authority
JP
Japan
Prior art keywords
ppm
weight
gold
element group
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55018315A
Other languages
Japanese (ja)
Other versions
JPS56115543A (en
Inventor
Shozo Hayashi
Susumu Tomyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP1831580A priority Critical patent/JPS56115543A/en
Priority to US06/160,302 priority patent/US4330329A/en
Priority to DE3023623A priority patent/DE3023623C2/en
Priority to GB8021205A priority patent/GB2063913B/en
Publication of JPS56115543A publication Critical patent/JPS56115543A/en
Publication of JPS631751B2 publication Critical patent/JPS631751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To provide gold wire for a bonding the semiconductor element having excellent bonding property and containing predetermined amounts of silver, gallium, calcium, magnesium and iron in the gold. CONSTITUTION:2-100wtppm of silver, 10-200wtppm of gallium, 1-20wtppm of calcium, 0.5-50wtppm of iron and 0.5-50wtppm of magnesium are contained in the gold. Thus, the gold has higher tensile strength, lower decrease in the strength at high temperature and less ageing change than the conventional one can be provided. Particularly, the gold thus formed does not soften at the time of ageing. When the gold wire is cut by heating, the shape of the gold ball is in the vicinity of a regular sphere constantly, and the bonding strength of the gold after bonded is high.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の理用分野) 本発明は半導体のチツプ電極と外部リード部と
を接続するために使用するワイヤボンデイング用
金線およびその半導体素子に関する。 (従来技術とその問題点) 従来より金は耐食性があり、展延性が良くボン
デイング性に優れていることから、その高純度
金、特に99.99%以上の金が半導体素子のボンデ
イング用金線として使用されている。 ワイヤボンデイング技術の代表的な方法として
熱圧着法が採用されているが、この熱圧着法は前
記金線を酸水素炎又は電気的に溶断し、その際に
できる金ボールを押し潰して150℃〜300℃の加熱
状態におかれている半導体のチツプ電極と外部リ
ード部に接続するものである。しかし、近年ボン
デイング技術の向上との高速度化に伴う省力化等
により、ボンデイングマシンは手動機から自動機
へと変り、半導体部品の価格低減と信頼性の向上
に重点がおかれつつある。 然るに従来から使用されている金線は50μφ以
下の細線にすると引張り強さが弱く、線引加工中
に断線したり、あるいはボンデイング作業中に断
線を起し、更にボンデイング工程で金線を酸水素
炎又は電気的に溶断したときに金線の繊維状結晶
を失ない再結晶により結晶粒の粗大化を起して脆
うくなつたり、あるいは金ボールの形状が一定せ
ずボンデイングの密着強度を弱くして接合強度が
低下する欠点がある。又、上記のように150〜300
℃の温度で熱圧着するため金線が軟化し、チツプ
電極と外部リード部を接続する金線のループ形状
がたるみを生じてリード部とシヨートするなどの
問題が発生し、さらに樹脂モールドする場合、金
線が軟化によつて変形しシヨートや断線の原因と
なり、あるいは経時的に軟化して引張り強度が低
下し断線し、あるいは金線の靭性低下及び粒界破
断が原因となつてボンデイング作業時のネツク切
れを起す等の欠点がある。 而して叙上事情に鑑み、ボンデイング用金線に
要求される要素として、引張り強度が大きいこ
と、高温強度が大きいこと、経時変化(軟
化)が少ないこと、金ボールの形状が真球に近
く且つ一定していること、接合後の強度が大き
いこと、ネツク切れを起さないこと、が最小限
必要であることが理解できた。 しかるに従来のボンデイング用金線として、特
開昭52−51867号公報にNi、Fe、Co、Cr、Agの
少なくとも1種を40〜5000ppm金素材中に含有せ
しめた金線(以下、従来技術1とする)、特開昭
52−82183号公報にC1〜25ppm、Si1〜25ppm、
Ge3〜30ppm、Sn5〜30ppm、Pb5〜30を一元素
以上金素材中に添加した金線(以下、従来技術
2)、特開昭53−112060号公報に金素材中にCa3
〜50ppm含有せしめるとともにBe1〜8ppm、
Ge5〜50ppmの少なくとも一種を含有せしめた金
線(以下、従来技術3)が知られている。 しかしながら、上記従来技術1において、特に
Ag及びFeに注目すると、その含有量が著しく多
く、そのために接合強度が低下して前記要素を
満足し得ず、又従来技術2においては、引張り強
度を高めるためにGe及びCを添加しているが、
該元素Ge及びCのみでは所望の引張り強度が得
られず前記要素を満足させることができない。 又、従来技術3においては特にCaに注目する
と、該元素Caの含有量が多すぎる場合に粒界破
断を起す原因となつてボンデイング時にネツク切
れを起すおそれがある。 さらに、Gaに注目すると、その含有量が少な
すぎると引張り強度が低下する。多い場合には、
粒界破断を起した。 従つて、従来技術1〜3にあつては前記の特性
要素〜の全てが必ずしも満足され得るもので
はない。 そして仮りに、前記特性を達成する元素群の存
在が見い出され且つその含有量まで突き止め得た
としても、その元素群に対して、製造上において
含有を零にすることが困難である元素群並びに原
料中に混入している不可避元素群について注目し
てその含有量が適正に管理されていない場合に
は、前記特性はその一部が失なわれてしまい、結
果として前記特性〜の全てを満足することは
かなわなくなる。 (発明の目的) 本発明は斯る従来事情に鑑み、前記特性要素を
全て満たして、特に引張り強度が高く、ボンデイ
ング性の良いボンデイング線を得るために所定の
元素Ag、Fe、MgそしてGa、Caを選択し且つそ
の含有量の範囲を定めると共に、製造上および不
可避の各元素群についてその含有量を求めて、従
来金線に較べて金線自体の機械的強度を高めると
ともにボンデイング時のネツク切れをなくし、ボ
ンデイング後の接合強度を向上させる等、ボンデ
イング特性に優れた金線および半導体特性に優れ
た半導体素子を提供することを目的とする。 (発明の構成) 斯る本発明の金線は、高純度金に、銀、ガリウ
ム、カルシユーム、鉄、マグネシウムからなる第
一元素群と、チタン、銅、シリコン、錫、ビスマ
ス、マンガン、鉛、ニツケル、クロム、コバル
ト、アルミニウム、パラジウムの一種又は複数か
らなる第二元素群と、その他の第三元素群とを含
有するボンデイング用金線において、上記第一元
素群の銀を2〜100重量ppm、ガリウムを10〜200
重量ppm、カルシユームを1〜20重量ppm、鉄を
0.5〜50重量ppm、マグネシウムを0.5〜50重量
ppmの範囲で含有せしめ、第二元素群の総計が30
重量ppm以下であり、第三元素群が前記第一及び
第二元素群を除く不可避不純物でありその総計が
5重量ppm以下である構成としたことを特徴とす
る。 そして本発明の半導体素子は、高純度金に、銀
2〜100重量ppm、ガリウム10〜200重量ppm、カ
ルシウム1〜20重量ppm、鉄0.5〜50重量ppm、
マグネシウム0.5〜50重量ppmの範囲で含有せる
第一元素群と、チタン、銅、シリコン、錫、ビス
マス、マンガン、鉛、ニツケル、クロム、コバル
ト、アルミニウム、パラジウムの一種又は複数を
含有して、計が30重量ppm以下の第二元素群と、
第一および第二元素群を除く不可避不純物を含有
して、計が5重量ppm以下の第三元素群とを含有
せしめて成形したボンデイング用金線とシリコン
チツプ電極との接続体からなる構成としたことを
特徴とする。 さらに詳しくは、金線に含有すべき第一元素群
の銀(Ag)は引張り強度を高め、かつ経時軟化
を少なくするために含有せしめるが、その含有量
が2重量ppm未満では金線が経時軟化を起し、最
大値100重量ppmを越えるとボンデイング後の接
合強度が低下した。 ガリウム(Ga)は引張り強度を高めるために
含有せしめるが、その含有量が10重量ppm未満で
は引張強度が低下し200重量ppmを越えると粒界
破断を起した。 カルシユーム(Ca)は引張り強度を高め、経
時軟化を少なくするとともに主として高温強度を
高めるものであり、その最少含有値1重量ppm未
満では高温特性、すなわち高温時の引張り強度が
低下し、最大値20重量ppmを越えると靭性がなく
なり、粒界破断を起してネツク切れの原因とな
る。 鉄(Fe)は引張り強度を高め、高温強度を高
めるとともに経時軟化を少なくするものでありそ
の最少含有値0.5重量ppm未満では引張り強度が
低く、最大値50重量ppmを越えると酸化被膜が生
成しボンデイング後の接合強度が低下した。 マグネシウム(Mg)もまた引張り強度を高
め、高温強度を高めるとともに経時軟化を少なく
するものであり、その最少含有値0.5重量ppm未
満では引張り強度が低く、最大値50重量ppmを越
えると溶断時の金ボール形状が悪くなつた。 上記GaはFe、Mg、Agとの相乗効果で、互い
のマイナス効果を弱め合い、共に引張り強度を高
める。 又、Fe及びMgはCaの含有量を減らす目的で添
加するものであり、Caの特性を補足する。 上記第一元素群はその総合含有量の最少値、す
なわちAg2重量ppm、Ga10重量ppm、Ca1重量
ppm、Fe0.5重量ppm、Mg0.5重量ppmの合計値
14重量ppm未満では金線が経時変化を起し、総合
含有量の最大値420重量ppmを越えると金ボール
の形状が一定せず、又ボンデイング後の接合強度
が低下し、且つ、バラ付いていた。 従つて上記第一元素群は前記含有量の範囲であ
つて、その総合含有量が14〜420重量ppmの範囲
で相乗効果があると認められている。 第二元素群のチタン(Ti)、銅(Cu)、シリコ
ン(Si)、錫(Sn)、ビスマス(Bi)、マンガン
(Mn)、鉛(Pb)、ニツケル(Ni)、クロム
(Cr)、コバルト(Co)、アルミニウム(Al)、パ
ラジウム(Pb)の各元素は金の原料中に必然的
に混入している不純物元素であつて、本来不必要
なものである。 しかしながら第二元素群を零にすることは製造
上困難であり、第一元素群の相乗効果を阻害しな
い程度の許容量を測定した。 その結果、上記第二元素群の総合含有量が30重
量ppmを越えると溶断時の金ボールの形状がいび
つになり、又酸化被膜ができやすくなつて不具合
がみられた。 従つて第二元素群はその総計が30重量ppm以下
であることが好ましい。 第三元素群も又、原料中に必然的に混入してい
て不可避元素であつて、カドミウム(Cd)、亜鉛
(Zn)、アンチモン(Sb)、ヒソ(As)、ボロン
(B)など、前記第一元素群及び第二元素群以外
の元素をいう。 上記第三元素群はその総計が5重量ppm以下で
あることが第一元素群の相乗効果を阻害せず好ま
しい。 (作 用) Ag、Ga、Ca、Fe、Mgの添加によつて金線
の引張り強度を高め、かつ経時変化(軟化)を
少なくし、特に、Gaの添加が引張り強度を高
める。 そして上記5元素の所定含有量によつて接合
強度の低下をなくす。 Ca、Fe、Mgの添加によつて金線の高温強度
を高める。高温強度の増強のためには、特に
Caの添加が有効であるが、そのCaの含有量が
過量であるとボンデイング時におけるネツク切
れの原因となるために該Caの含有量を少なく
(1〜20重量ppm)し、Fe、Mgを添加して高
温強度を補強する。そしてFe、Mgの含有量が
過大であるとボール形状が不安定になるが所定
含有量によつてボールの安定を保持する。 第二および第三元素群が所定の含有量の範囲
になつていて、上記5元素からなる第一元素群
がもたらす特性をその通りのものとする。 (実施例) 以下に実施例を示す。 各試料は高純度金(99.995%)に第一元素群を
添加して溶解鋳造し、次に溝ロール加工を施し、
その途中で焼なまし処理をした後に線引加工で
25μφの極細金線に成形したものである。 各試料の不純物元素の含有量は次の表(1)に示す
通りであつて、その試料No.1〜4は本発明実施
品、試料No.5〜9は本発明の数値範囲に入らない
比較品である。
(Industrial Physical Field) The present invention relates to a gold wire for wire bonding used to connect a semiconductor chip electrode and an external lead portion, and a semiconductor element thereof. (Prior art and its problems) Gold has traditionally been corrosion resistant, malleable, and has excellent bonding properties, so high-purity gold, especially gold with a content of 99.99% or more, has been used as gold wire for bonding semiconductor devices. has been done. The thermocompression bonding method is adopted as a typical method of wire bonding technology, and in this thermocompression bonding method, the gold wire is cut by oxyhydrogen flame or electrically, and the gold balls formed at that time are crushed and heated to 150℃. It connects the semiconductor chip electrodes heated to ~300°C and the external leads. However, in recent years, bonding machines have changed from manual machines to automatic machines due to improvements in bonding technology and labor savings associated with higher speeds, and emphasis has been placed on reducing the cost and improving reliability of semiconductor components. However, the tensile strength of the conventionally used gold wire is low when it is made into a thin wire of 50μφ or less, and the wire may break during the wire drawing process or breakage during the bonding process. When fused with flame or electricity, the fibrous crystals of the gold wire are not lost, and the crystal grains become coarse due to recrystallization, resulting in brittleness, or the shape of the gold ball is inconsistent, weakening the adhesion strength of the bonding. This has the disadvantage that the bonding strength decreases. Also, as mentioned above, 150-300
Because the gold wire is thermocompressed at a temperature of °C, it softens, causing problems such as the loop shape of the gold wire connecting the chip electrode and the external lead part to sag and shoot with the lead part, and when resin molding is required. During bonding work, the gold wire may become deformed due to softening and cause shortening or wire breakage, or it may soften over time and reduce its tensile strength and breakage, or the gold wire may lose its toughness and break at grain boundaries, causing wire breakage. There are drawbacks such as causing the network to break. In view of the above circumstances, the following elements are required for gold wire for bonding: high tensile strength, high high temperature strength, little change over time (softening), and the shape of the gold ball to be close to a true sphere. In addition, I understood that the minimum requirements are that the bond be constant, that the strength after bonding be high, and that no neck breakage will occur. However, as a conventional gold wire for bonding, Japanese Patent Application Laid-Open No. 52-51867 discloses a gold wire containing 40 to 5000 ppm of at least one of Ni, Fe, Co, Cr, and Ag in a gold material (hereinafter referred to as prior art 1). ), Tokukaisho
Publication No. 52-82183 contains C1~25ppm, Si1~25ppm,
A gold wire containing one or more elements of Ge3~30ppm, Sn5~30ppm, and Pb5~30 added to a gold material (hereinafter referred to as prior art 2) is described in Japanese Patent Application Laid-open No. 112060/1983.
Contains ~50ppm and Be1~8ppm,
A gold wire containing at least one type of Ge (5 to 50 ppm) (hereinafter referred to as prior art 3) is known. However, in the above-mentioned prior art 1, especially
Focusing on Ag and Fe, their content is extremely high, which lowers the bonding strength and makes it impossible to satisfy the above requirements.In addition, in Prior Art 2, Ge and C are added to increase the tensile strength. There are, but
If the elements Ge and C are used alone, the desired tensile strength cannot be obtained and the above factors cannot be satisfied. In addition, in Prior Art 3, paying particular attention to Ca, if the content of the element Ca is too large, it may cause grain boundary fracture and lead to neck breakage during bonding. Furthermore, focusing on Ga, if its content is too small, the tensile strength will decrease. If there are many,
Grain boundary fracture occurred. Therefore, in the prior art techniques 1 to 3, all of the above-mentioned characteristic elements cannot necessarily be satisfied. Even if the existence of an element group that achieves the above characteristics is discovered and its content can be ascertained, there are other element groups whose content is difficult to reduce to zero during manufacturing. If the unavoidable elements mixed in raw materials are not carefully controlled and their content is not properly controlled, some of the above characteristics will be lost, and as a result, all of the above characteristics will be satisfied. There will be no substitute for what you do. (Object of the Invention) In view of the conventional circumstances, the present invention has been developed by using predetermined elements Ag, Fe, Mg, Ga, In addition to selecting Ca and determining its content range, we also determined the content of each element group that is unavoidable due to manufacturing reasons, thereby increasing the mechanical strength of the gold wire itself compared to conventional gold wires and improving the bonding network. The object of the present invention is to provide a gold wire with excellent bonding properties, such as eliminating cuts and improving the bonding strength after bonding, and a semiconductor element with excellent semiconductor properties. (Structure of the Invention) The gold wire of the present invention includes high-purity gold, a first element group consisting of silver, gallium, calcium, iron, and magnesium, titanium, copper, silicon, tin, bismuth, manganese, lead, In a bonding gold wire containing a second element group consisting of one or more of nickel, chromium, cobalt, aluminum, and palladium and another third element group, 2 to 100 ppm by weight of silver in the first element group is added. , 10 to 200 gallium
ppm by weight, calcium 1-20 ppm by weight, iron
0.5-50 wt ppm, magnesium 0.5-50 wt
Contained within the range of ppm, and the total of the second element group is 30
The third element group is an unavoidable impurity excluding the first and second element groups, and the total amount thereof is 5 ppm or less by weight. The semiconductor device of the present invention includes high purity gold, 2 to 100 ppm by weight of silver, 10 to 200 ppm by weight of gallium, 1 to 20 ppm by weight of calcium, 0.5 to 50 ppm by weight of iron,
Containing the first element group containing magnesium in the range of 0.5 to 50 ppm by weight, and one or more of titanium, copper, silicon, tin, bismuth, manganese, lead, nickel, chromium, cobalt, aluminum, and palladium, a second element group with a content of 30 ppm or less by weight;
A structure consisting of a bonding gold wire molded with unavoidable impurities excluding the first and second element groups and a third element group of 5 ppm or less by weight and a silicon chip electrode. It is characterized by what it did. More specifically, silver (Ag), which is the first element group that should be included in the gold wire, is added to increase the tensile strength and reduce softening over time, but if the content is less than 2 ppm by weight, the gold wire will deteriorate over time. Softening occurred, and when the maximum value exceeded 100 ppm by weight, the bonding strength after bonding decreased. Gallium (Ga) is included to increase tensile strength, but if the content is less than 10 ppm by weight, the tensile strength decreases, and if it exceeds 200 ppm by weight, intergranular fracture occurs. Calcium (Ca) increases tensile strength, reduces softening over time, and mainly increases high-temperature strength. If its minimum content is less than 1 ppm by weight, high-temperature properties, that is, tensile strength at high temperatures, decrease, and the maximum value is 20%. If it exceeds ppm by weight, toughness will be lost and grain boundary fractures will occur, causing neck breakage. Iron (Fe) increases tensile strength, increases high-temperature strength, and reduces softening over time. If the minimum content is less than 0.5 ppm by weight, the tensile strength is low, and if the maximum content exceeds 50 ppm by weight, an oxide film will form. The bonding strength after bonding decreased. Magnesium (Mg) also increases tensile strength, increases high-temperature strength, and reduces softening over time. If the minimum content is less than 0.5 ppm by weight, the tensile strength is low, and if the maximum content exceeds 50 ppm by weight, it will be difficult to melt. The shape of the gold ball has deteriorated. The above Ga has a synergistic effect with Fe, Mg, and Ag, weakening each other's negative effects and increasing the tensile strength together. Further, Fe and Mg are added for the purpose of reducing the content of Ca, and supplement the characteristics of Ca. The first element group above has the minimum total content, i.e. Ag2 ppm by weight, Ga10 ppm by weight, Ca1 by weight
Total value of ppm, Fe0.5 ppm by weight, Mg0.5 ppm by weight
If the content is less than 14 ppm by weight, the gold wire will change over time, and if the total content exceeds the maximum value of 420 ppm by weight, the shape of the gold ball will not be constant, and the bonding strength after bonding will decrease, and the wire will be uneven. Ta. Therefore, it is recognized that the first element group has a synergistic effect within the above-mentioned content range, and the total content is in the range of 14 to 420 ppm by weight. The second element group is titanium (Ti), copper (Cu), silicon (Si), tin (Sn), bismuth (Bi), manganese (Mn), lead (Pb), nickel (Ni), chromium (Cr), The elements cobalt (Co), aluminum (Al), and palladium (Pb) are impurity elements that are inevitably mixed into the gold raw material and are essentially unnecessary. However, it is difficult in production to reduce the second element group to zero, so an allowable amount was determined that would not inhibit the synergistic effect of the first element group. As a result, it was found that when the total content of the second element group exceeded 30 ppm by weight, the shape of the gold ball became distorted during fusing, and an oxide film was more likely to form, causing problems. Therefore, it is preferable that the total amount of the second element group is 30 ppm or less by weight. The tertiary element group is also an unavoidable element that is inevitably mixed in the raw materials, such as cadmium (Cd), zinc (Zn), antimony (Sb), histrode (As), boron (B), etc. Refers to elements other than the first element group and the second element group. It is preferable that the total amount of the third element group is 5 ppm or less by weight so as not to inhibit the synergistic effect of the first element group. (Function) The addition of Ag, Ga, Ca, Fe, and Mg increases the tensile strength of the gold wire and reduces changes over time (softening). In particular, the addition of Ga increases the tensile strength. Further, the reduction in bonding strength is eliminated by the predetermined contents of the five elements mentioned above. The high temperature strength of gold wire is increased by adding Ca, Fe, and Mg. In order to increase the high temperature strength, especially
Addition of Ca is effective, but excessive Ca content may cause bond breakage during bonding, so the Ca content should be reduced (1 to 20 ppm by weight) and Fe and Mg Added to reinforce high temperature strength. If the content of Fe or Mg is excessive, the shape of the ball becomes unstable, but the stability of the ball is maintained by a predetermined content. The content of the second and third element groups is within a predetermined content range, and the properties provided by the first element group consisting of the five elements are as described above. (Example) Examples are shown below. Each sample is made by melting and casting high-purity gold (99.995%) with the addition of the first element group, then groove rolling.
After annealing during the process, wire drawing is performed.
It is molded into a 25μφ ultra-fine gold wire. The content of impurity elements in each sample is as shown in the following table (1), and samples Nos. 1 to 4 are products of the present invention, and samples Nos. 5 to 9 do not fall within the numerical range of the present invention. This is a comparative product.

【表】 上記試料をもつて機械的性質の実験値、溶断時
の金ボールの形状及びボンデイング時のネツク切
れの有無を測定した結果を表(2)に示す。
[Table] Table (2) shows the results of measuring the experimental values of mechanical properties, the shape of the gold ball during fusing, and the presence or absence of neck breakage during bonding using the above sample.

【表】【table】

【表】 表(2)の項目′〜′は前記5要素〜に対応
した特性を示すものであり、これらにより実施品
No.1〜4が比較品No.5及び8に較べて、′引張
り強度が9〜14gと大きく、′高温強度性が5
〜10gと優れ、′経時変化が0〜0.5gと少な
く、′金ボールの形状が真円で安定し、′ボン
デイング後の接合強度が5.5〜9gと大きく、
′ネツク切れの無い(比較品No.9と比較)こと
が理解される。 (発明の効果) したがつて本発明によれば次の利点がある。 金線は、ネツク切れを起さずにボンデイング
することができること含めて、〜の特性要
素の全ての点で満足でき、特に引張り強度が高
く、しかも低価格で信頼性が高い特徴がある。 半導体素子はネツク切れのないものとなり、
しかも〜の特性の全てを満足して特に接続
の信頼性が高く、素子としての性能に優れるも
のである。
[Table] Items ’ to ’ in Table (2) indicate characteristics corresponding to the above five elements, and these indicate the characteristics of the implemented product.
Compared to comparative products No. 5 and 8, Nos. 1 to 4 had higher tensile strength of 9 to 14 g, and high temperature strength of 5.
~10g, ``change over time is small at 0~0.5g, ``the shape of the gold ball is perfectly round and stable, ``the bonding strength after bonding is high at 5.5~9g,''
'It is understood that there is no disconnection (compared with comparative product No. 9). (Effects of the Invention) Therefore, the present invention has the following advantages. Gold wire satisfies all of the characteristics listed in ~, including the ability to be bonded without causing neck breakage, and is particularly characterized by high tensile strength, low cost, and high reliability. Semiconductor devices have become unbreakable,
Furthermore, it satisfies all of the characteristics listed above, has particularly high connection reliability, and has excellent performance as an element.

Claims (1)

【特許請求の範囲】 1 高純度金に、銀、ガリウム、カルシユーム、
鉄、マグネシウムからなる第一元素群と、チタ
ン、銅、シリコン、錫、ビスマス、マンガン、
鉛、ニツケル、クロム、コバルト、アルミニウ
ム、パラジウムの一種又は複数からなる第二元素
群と、その他の第三元素群とを含有するボンデイ
ング用金線において、上記第一元素群の銀を2〜
100重量ppm、ガリウムを10〜200重量ppm、カル
シユームを1〜20重量ppm、鉄を0.5〜50重量
ppm、マグネシウムを0.5〜50重量ppmの範囲で
含有せしめ、第二元素群の総計が30重量ppm以下
であり、第三元素群が前記第一及び第二元素群を
除く不可避不純物でありその総計が5重量ppm以
下であることを特徴とする半導体素子のボンデイ
ング用金線。 2 高純度金に、銀2〜100重量ppm、ガリウム
10〜200重量ppm、カルシウム1〜20重量ppm、
鉄0.5〜50重量ppm、マグネシウム0.5〜50重量
ppmの範囲で含有せる第一元素群と、チタン、
銅、シリコン、錫、ビスマス、マンガン、鉛、ニ
ツケル、クロム、コバルト、アルミニウム、パラ
ジウムの一種又は複数を含有して、計が30重量
ppm以下の第二元素群と、第一および第二元素群
を除く不可避不純物を含有して、計が5重量ppm
以下の第三元素群とを含有せしめて成形したボン
デイング用金線とシリコンチツプ電極との接続体
からなる半導体素子。
[Claims] 1 High purity gold, silver, gallium, calcium,
The first element group consisting of iron and magnesium, titanium, copper, silicon, tin, bismuth, manganese,
In a bonding gold wire containing a second element group consisting of one or more of lead, nickel, chromium, cobalt, aluminum, and palladium and another third element group, 2 to
100 ppm by weight, gallium 10-200 ppm by weight, calcium 1-20 ppm by weight, iron 0.5-50 ppm by weight
ppm, magnesium in the range of 0.5 to 50 ppm by weight, the total of the second element group is 30 ppm or less by weight, and the third element group is an unavoidable impurity excluding the first and second element groups, and the total amount A gold wire for bonding semiconductor devices, characterized in that the amount of gold wire is 5 ppm or less by weight. 2 High purity gold, 2 to 100 ppm by weight of silver, gallium
10-200 ppm by weight, calcium 1-20 ppm by weight,
Iron 0.5-50 wt ppm, Magnesium 0.5-50 wt
The first element group to be contained in ppm range, titanium,
Contains one or more of copper, silicon, tin, bismuth, manganese, lead, nickel, chromium, cobalt, aluminum, and palladium, with a total weight of 30
Contains less than ppm of the second element group and unavoidable impurities excluding the first and second element groups, with a total of 5 ppm by weight
A semiconductor device comprising a bonding gold wire formed by containing the following third element group and a silicon chip electrode.
JP1831580A 1979-11-28 1980-02-15 Gold wire for bonding semiconductor element and semiconductor element Granted JPS56115543A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1831580A JPS56115543A (en) 1980-02-15 1980-02-15 Gold wire for bonding semiconductor element and semiconductor element
US06/160,302 US4330329A (en) 1979-11-28 1980-06-17 Gold bonding wire for semiconductor elements and the semiconductor element
DE3023623A DE3023623C2 (en) 1979-11-28 1980-06-24 Gold connecting wire for semiconductor elements and its use for connection points of a silicon chip electrode in semiconductor elements
GB8021205A GB2063913B (en) 1979-11-28 1980-06-27 Gold wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1831580A JPS56115543A (en) 1980-02-15 1980-02-15 Gold wire for bonding semiconductor element and semiconductor element

Publications (2)

Publication Number Publication Date
JPS56115543A JPS56115543A (en) 1981-09-10
JPS631751B2 true JPS631751B2 (en) 1988-01-13

Family

ID=11968172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1831580A Granted JPS56115543A (en) 1979-11-28 1980-02-15 Gold wire for bonding semiconductor element and semiconductor element

Country Status (1)

Country Link
JP (1) JPS56115543A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229958A (en) * 1989-10-25 1991-10-11 Fuji Heavy Ind Ltd Crankshaft bearing part for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251867A (en) * 1975-10-23 1977-04-26 Nec Corp Bonding wire for semiconductor device
JPS5282183A (en) * 1975-12-29 1977-07-09 Nec Corp Connecting wires for semiconductor devices
JPS53112060A (en) * 1977-03-11 1978-09-30 Tanaka Electronics Ind Gold wire for bonding semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251867A (en) * 1975-10-23 1977-04-26 Nec Corp Bonding wire for semiconductor device
JPS5282183A (en) * 1975-12-29 1977-07-09 Nec Corp Connecting wires for semiconductor devices
JPS53112060A (en) * 1977-03-11 1978-09-30 Tanaka Electronics Ind Gold wire for bonding semiconductor

Also Published As

Publication number Publication date
JPS56115543A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
JPH0471975B2 (en)
US4330329A (en) Gold bonding wire for semiconductor elements and the semiconductor element
TW201306985A (en) Copper bonding wire
JPS6360105B2 (en)
JPS63949B2 (en)
JPS631749B2 (en)
JPS631751B2 (en)
JPS6322062B2 (en)
JPS631752B2 (en)
JPS631750B2 (en)
JPS63211731A (en) Bonding wire
JPH0726167B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JPH0520494B2 (en)
JPH0412623B2 (en)
JPH04184946A (en) Very thin wire of copper alloy for semiconductor device, and semiconductor device
JPS6258535B2 (en)
JPS6222469A (en) Bonding wire for semiconductor device
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JPS6286151A (en) Manufacture of wire rod for lead for pin grid array ic
JP2773202B2 (en) Au alloy extra fine wire for semiconductor element bonding
JPS5826662B2 (en) Gold wire for bonding semiconductor devices
JPH0819498B2 (en) Gold wire for semiconductor element bonding
JPS6123736A (en) Copper alloy having superior heat resistance, formability and electric conductivity
JPH01198441A (en) Lead material for plastic-pin-grit-array
JPS6270541A (en) Cu-alloy lead material for semiconductor device