JPS63174282A - Fuel cell generation process - Google Patents

Fuel cell generation process

Info

Publication number
JPS63174282A
JPS63174282A JP62003168A JP316887A JPS63174282A JP S63174282 A JPS63174282 A JP S63174282A JP 62003168 A JP62003168 A JP 62003168A JP 316887 A JP316887 A JP 316887A JP S63174282 A JPS63174282 A JP S63174282A
Authority
JP
Japan
Prior art keywords
carbon dioxide
anode
exhaust gas
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003168A
Other languages
Japanese (ja)
Inventor
Narihisa Sugita
杉田 成久
Kazuhito Koyama
一仁 小山
Nobuhiro Seiki
信宏 清木
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62003168A priority Critical patent/JPS63174282A/en
Publication of JPS63174282A publication Critical patent/JPS63174282A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the efficiency of coal gasification fuel cell generation plant by cooling anode exhaust gas containing carbon dioxide using the refrigeration generated from oxygen production plant for use in the coal gasification so that carbon dioxide is separated from the anode exhaust gas. CONSTITUTION:Anode exhaust gas, comprising reaction products of water, carbon dioxide and unused fuel from an anode 2, enters a heat exchanger 11, where the temperature decreases releasing sensible heat, and enters a gas-water separator 12, where the temperature decreases further separating water. Thus the anode exhaust gas 13 which has separated the water content is fed to a carbon dioxide separator 15, where the temperature is lowered less than condensation point of carbon dioxide of -78.5 deg.C using the refrigeration from an oxygen production plant 7 to remove carbon dioxide. Removed carbon dioxide 17 is fed to the inlet of a blower 22 driven by a motor 23. It can be utilized for reducing power of the blower 22 and cooling the cathode by controlling the temperature of carbon dioxide. By the arrangement, the cell characteristics are improved without increasing a fuel utilization factor at the anode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩型燃料電池発電プラントに係り、特
に、酸素酸化石炭ガス化ガスを燃料とする場合のプラン
ト効率を高めるのに好適な燃料電池発電方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate fuel cell power generation plant, and particularly to a power generation plant suitable for increasing plant efficiency when oxygen-oxidized coal gasification gas is used as fuel. Related to fuel cell power generation method.

〔従来の技術〕[Conventional technology]

溶融炭酸塩型燃料電池では1発電時にカソードよりアノ
ードへ炭酸イオン(COa”″)が移動し。
In a molten carbonate fuel cell, carbonate ions (COa"") move from the cathode to the anode during one power generation.

カソードでは、酸素と二酸化炭素が消費され、アノード
では、水と二酸化炭素が発生する。従って。
At the cathode, oxygen and carbon dioxide are consumed, and at the anode, water and carbon dioxide are generated. Therefore.

アノードで発生した二酸化炭素をカソードに供給するこ
とにより、電気化学反応は維持される。発電プラントで
は、未反応燃料成分を含むアノード排ガスを空気により
燃焼させ、カソードへ供給する方法が一般的である。こ
の方法では、アノード排ガス中の電気化学反応に有効な
未反応燃料成分を燃焼により消費することになり、さら
に、燃焼により生じた水および空気中の残窒素によりカ
ソードに供給される酸素および二酸化酸素の分圧を低下
させる原因となっていた。
The electrochemical reaction is maintained by supplying carbon dioxide generated at the anode to the cathode. In power plants, a common method is to combust anode exhaust gas containing unreacted fuel components with air and supply it to the cathode. In this method, unreacted fuel components that are effective for electrochemical reactions in the anode exhaust gas are consumed by combustion, and oxygen and carbon dioxide are supplied to the cathode by water produced by combustion and residual nitrogen in the air. This caused a decrease in the partial pressure.

特開昭56−69775号公報では、これらの点を改良
しプラント効率を高めるべく、燃料である液化天然ガス
の冷熱を利用することにより、アノード排ガスより二酸
化炭素を分離することを示している。
In order to improve these points and increase plant efficiency, JP-A-56-69775 discloses separating carbon dioxide from anode exhaust gas by utilizing the cold energy of liquefied natural gas as a fuel.

天然ガスを燃料とする燃料電池発電プラントでは、天然
ガスを改質するための熱供給源としてアノード排ガスの
燃焼が必要であるため、特開昭56−69775号公報
では、アノード排ガス中の未反応燃料成分を電気化学的
に有効には利用できなかった。
In a fuel cell power generation plant that uses natural gas as fuel, it is necessary to burn the anode exhaust gas as a heat supply source for reforming the natural gas. Fuel components could not be effectively utilized electrochemically.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、燃料である液化天然ガスの冷熱を利用
するため、石炭ガス化燃料を用いた場合についての検討
がなされておらず、石炭ガス化燃料を用いる溶融炭酸塩
型燃料電池には適用できなかった。
Since the above conventional technology utilizes the cold energy of liquefied natural gas as a fuel, it has not been studied in the case of using coal gasified fuel, and is not applicable to molten carbonate fuel cells that use coal gasified fuel. could not.

本発明の目的は、アノード出口排ガスより二酸化炭素を
分離することにより、石炭ガス化燃料電池発電プラント
の効率を高める燃料電池発電方法を提供することにある
An object of the present invention is to provide a fuel cell power generation method that improves the efficiency of a coal gasification fuel cell power generation plant by separating carbon dioxide from the anode outlet exhaust gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、二酸化炭素を含むアノード排ガスを1石炭
ガス化に用いる酸素製造プラントで発生する冷熱により
冷却することにより達成される。
The above object is achieved by cooling the anode exhaust gas containing carbon dioxide with cold heat generated in an oxygen production plant used for coal gasification.

〔作用〕 石炭ガス化炉にガス化剤としての酸素を供給する酸素製
造プラントでは、空気を断熱膨張により低温化し酸素の
液化温度−183℃以下を達成し。
[Operation] In an oxygen production plant that supplies oxygen as a gasifying agent to a coal gasifier, air is lowered in temperature by adiabatic expansion to achieve an oxygen liquefaction temperature of -183°C or lower.

空気中より酸素を分離する6分離後の酸素および窒素は
冷熱を持っており、アノード排ガスはあらかじめ常温近
くまで冷却され水を分離した後に酸素および窒素の冷却
を用いて二酸化炭素を凝固点−78,5℃以下に冷却し
、二酸化炭素が分離される。
Separating oxygen from the air 6 After separation, oxygen and nitrogen have cold energy, and the anode exhaust gas is cooled in advance to near room temperature and after separating water, the cooling of oxygen and nitrogen is used to convert carbon dioxide to a freezing point of -78, Cool to below 5°C and carbon dioxide is separated.

分離された二酸化炭素はカソードに供給され、アノード
からカソードへは二酸化炭素のみが供給されるため、カ
ソードの酸素および二酸化炭素の分圧を高く維持できる
。また、二酸化炭素を分離する過程で水分も分離したア
ノード排ガスは、−酸化炭素、水素等の電気化学反応に
有効な成分が残り、ガスをアノード入口ヘリサイクルす
ることにより、燃料を電気化学反応に有効に利用するこ
とが可能になる。
The separated carbon dioxide is supplied to the cathode, and only carbon dioxide is supplied from the anode to the cathode, so that the partial pressures of oxygen and carbon dioxide at the cathode can be maintained high. In addition, the anode exhaust gas from which moisture has been separated in the process of separating carbon dioxide remains with components effective for electrochemical reactions such as carbon oxide and hydrogen, and by recycling the gas to the anode inlet, the fuel can be used for electrochemical reactions. It becomes possible to use it effectively.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。溶融
炭酸塩型燃料電池(以下燃料電池)1のアノード2には
石炭ガス化炉4より熱回収ボイラ9を通り燃料精製装置
10を通った配管が接続される。アノード2の出口には
、熱交換器11が接続され、さらに気水分離装置12が
接続される。
An embodiment of the present invention will be described below with reference to FIG. An anode 2 of a molten carbonate fuel cell (hereinafter referred to as a fuel cell) 1 is connected to a pipe that extends from a coal gasifier 4, passes through a heat recovery boiler 9, and passes through a fuel purification device 10. A heat exchanger 11 is connected to the outlet of the anode 2, and a steam/water separator 12 is further connected to the outlet.

酸素酸化石炭ガス化炉(以下石炭ガス化炉)4へは石炭
供給装置5および酸素製造装置7が接続されている。酸
素製造装置7は冷媒供給管18と冷媒戻り管19とによ
り二酸化炭素分離装置15に接続される。二酸化炭素分
離装置15は気水分離装置12にも接続され、さらに(
アノードリサイクルブロワ以下単に)ブロワ20.熱交
換器11を経由しアノード2人口部へ接続される。
A coal supply device 5 and an oxygen production device 7 are connected to an oxygen oxidation coal gasifier (hereinafter referred to as a coal gasifier) 4. The oxygen production device 7 is connected to the carbon dioxide separation device 15 by a refrigerant supply pipe 18 and a refrigerant return pipe 19. The carbon dioxide separator 15 is also connected to the steam/water separator 12, and further (
Anode recycle blower (simply referred to as anode recycle blower) Blower 20. It is connected to the anode 2 via a heat exchanger 11.

一方、燃料電池1のカソード3へは空気圧縮機25から
の配管が接続され、カソード出口からは膨張タービン2
6へ配管が結ばれる。カソード3の出入口はカソードリ
サイクルブロワ22(以下ブロワ22)を経由し、リサ
イクル配管が設けられており、ブロワ22人口へは、二
酸化炭素分離装置15からの配管が接続されている。
On the other hand, a pipe from an air compressor 25 is connected to the cathode 3 of the fuel cell 1, and an expansion turbine 2 is connected to the cathode outlet.
Piping is connected to 6. The inlet/outlet of the cathode 3 is provided with recycling piping via a cathode recycling blower 22 (hereinafter referred to as blower 22), and piping from the carbon dioxide separator 15 is connected to the blower 22.

石炭ガス化炉4では、石炭供給装置5より石炭が供給さ
れる。一方、酸素製造装置7では空気6を圧縮し、冷却
し、断熱膨張させる過程を繰り返すことにより低温化し
、空気の主成分である窒素の液化温度−196℃と酸素
の液化温度−183℃の差を利用し、窒素と酸素を分離
する分離された酸素、窒素、あるいはその両方は。
Coal is supplied to the coal gasifier 4 from a coal supply device 5 . On the other hand, in the oxygen production device 7, the air 6 is compressed, cooled, and adiabatically expanded by repeating the process to lower the temperature, and the difference between the liquefaction temperature of nitrogen, which is the main component of air, -196°C and the liquefaction temperature of oxygen -183°C. Separate oxygen, nitrogen, or both to separate nitrogen and oxygen.

冷媒供給管18を通って二酸化炭素分離装置15へ供給
される。二酸化炭素分離装置15から出た酸素、窒素、
またはその両方は、冷媒戻り管19により酸素製造装置
に戻る。酸素製造装置7で分離された酸素8は、石炭ガ
ス化炉へ供給され石炭をガス化する。石炭ガス化燃料は
ガス化炉4を出て、熱回収ボイラ9に入り顕熱を回収さ
れた後に燃料精製装置10に入り、硫黄化物等が除去さ
れ、燃料電池1が許容する燃料性状となり、燃料電池ア
ノード2に供給される。電池内では燃料の主成分である
一酸化炭素、水素等の燃料成分と、カソード3に供給さ
れた酸素および二酸化炭素が電気化学反応を生じる。こ
れらの反応はミクロ的には種々の反応過程を経由するが
、マクロ的には、アノードでは一酸化炭素および水素が
消費され、反応生成物として、二酸化炭素および水が生
じる。
The refrigerant is supplied to the carbon dioxide separator 15 through the refrigerant supply pipe 18 . Oxygen and nitrogen released from the carbon dioxide separator 15,
or both return to the oxygen production device via the refrigerant return pipe 19. Oxygen 8 separated in the oxygen production device 7 is supplied to a coal gasifier to gasify coal. The coal gasified fuel leaves the gasification furnace 4, enters the heat recovery boiler 9, recovers sensible heat, and then enters the fuel purification device 10, where sulfides and the like are removed, and the fuel properties become acceptable for the fuel cell 1. It is supplied to the fuel cell anode 2. Inside the cell, an electrochemical reaction occurs between fuel components such as carbon monoxide and hydrogen, which are the main components of the fuel, and oxygen and carbon dioxide supplied to the cathode 3. Microscopically, these reactions go through various reaction processes, but macroscopically, carbon monoxide and hydrogen are consumed at the anode, and carbon dioxide and water are produced as reaction products.

一方、カソードでは、酸素および二酸化炭素が消費され
る。
Meanwhile, at the cathode, oxygen and carbon dioxide are consumed.

燃料電池における反応は電気化学反応であるため、化学
反応に関係する成分の分圧が電池性能に影響する。燃流
電池1のアノードでは反応生成物である二酸化炭素、お
よび、水の分圧は低く、−酸化炭素、および、水素の分
圧は高いことが望ましく、カソードでは酸素および二酸
化炭素の分圧が高いことが望まれる。
Since reactions in fuel cells are electrochemical reactions, the partial pressures of components involved in the chemical reactions affect cell performance. At the anode of the fuel flow cell 1, it is desirable that the partial pressures of carbon dioxide and water, which are reaction products, are low, and that the partial pressures of carbon oxide and hydrogen are high, and at the cathode, the partial pressures of oxygen and carbon dioxide are low. A high value is desired.

本実施例では、アノードにおける燃料利用率を従来の利
用率より低くし、アノードにおける平均水素分圧を高く
する。アノード2を出た反応生成物である水、二酸化炭
素および未利用の燃料を成分とするアノード排ガスは、
熱交換器11に入り、顕熱を与え低温となり気水分装置
12に入り、さらに低温とされ水分を分離する。
In this embodiment, the fuel utilization rate at the anode is lower than the conventional utilization rate, and the average hydrogen partial pressure at the anode is increased. The anode exhaust gas containing water, carbon dioxide, and unused fuel as reaction products leaving the anode 2 is
It enters a heat exchanger 11, gives sensible heat, becomes low temperature, enters a steam/moisture device 12, is further reduced to a low temperature, and separates moisture.

分離された水分14は系外に排出される0図示はしてい
ないが、この水分は処理後能の水分と共に系内、例えば
、炭素析出防止用としてアノード入口部に供給される等
利用されても良い。
The separated moisture 14 is discharged outside the system.Although not shown in the figure, this moisture is used in the system together with the residual moisture after treatment, for example, by being supplied to the anode inlet to prevent carbon precipitation. Also good.

水分を分離したアノード排ガス13は二酸化炭素分離装
置15に供給され、酸素製造装置7よりの冷熱を用いて
二酸化炭素の凝固点−78,5℃以下に冷却され二酸化
炭素を分離する。
The anode exhaust gas 13 from which water has been separated is supplied to the carbon dioxide separator 15, where it is cooled to below the freezing point of carbon dioxide by -78.5° C. using cold heat from the oxygen production device 7, and carbon dioxide is separated.

二酸化炭素を分離したアノード排ガスは、電気化学反応
に有効な、−酸化炭素、水素が主成分となり、モータ2
1で駆動されるブロワ20によりるブロワ22人口へ供
給される。この二酸化炭素の温度を制御すればブロワ2
2の動力減少およびカソード冷却にも利用できる。カソ
ード3へは、空気圧縮機25を用いて空気24が供給さ
れ、ブロワ22より供給された二酸化炭素もカソードへ
供給される。カソード3を出た高温のカソード排ガスは
膨張タービン26へ供給され、空気圧縮機25および発
電機27を駆動する。
The anode exhaust gas from which carbon dioxide has been separated contains -carbon oxide and hydrogen, which are effective for electrochemical reactions, as its main components.
A blower 22 is supplied with a blower 20 driven by a blower 1. If the temperature of this carbon dioxide is controlled, blower 2
It can also be used for power reduction and cathode cooling. Air 24 is supplied to the cathode 3 using an air compressor 25, and carbon dioxide supplied from a blower 22 is also supplied to the cathode. The high temperature cathode exhaust gas leaving the cathode 3 is supplied to an expansion turbine 26 and drives an air compressor 25 and a generator 27.

本実施例によれば、アノードにおける燃料利用率を高く
することなく供給された燃料を全て電気化学反応に利用
できるので電池性能を高める効果がある。
According to this embodiment, all of the supplied fuel can be used for the electrochemical reaction without increasing the fuel utilization rate at the anode, which has the effect of improving cell performance.

本発明の他の実施例では、第1図に示す実施例に加えて
、酸素製造装置7より酸素を電池カソード3に導入する
ことである。これによりカソードにおける酸素分圧はさ
らに高くなり、電池性能は高くなる効果がある。
In another embodiment of the invention, in addition to the embodiment shown in FIG. 1, oxygen is introduced into the battery cathode 3 from an oxygen production device 7. This has the effect of further increasing the oxygen partial pressure at the cathode and improving battery performance.

本発明のさらに他の実施例では、第1図に示す、実施例
に加えて、酸素製造装置7で分離された窒素をアノード
2.カソード3またはその両方に導入し、成分の分圧を
変化させ部分負荷性能を制御する6本実施例によれば、
アノード、カソードまたはその両方の流量の変化を少な
くして部分負荷を達成できる効果がある。
In yet another embodiment of the present invention, in addition to the embodiment shown in FIG. According to this embodiment, the component is introduced into the cathode 3 or both to change the partial pressure of the component and control the part load performance.
The effect is that partial loading can be achieved by reducing changes in the flow rates of the anode, cathode, or both.

本発明の他の実施例を第2図に示す。Another embodiment of the invention is shown in FIG.

第1図の実施例と異なる点は、アノード2出口の熱交換
器11を排し、排ガスタービン29をアノード2.気水
分離器12間に設け、ブロワ20に代えて圧縮機28を
設けた点である。
The difference from the embodiment shown in FIG. 1 is that the heat exchanger 11 at the outlet of the anode 2 is removed, and the exhaust gas turbine 29 is connected to the anode 2. The difference is that a compressor 28 is provided between the steam and water separators 12 in place of the blower 20.

アノード2を出た高温高圧のアノード排ガスは、排ガス
タービン29に入り膨張し低温、低圧となり気水分離器
12に入る。二酸化炭素分離器15では二酸化炭素の分
離を低圧で行う、二酸化炭素を分離したアノード排ガス
16は、圧縮機28で昇圧され、アノード2の入口へリ
サイクルされる。
The high-temperature, high-pressure anode exhaust gas leaving the anode 2 enters the exhaust gas turbine 29, expands, becomes low temperature and low pressure, and enters the steam/water separator 12. The carbon dioxide separator 15 separates carbon dioxide at low pressure. The anode exhaust gas 16 from which carbon dioxide has been separated is pressurized by the compressor 28 and recycled to the inlet of the anode 2.

排ガスタービン29を流れるガスは、水および二酸化炭
素を分離する前の高温ガスであり、圧縮機28を流れる
ガスは、水および二酸化炭素が分離された低温ガスであ
るので、排ガスタービン29で発生した動力は圧縮機2
8および電動発電機30を駆動する。電動発電機3oは
部分負荷時等を考慮して1発電機のみならず電動機とし
て動作することが望ましい。また、実施例では、二酸化
炭素分離装置15内で分離され二酸化炭素が昇圧される
ことを設定しているが、低温低圧の二酸化炭素が、空気
圧縮機25の入口へ空気24と混合して供給されても良
い。
The gas flowing through the exhaust gas turbine 29 is high-temperature gas before water and carbon dioxide have been separated, and the gas flowing through the compressor 28 is low-temperature gas from which water and carbon dioxide have been separated. Power is compressor 2
8 and a motor generator 30. It is desirable that the motor-generator 3o operates not only as a generator but also as a motor in consideration of partial load and the like. Furthermore, in the embodiment, carbon dioxide is separated and pressurized in the carbon dioxide separator 15, but low-temperature, low-pressure carbon dioxide is supplied to the inlet of the air compressor 25 mixed with the air 24. It's okay to be.

本実施例によれば、二酸化炭素の分離が低圧で行える効
果がある。
According to this embodiment, there is an effect that carbon dioxide can be separated at low pressure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アノード出口排ガスより二酸化炭素を
分離することができるので1石炭ガス化燃料を有効に電
気化学反応に利用できる。
According to the present invention, since carbon dioxide can be separated from the exhaust gas at the anode outlet, one coal gasified fuel can be effectively used for electrochemical reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例の系統図である
。 1・・・溶融炭酸塩型燃料電池、15・・・二酸化炭素
分離装置、7・・・酸素製造装置、4・・・酸素酸化石
炭ガス化炉。
1 and 2 are system diagrams of one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Molten carbonate fuel cell, 15... Carbon dioxide separation device, 7... Oxygen production device, 4... Oxygen oxidation coal gasifier.

Claims (1)

【特許請求の範囲】 1、石炭ガス化炉、前記石炭ガス化炉に酸化剤として酸
素を供給する酸素製造プラント、前記石炭ガス化炉によ
りガス化された燃料ガスを供給される溶融炭酸塩型燃料
電池を含む燃流電池発電プラントにおいて、 前記燃料電池のアノード出口ガスから前記酸素製造プラ
ントで生じる冷熱を利用し、二酸化炭素を分離すること
を特徴とする燃料電池発電方法。
[Claims] 1. A coal gasifier, an oxygen production plant that supplies oxygen as an oxidizing agent to the coal gasifier, and a molten carbonate type to which fuel gas gasified by the coal gasifier is supplied. A fuel cell power generation method comprising, in a fuel cell power generation plant including a fuel cell, comprising: separating carbon dioxide from the anode outlet gas of the fuel cell by using cold heat generated in the oxygen production plant.
JP62003168A 1987-01-12 1987-01-12 Fuel cell generation process Pending JPS63174282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003168A JPS63174282A (en) 1987-01-12 1987-01-12 Fuel cell generation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003168A JPS63174282A (en) 1987-01-12 1987-01-12 Fuel cell generation process

Publications (1)

Publication Number Publication Date
JPS63174282A true JPS63174282A (en) 1988-07-18

Family

ID=11549842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003168A Pending JPS63174282A (en) 1987-01-12 1987-01-12 Fuel cell generation process

Country Status (1)

Country Link
JP (1) JPS63174282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106418A (en) * 1989-09-19 1991-05-07 Toshio Miyauchi Co2 recovering process in combustion gas and device therefor
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JP2013191572A (en) * 2008-11-18 2013-09-26 Tokyo Gas Co Ltd Mcfc power generation system and operation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106418A (en) * 1989-09-19 1991-05-07 Toshio Miyauchi Co2 recovering process in combustion gas and device therefor
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JPWO2008096623A1 (en) * 2007-02-07 2010-05-20 財団法人電力中央研究所 Power generation equipment
US8110310B2 (en) 2007-02-07 2012-02-07 Central Research Institute Of Electric Power Industry Power generating plant
JP2013191572A (en) * 2008-11-18 2013-09-26 Tokyo Gas Co Ltd Mcfc power generation system and operation method thereof

Similar Documents

Publication Publication Date Title
US7563527B2 (en) Fuel cell-atmospheric-pressure turbine hybrid system
JPH0789494B2 (en) Combined power plant
JPS5918830B2 (en) power plant
JPH0434861A (en) Fused carbonate type fuel cell power generator having co2 separator utilizing liquefied natural gas coldness
CA3022534A1 (en) Methanation of anode exhaust gas to enhance carbon dioxide capture.
WO2003021702A1 (en) A power generation apparatus
JP5294291B2 (en) Power generation equipment
JP6764798B2 (en) Plant and plant operation method
CA2065385C (en) Process and installation for generating electrical energy
JPH06223851A (en) Fuel cell and gas turbine combined generation system
JPH02170368A (en) Power generating system of fuel battery
JP2662298B2 (en) Power plant with carbon dioxide separator
JPS63174282A (en) Fuel cell generation process
CN110867599A (en) High-efficiency integrated coal gasification fuel cell power generation system and method adopting high-temperature purification
CN214196426U (en) Integrated system for air separation energy storage coupling oxygen-enriched combustion carbon capture of thermal power plant
CN211045602U (en) High-efficiency integrated coal gasification fuel cell power generation system adopting high-temperature purification
JP2018128201A (en) Co2 liquefying system and co2 liquefying method
CN109350988B (en) CO (carbon monoxide) 2 IGFC power generation system and method with liquefaction process and cryogenic air separation coupling
JPH05347161A (en) Power generation system by fuel cell
JP4578787B2 (en) Hybrid fuel cell system
JPH0158626B2 (en)
CN114935112B (en) Flue gas recovery system of LNG solid oxide fuel cell power ship
JPS5828177A (en) Fuel-cell generation plant
JPH0358154B2 (en)
JPH1167252A (en) Fuel cell power generating device