JPS6317517A - Manufacture of semiconductor single-crystal thin-film - Google Patents

Manufacture of semiconductor single-crystal thin-film

Info

Publication number
JPS6317517A
JPS6317517A JP16277686A JP16277686A JPS6317517A JP S6317517 A JPS6317517 A JP S6317517A JP 16277686 A JP16277686 A JP 16277686A JP 16277686 A JP16277686 A JP 16277686A JP S6317517 A JPS6317517 A JP S6317517A
Authority
JP
Japan
Prior art keywords
film
thin film
polycrystalline
semiconductor thin
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16277686A
Other languages
Japanese (ja)
Inventor
Takanori Hayafuji
早藤 貴範
Akashi Sawada
沢田 証
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16277686A priority Critical patent/JPS6317517A/en
Publication of JPS6317517A publication Critical patent/JPS6317517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a semiconductor single-crystal thin-film having excellent quality by partially making the charged state of the semiconductor thin-film to differ and controlling charged particle beams reaching the semiconductor thin-film. CONSTITUTION:Charging is generated in semiconductor thin-films l4b on insulators 12 on the irradiation of charged particle beams, the charged particle beams 17 are deviated and concentrated onto semiconductor thin-films 14a in the vicinity of seed sections 15 even when the conditions of the irradiation and the method of the irradiation of the charged particle beams 17 to a substrate 11 are kept constant, and electron density in the regions is made higher than that irradiated to semiconductors on the insulators 12. Consequently, even when the thermal conductivity of the seed sections 15 is made larger than the insulators 12, the attainable temperatures of the semiconductor thin-films 14b on the insulators 12 and the semiconductor thin films 14a in the vicinity of the seed sections 15 are brought to the same extent, and both semiconductor thin-films 14a, 14b can be melted simultaneously. Accordingly, a single-crystal thin-film having excellent quality is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融再結晶法(laterally 5ee
dedepitaxial growth)に関し、特
に荷電粒子線を使用した半導体単結晶薄膜の作製方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to a melt recrystallization method (laterally 5ee
In particular, the present invention relates to a method for manufacturing a semiconductor single crystal thin film using a charged particle beam.

〔発明の概要〕[Summary of the invention]

本発明は再結晶化に荷電粒子線を使用した半導体単結晶
薄膜の作製方法であり、半導体薄膜の帯電状態を部分的
に異ならせて半導体薄膜へ到達する荷電粒子線を制御す
ることにより、良質の半導体単結晶薄膜を作製すること
ができるようにしたものである。
The present invention is a method for producing a semiconductor single crystal thin film using a charged particle beam for recrystallization, and by partially varying the charging state of the semiconductor thin film and controlling the charged particle beam that reaches the semiconductor thin film, high quality This makes it possible to fabricate semiconductor single crystal thin films.

〔従来の技術〕[Conventional technology]

従来、絶縁体上の半導体薄膜にエネルギー線、例えば電
子線を照射して溶融再結晶化させ、半導体単結晶薄膜を
作製する技術(所謂、SIO単結晶作製技術)が提案さ
れている。この再結晶化のために、例えば第7図に示す
LOCOS型構造の試料(1)、第8図に示すメサ型構
造の試料(1)が用いられている。(2)は単結晶5i
(h (又はSiN )膜、(4)は多結晶Si層であ
る。この試料(1)に対して上から線状電子線を照射し
て多結晶Siと種部を溶融し、種(シード)部(5)か
ら順に単結晶Siに再結晶化させる。従ってこの再結晶
化を順調に行って良質の単結晶5ii薄膜を得るために
は、電子線による加熱時、種部(5)とその近傍の多結
晶Si及び5i02膜(3)上の多結晶Stが同程度に
熔融していることが必要である。
Conventionally, a technique has been proposed in which a semiconductor thin film on an insulator is irradiated with an energy beam, such as an electron beam, to melt and recrystallize it to fabricate a semiconductor single crystal thin film (so-called SIO single crystal fabrication technique). For this recrystallization, for example, a sample (1) with a LOCOS structure shown in FIG. 7 and a sample (1) with a mesa structure shown in FIG. 8 are used. (2) is single crystal 5i
(h (or SiN ) film, (4) is a polycrystalline Si layer. This sample (1) is irradiated with a linear electron beam from above to melt the polycrystalline Si and the seed portion, and ) Part (5) is sequentially recrystallized to single crystal Si. Therefore, in order to smoothly perform this recrystallization and obtain a high quality single crystal 5ii thin film, the seed part (5) and It is necessary that the polycrystalline Si in the vicinity and the polycrystalline St on the 5i02 film (3) are melted to the same extent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

エネルギービーム、特に電子線を照射した場合・種部を
構成する単結晶Stの熱伝導率が絶縁体である5tO2
(又はSiN )の熱伝導率より大きいため、種部の温
度(到達温度)は絶縁体上の多結晶Stの温度(到達温
度)より低くなっていた。これによりSiO2膜上の多
結晶Siが熔融する温度に加熱条件を設定した場合には
、種部への到達温度が不足して充分溶融しないため、種
部からの単結晶Siの再結晶化が起きない。また、種部
が充分熔融する温度に加熱条件を設定した場合には、種
部近傍の多結晶Siには再結晶化が起きているが、Si
O2膜上の多結晶Stの到達温度が高くなりすぎて多結
晶Stが蒸発して消失するか、剥離するという問題が生
じていた。
When irradiated with an energy beam, especially an electron beam, the thermal conductivity of the single crystal St constituting the seed part is 5tO2, which is an insulator.
(or SiN), the temperature (achieved temperature) of the seed portion was lower than the temperature (achieved temperature) of polycrystalline St on the insulator. As a result, when heating conditions are set to a temperature at which the polycrystalline Si on the SiO2 film melts, the temperature reaching the seed part is insufficient and it does not melt sufficiently, so the recrystallization of single crystal Si from the seed part is prevented. It doesn't happen. Furthermore, when the heating conditions are set to a temperature at which the seed part sufficiently melts, recrystallization occurs in the polycrystalline Si near the seed part, but the Si
There has been a problem in that the temperature reached by the polycrystalline St on the O2 film becomes too high and the polycrystalline St evaporates and disappears or peels off.

このような問題点を解決するために、従来例えばマスク
を用いたり、重子線の走査速度を調整したりして、照射
される領域の放熱特性に対応して電子線の照射強度を変
化させて種部では強く、絶縁体上の多結晶Siでは弱(
する方法が提案されている(特開昭57−45920参
照)。しかし、この方法によれば電子線を幅100μm
以下の細い線状に絞り、且つ多結晶Stを溶融させるの
に必要なエネルギー密度を持たせることは困難である。
In order to solve these problems, conventional techniques have been used to change the irradiation intensity of the electron beam in accordance with the heat dissipation characteristics of the irradiated area, for example by using a mask or adjusting the scanning speed of the deuteron beam. Strong in the seed part, weak in the polycrystalline Si on the insulator (
A method has been proposed (see Japanese Patent Laid-Open No. 57-45920). However, according to this method, the electron beam is
It is difficult to draw the polycrystalline St into the following thin line shape and to provide the necessary energy density to melt the polycrystalline St.

また、第9図に示すように、島状のS io2膜(3)
を有する単結晶Si基板(2)上に多結晶Si層(4)
、5i02(又はSiN )ii (6)及び高融点金
属層(7)を形成した後、S iQz膜(3)に対応す
る高融点金Rm(7)上のみにSiN膜(8)を形成し
て、S ich膜(3)上の多結晶Stへの照射量を減
衰させる方法(特開昭58−139423参照)も提案
されているが、この方法によれば構造が複雑になり、歩
留り、コスト面等で不利である。
In addition, as shown in FIG. 9, an island-shaped S io2 film (3)
A polycrystalline Si layer (4) on a single-crystalline Si substrate (2) having
, 5i02 (or SiN) ii (6) and the high melting point metal layer (7), a SiN film (8) is formed only on the high melting point gold Rm (7) corresponding to the SiQz film (3). A method of attenuating the irradiation dose to the polycrystalline St on the Sich film (3) has also been proposed (see JP-A-58-139423), but this method complicates the structure and reduces the yield. This is disadvantageous in terms of cost, etc.

本発明は、上記問題点を解決することができる半導体単
結晶薄膜の作製方法を提供するものである。
The present invention provides a method for manufacturing a semiconductor single crystal thin film that can solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、荷電粒子線(17)を絶縁体(12)上の半
導体重l1l(14)に照射して熔融再結晶化させるこ
とより成る半導体単結晶薄膜の作製方法において、半導
体8膜H,oの一部を他部に対してより帯電させること
によって半導体薄膜(14)へ到達する荷電粒子線(1
7)を制御することを特徴とする。
The present invention provides a method for producing a semiconductor single crystal thin film, which comprises irradiating a charged particle beam (17) to a semiconductor layer (14) on an insulator (12) to melt and recrystallize it. The charged particle beam (1) that reaches the semiconductor thin film (14) by charging a part of the
7).

半導体薄膜(14)の一部とは、種部(15)から離れ
た場所にある絶縁体(12)上の半導体薄膜(14b)
であり、半導体薄膜(14)の他部とは、種部(15)
近傍にある半導体薄膜(14a )である。
The part of the semiconductor thin film (14) is the semiconductor thin film (14b) on the insulator (12) located away from the seed part (15).
The other part of the semiconductor thin film (14) is the seed part (15)
This is a nearby semiconductor thin film (14a).

半導体薄膜(14)の帯電状態を部分的に異ならせる方
法としては、具体的には、基t&(11)を接地する方
法、更に半導体重15!(14)の種部(15)近傍に
絶縁体(12)に達する溝部(16)を形成して半導体
薄膜(14)を分離する方法、分離した半導体薄膜(1
4a ) 、  (14b )の上にそれぞれ帯電特性
、特に抵抗率の異なる物質より成る膜(18)。
Specifically, methods for partially varying the charged state of the semiconductor thin film (14) include a method of grounding the base t&(11), and a method of grounding the semiconductor layer 15! (14) A method for separating a semiconductor thin film (14) by forming a groove (16) reaching the insulator (12) near the seed portion (15) of the separated semiconductor thin film (14);
4a) and (14b) are each coated with a film (18) made of a material having different charging properties, particularly resistivity.

(19)を形成する方法などがある。さらに種部(15
)近傍の半導体薄膜(14a)に正の電圧を印加し、絶
縁体(12)上の半導体薄膜(14b )を負又は零の
電位とすることにより電子線(17)を強制的に種部(
15)近傍の半導体薄膜(14a)に集中させる方法が
ある。
There are methods for forming (19). Furthermore, the seed part (15
) By applying a positive voltage to the semiconductor thin film (14a) in the vicinity of the semiconductor thin film (14b) on the insulator (12), the electron beam (17) is forced to reach the seed portion (14b) at a negative or zero potential.
15) There is a method of concentrating on the nearby semiconductor thin film (14a).

〔作用〕[Effect]

本発明によれば、荷電粒子線を照射したとき、絶ii体
(12) 上(D半4体1i115! (14b ) 
ニ帯電が生じ、これにより、基[E(11)に対する荷
電粒子線(17)の照射条件、照射方法が一定の場合で
あっても、荷電粒子線(17)が種部(15)近傍の半
導体重1ff(14a)上に偏って集中し、この領域の
電子密度が絶縁体(12)上の半導体に照射される電子
密度より高くなる。従って、種部(15)の熱伝導率が
絶縁体(12)より大きくても、絶縁体(12)上の半
導体薄膜(14b )と種部(15)近傍の半導一体薄
欣(14a)との到達温度が同程度となり、両生導体薄
膜(14a)及び(14b)を略同時に溶融させること
が可能になる。
According to the present invention, when irradiated with a charged particle beam, the absolute ii body (12) upper (D half 4 body 1i115! (14b)
2 charging occurs, and as a result, even if the irradiation conditions and irradiation method of the charged particle beam (17) to the group [E (11) are constant, the charged particle beam (17) will cause a charge in the vicinity of the seed part (15). The electrons are concentrated unevenly on the semiconductor weight 1ff (14a), and the electron density in this region is higher than the electron density irradiated to the semiconductor on the insulator (12). Therefore, even if the thermal conductivity of the seed part (15) is higher than that of the insulator (12), the semiconductor thin film (14b) on the insulator (12) and the semiconductor integrated thin film (14a) near the seed part (15) The temperatures reached are approximately the same, and it becomes possible to melt the bidirectional conductor thin films (14a) and (14b) almost simultaneously.

〔実施例〕〔Example〕

第1図を参照して本発明の1実施例を説明する。 One embodiment of the present invention will be described with reference to FIG.

本実施例においては、単結晶St基扱(11)上の多結
晶Si薄膜(14)がS iO2膜(12)によって分
離された構造のLOCOS型試料(13)を使用し、基
板(11)を接地する。種部(15)は例えば幅5〜1
00μm程度に形成し、多結晶Si薄膜(14)も5〜
100μm程度に形成する。また、多結晶Si・薄膜(
14)とS iO2膜(12)の厚さは、例えば0.5
〜1.0μlとする。この試料(13)の表面に加速電
圧10kV、電子密度約50A/cj、幅10μm以上
(通常50〜2000μm)の線状電子線(17)を走
査させる。または、走査させないで全面に照射しても良
い。このように電子線を照射すると多結晶Si薄膜(1
4)或いは5i02膜(12)中に電子が成る程度蓄積
され、多結晶Stの抵抗率が高く、また種部(15)が
接地電位に近いために5i(h膜上の多結晶Si薄膜(
14)の電位は種部(15)より高くなる。これにより
、照射された電子線(17)の一部が電位の低い種部(
15)の方に屈折して電子密度が種部(15)近傍の多
結晶Si薄膜(14)において高まるため、種部(15
)近傍とS io2膜(12)上の多結晶Siの熔融状
態が多少近づく、シかし、この効果は小さく、種部(1
5)近傍とS i(h膜(12)上の多結晶Siを同程
度に溶融させることは容易ではない。
In this example, a LOCOS type sample (13) having a structure in which a polycrystalline Si thin film (14) on a single crystal St-based substrate (11) is separated by a SiO2 film (12) is used. Ground. The seed part (15) has a width of 5 to 1, for example.
00 μm, and the polycrystalline Si thin film (14) also has a thickness of 5 to 50 μm.
It is formed to have a thickness of about 100 μm. In addition, polycrystalline Si thin film (
14) and the thickness of the SiO2 film (12) are, for example, 0.5
The volume should be ~1.0 μl. A linear electron beam (17) with an acceleration voltage of 10 kV, an electron density of about 50 A/cj, and a width of 10 μm or more (usually 50 to 2000 μm) is scanned over the surface of this sample (13). Alternatively, the entire surface may be irradiated without scanning. When irradiated with an electron beam in this way, a polycrystalline Si thin film (1
4) Alternatively, the polycrystalline Si thin film (
The potential of 14) is higher than that of seed part (15). As a result, a part of the irradiated electron beam (17) is transferred to the seed part (
15) and the electron density increases in the polycrystalline Si thin film (14) near the seed part (15).
) The molten state of the polycrystalline Si on the Sio2 film (12) approaches to some extent, but this effect is small and
5) It is not easy to melt the polycrystalline Si on the neighboring Si (h film (12)) to the same extent.

そこで、第2図に示す実施例においては、多結晶Si薄
膜(14)の種部(15)近傍に5i02膜(12)に
達する溝部(16)を形成して、2つの多結晶Si薄膜
(14a ) 、  (14b )に分離する。そして
、上記実施例と同様に線状電子線(17)を走査する。
Therefore, in the embodiment shown in FIG. 2, a groove (16) reaching the 5i02 film (12) is formed near the seed part (15) of the polycrystalline Si thin film (14), and two polycrystalline Si thin films ( 14a) and (14b). Then, the linear electron beam (17) is scanned in the same manner as in the above embodiment.

照射直後電子線(17)は、表面に平均して照射される
が、溝部(16)によって分離されたS i02膜(1
2)及び多結晶Si薄膜(14b)においては電子が接
地されたSi基板(11)を通じて流れないため、電子
が蓄積されて電位が著しく高(なる。この結果、5i0
21tA(12)上の多結晶Si薄膜(14b)におい
て照射された電子線(17)が反発を受け、曲げられた
電子線(17)の大きな部分は種部(15)近傍の多結
晶Si薄IQ (14a )上に偏って照射される。
Immediately after irradiation, the electron beam (17) is irradiated on the surface on average, but the Si02 film (1) separated by the groove (16)
2) and the polycrystalline Si thin film (14b), since electrons do not flow through the grounded Si substrate (11), the electrons are accumulated and the potential becomes extremely high.As a result, 5i0
The electron beam (17) irradiated on the polycrystalline Si thin film (14b) on the 21tA (12) is repelled, and a large part of the bent electron beam (17) is caused by the polycrystalline Si thin film near the seed part (15). IQ (14a) is irradiated unevenly.

従って、熱伝導率の異る種部(15)と5t(h膜(1
2)に対応して、それぞれの上に形成された多結晶Si
薄膜(14a ) 、  (14b )が同時、且つ同
程度に溶融するエネルギが与えられるため、種部(15
)近傍の多結晶SiからS ich膜(12)上の多結
晶Siに向って順調に単結晶化が進む、多結晶Si薄膜
(14a ) 。
Therefore, the seed part (15) and the 5t (h film (1
Corresponding to 2), polycrystalline Si formed on each
Since energy is given to melt the thin films (14a) and (14b) simultaneously and to the same extent, the seed part (15)
) A polycrystalline Si thin film (14a) in which single crystallization progresses smoothly from the nearby polycrystalline Si to the polycrystalline Si on the Sich film (12).

(14b)間に溝部(16)が形成されているが、熔融
したSiが双方から流れ出してこの溝部(16)を埋め
るため、溝部(16)が再結晶化を阻害することはない
6分離された多結晶Si薄膜(14a)。
A groove (16) is formed between (14b), but since molten Si flows out from both sides and fills this groove (16), the groove (16) does not inhibit recrystallization. polycrystalline Si thin film (14a).

(14b)に照射される電子線の量的制御を任意に行っ
て到達温度を近くすることは、分離した多結晶Si薄膜
(14a ) 、  (14b )の幅X及びyを制御
することにより可能である。
It is possible to arbitrarily quantitatively control the electron beam irradiated to (14b) and bring the temperature reached close to that by controlling the widths X and y of the separated polycrystalline Si thin films (14a) and (14b). It is.

次に、第3図を参照して本発明の他の実施例を説明する
。この実施例においては、上記実施例に係る溝部(16
)が形成されたLOCOS型試料(13)を使用し、種
部(15)近傍の多結晶Si薄膜(14a )と5i0
2膜(12)上の多結晶Si3膜(14b)の上にそれ
ぞれ帯電特性、特に抵抗率の異なる物質より成る層を形
成する0例えば、種部(15)近傍の多結晶Si薄膜(
14a)上には抵抗率の低い5IPO3(半絶縁性多結
晶St)膜(18) 、溝部(16)で分離された多結
晶Si薄膜(14b )上には抵抗率の高いS i(h
膜(19)を形成する。そして、5IPOS膜(18)
の抵抗率を選ぶことによって、それぞれの多結晶Si薄
膜(14a ) 、  (14b )の到達温度を制御
して同程度に溶融させることが可能になる。なお、本実
施例の変形例として、種部(15)近傍の多結晶Si¥
r#膜(14a)上には何も形成しないで、S i(h
膜(12)上の多結晶Si薄膜(14b)の上だけに絶
縁膜を形成し、この物質の種類と抵抗率を変えることに
よっても、本実施例と同様の効果を得ることも可能であ
る。
Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, the groove portion (16
) was used, and the polycrystalline Si thin film (14a) near the seed part (15) and 5i0
On the polycrystalline Si film (14b) on the second film (12), a layer consisting of a material having different charging properties, particularly resistivity, is formed.For example, a polycrystalline Si thin film (
14a) has a low resistivity 5IPO3 (semi-insulating polycrystalline St) film (18) on top, and a high resistivity Si thin film (14b) separated by a groove (16) has a high resistivity Si(h
A film (19) is formed. And 5IPOS film (18)
By selecting the resistivity of the polycrystalline Si thin films (14a) and (14b), it becomes possible to control the temperature reached by each of the polycrystalline Si thin films (14a) and (14b) and melt them to the same degree. In addition, as a modification of this embodiment, polycrystalline Si\ near the seed part (15)
Nothing is formed on the r# film (14a), and S i (h
It is also possible to obtain the same effect as in this example by forming an insulating film only on the polycrystalline Si thin film (14b) on the film (12) and changing the type and resistivity of this material. .

次に第4図を参照して本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described with reference to FIG.

本実施例においては、上記実施例に係る溝部(16)が
形成されたLOCO5型試料(13)を使用し、単結晶
Si基板(11)に電源(20)から正の電圧を印加し
て種部(15)近傍の多結晶Si薄膜(14a’)に正
の電位を与え、5iOJ5! (12)上の多結晶Si
薄11(14b)には負の電位又は零の電位(接地電位
)を与える。このように構成することによって、電子線
(17)を種部(15)近傍の多結晶Si薄膜(14a
 )上により効果的に集中させることができ、良好な再
結晶化が可能になる。
In this example, a LOCO5 type sample (13) in which the groove portion (16) according to the above example was formed is used, and a positive voltage is applied from a power supply (20) to a single crystal Si substrate (11) to seed seeds. A positive potential is applied to the polycrystalline Si thin film (14a') near part (15), and 5iOJ5! (12) Polycrystalline Si on
A negative potential or zero potential (ground potential) is applied to the thin film 11 (14b). With this configuration, the electron beam (17) is directed to the polycrystalline Si thin film (14a) near the seed portion (15).
), allowing for better recrystallization.

また、第5図に示すように種部(15)近傍の多結晶S
i薄膜(14a )とS i02膜(12)上の多結晶
St¥薄膜(14b)との間に狭隘部(21)を設けて
ここでの抵抗を大きくし、S iO2膜(12)上の多
結晶Si薄膜(14b )の帯電量を高める構成、第6
図に示すようにSiO2膜(12)上の多結晶si!膜
(14b )に凹凸部(22)を形成してここでの表面
積を大きくし、S i02膜(12)上の多結晶Si薄
膜(14b)の帯電量を高める構成によっても本発明の
効果を得ることが可能である。
Moreover, as shown in FIG. 5, polycrystalline S near the seed part (15)
A narrow part (21) is provided between the i thin film (14a) and the polycrystalline St thin film (14b) on the Si02 film (12) to increase the resistance here, and Structure for increasing the amount of charge of the polycrystalline Si thin film (14b), No. 6
As shown in the figure, polycrystalline Si! on the SiO2 film (12)! The effects of the present invention can also be achieved by forming uneven portions (22) on the film (14b) to increase the surface area and increasing the amount of charge on the polycrystalline Si thin film (14b) on the Si02 film (12). It is possible to obtain.

(発明の効果〕 本発明によれば、荷電粒子線の被照射面における帯電状
態を種部近傍の半導体重、膜と絶縁体上の半導体薄膜と
で異ならせて荷電粒子線の照射密度を制御し、種部と絶
縁体の熱伝導率の相違に対応して結果的に到達温度が同
程度になるようにするため、種部近傍から再結晶化が順
調に進行し、良質の単結晶薄膜が得られる。また、構造
が簡単であり、歩留り、コスト面で有利である。
(Effects of the Invention) According to the present invention, the irradiation density of the charged particle beam is controlled by varying the charging state of the surface to be irradiated with the charged particle beam between the semiconductor layer and film near the seed portion and the semiconductor thin film on the insulator. However, in order to accommodate the difference in thermal conductivity between the seed part and the insulator so that the resulting temperatures are approximately the same, recrystallization proceeds smoothly from the vicinity of the seed part, resulting in a high-quality single crystal thin film. Furthermore, the structure is simple, and it is advantageous in terms of yield and cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の断面図、第2図〜第6図は他の実施例
の断面図、第7図〜第9図は従来例の断面図である。 (11)は単結晶St基板、(12)は5i02膜、(
14) 。 (14a ) 、  (14b )は多結晶Si薄膜、
(15)は種部、(16)は溝部、(17)は電子線で
ある。
FIG. 1 is a sectional view of an embodiment, FIGS. 2 to 6 are sectional views of other embodiments, and FIGS. 7 to 9 are sectional views of a conventional example. (11) is a single crystal St substrate, (12) is a 5i02 film, (
14). (14a) and (14b) are polycrystalline Si thin films,
(15) is a seed portion, (16) is a groove portion, and (17) is an electron beam.

Claims (1)

【特許請求の範囲】 荷電粒子線を絶縁体上の半導体薄膜に照射して溶融再結
晶化する半導体単結晶薄膜の作製方法において、 上記半導体薄膜の一部を他部に対してより帯電させるこ
とによって上記半導体薄膜へ到達する上記荷電粒子線を
制御することを特徴とする半導体単結晶薄膜の作製方法
[Claims] A method for producing a semiconductor single crystal thin film in which a semiconductor thin film on an insulator is melted and recrystallized by irradiating a charged particle beam onto the semiconductor thin film, the method comprising: charging a part of the semiconductor thin film more than other parts; A method for producing a semiconductor single crystal thin film, characterized in that the charged particle beam reaching the semiconductor thin film is controlled by:
JP16277686A 1986-07-10 1986-07-10 Manufacture of semiconductor single-crystal thin-film Pending JPS6317517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16277686A JPS6317517A (en) 1986-07-10 1986-07-10 Manufacture of semiconductor single-crystal thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16277686A JPS6317517A (en) 1986-07-10 1986-07-10 Manufacture of semiconductor single-crystal thin-film

Publications (1)

Publication Number Publication Date
JPS6317517A true JPS6317517A (en) 1988-01-25

Family

ID=15761001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16277686A Pending JPS6317517A (en) 1986-07-10 1986-07-10 Manufacture of semiconductor single-crystal thin-film

Country Status (1)

Country Link
JP (1) JPS6317517A (en)

Similar Documents

Publication Publication Date Title
JPS59195871A (en) Manufacture of metal oxide semiconductor field-effect transistor
JPS58176929A (en) Manufacture of semiconductor device
US4564403A (en) Single-crystal semiconductor devices and method for making them
US4661167A (en) Method for manufacturing a monocrystalline semiconductor device
FR2517123A1 (en) METHOD FOR FORMING A SINGLE-CRYSTAL SEMICONDUCTOR FILM ON AN INSULATOR
JPS5939790A (en) Production of single crystal
JPH0588544B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPS6317517A (en) Manufacture of semiconductor single-crystal thin-film
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
US5094714A (en) Wafer structure for forming a semiconductor single crystal film
JPH0556314B2 (en)
US4585512A (en) Method for making seed crystals for single-crystal semiconductor devices
US4549913A (en) Wafer construction for making single-crystal semiconductor device
JPS58139423A (en) Lateral epitaxial growing method
JPH06105784B2 (en) Semiconductor device
JPS5939791A (en) Production of single crystal
JPH0236051B2 (en)
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0560668B2 (en)
JPH0149003B2 (en)
JP2656466B2 (en) Semiconductor substrate manufacturing method
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS63265464A (en) Manufacture of semiconductor device
JPS6336518A (en) Manufacture of thin single-crystal semiconductor film