JPS63172727A - Production of crosslinked polyester resin - Google Patents

Production of crosslinked polyester resin

Info

Publication number
JPS63172727A
JPS63172727A JP465487A JP465487A JPS63172727A JP S63172727 A JPS63172727 A JP S63172727A JP 465487 A JP465487 A JP 465487A JP 465487 A JP465487 A JP 465487A JP S63172727 A JPS63172727 A JP S63172727A
Authority
JP
Japan
Prior art keywords
reaction
carboxylic acid
reaction system
pressure
acid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP465487A
Other languages
Japanese (ja)
Inventor
Takayuki Tajiri
象運 田尻
Koichi Ito
弘一 伊藤
Hitoshi Iwasaki
等 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP465487A priority Critical patent/JPS63172727A/en
Publication of JPS63172727A publication Critical patent/JPS63172727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain stably a crosslinked polyester resin of any desired degree of crosslinking, by esterifying a polycarboxylic acid component with a diol component and crosslinking the product while increasing the pressure in the reaction system with an increasing viscosity. CONSTITUTION:In an operation of esterifying or transesterifying a polycarboxylic acid component comprising 2-100mol%, based on the total carboxylic acid component, tricarboxylic acid component (a) and at most 98mol%, based on the total carboxylic acid component, dicarboxylic acid compo nent (b) with a diol component (c) in an amount represented by the formula and forming crosslinkages while distilling the diol component (c) in a vacuum <=150mmHg, the rate of crosslinking is controlled by increasing the pressure in the reaction system with he increasing viscosity of the polymer. Although the rate of removal of the diol component (c) by distillation depends on the pressure and temperature in the reaction system, the degree of vacuum is prefer ably 150mmHg or below in consideration of the pressure conditions for stopping the reaction system.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は架橋構造を有する飽和ポリエステル樹脂の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a saturated polyester resin having a crosslinked structure.

〈従来の技術および問題点〉 従来よシ、飽和ポリエステル樹脂は繊維、フィμム、成
形材料をはじめ塗料、接着剤、トナー用の各種バインダ
ー等の幅広い分野で用いられている。中でも、塗料、接
着剤、トナー等では硬度や接着力、オフセット性を改良
するために架橋系のものを用いる試みが数多くなされて
いる。しかしながら、従来よシ提案されているようなエ
ステル化法またはエステル交換法による手法では架橋系
ポリエステル樹脂を製造するのけ難しい。なぜなら重合
体が適度の溶融粘度に達したときに反応を停止させる必
要があるが、エステル化反応またはエステル交換反応に
よる従来の手法では、反応を停止させる手段として反応
系の温度を急激に低下させるか、あるいは水又はアルコ
ールを反応系に添加してゲル化反応を止めるかの2つの
方法が考えられるものの、ゲル化反応速度は冷却速度ま
たは混合速度に比べて非常に高いことから、工業的には
いずれの方法によってもこのゲル化反応を緩和させ、所
望の架橋度で停止させることが困難だからである。この
ような状況において、上記のゲル化反応を制御可能で、
かつ所望の架橋度を有するポリエステルの優れた製造方
法の出現が望まれて”いるのが現状である。
<Prior Art and Problems> Saturated polyester resins have conventionally been used in a wide range of fields, including fibers, films, molding materials, paints, adhesives, and various binders for toners. Among these, many attempts have been made to use crosslinked materials in paints, adhesives, toners, and the like to improve hardness, adhesive strength, and offset properties. However, it is difficult to produce crosslinked polyester resins using the esterification or transesterification methods that have been proposed in the past. This is because the reaction must be stopped when the polymer reaches a suitable melt viscosity, but in conventional methods using esterification or transesterification, the temperature of the reaction system is rapidly lowered as a means of stopping the reaction. There are two possible methods: or adding water or alcohol to the reaction system to stop the gelation reaction. This is because it is difficult to moderate this gelation reaction and stop it at a desired degree of crosslinking by any method. In this situation, the above gelation reaction can be controlled,
At present, there is a desire for an excellent method for producing polyester having a desired degree of crosslinking.

〈発明が解決しようとする問題点〉 本発明の目的とするところは、急激なゲル化反応を伴わ
ず安定にかつ任意の架橋度を有するポリエステμ樹脂の
製造法すなわち反応速度を・制御し、所望する架橋度に
重合体が達した時点で反応を停止させる架橋ポリエステ
ル樹脂の製造方法を提供することにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to provide a method for producing polyester μ resin stably without rapid gelation reaction and having a desired degree of crosslinking, that is, to control the reaction rate; It is an object of the present invention to provide a method for producing a crosslinked polyester resin in which the reaction is stopped when the polymer reaches a desired degree of crosslinking.

〈問題点を解決するための手段〉   ・本発明の要旨
とするところは、(&)全カルボン酸成分に対して2モ
/L/−以上100モlv−以下の3価のカルボン酸成
分、(b)全カルボン酸成分に対して98モ/L/−以
下の2価のカルボン酸成分からなる多価カルボン酸成分
及び式(1)で示される量の(c)ジオール成分とをエ
ステル化反応もしくはエステル交換反応せしめた後、1
5〇−H9以下の真空下でジオール成分(c)を留出除
去せしめながら架橋状類を形成させる操作において重合
体の粘度上昇に応じて反応系の圧力を上昇せしめて実質
的に架橋反応を制御することを  。
<Means for solving the problems> - The gist of the present invention is (&) a trivalent carboxylic acid component of 2 mo/L/- or more and 100 mole or less based on the total carboxylic acid component; (b) Esterification of a polyvalent carboxylic acid component consisting of a divalent carboxylic acid component of 98 mo/L/- or less based on the total carboxylic acid components and (c) a diol component in an amount shown by formula (1). After reaction or transesterification, 1
In the operation of forming a crosslinked product while distilling off the diol component (c) under a vacuum of 50-H9 or less, the pressure of the reaction system is increased in accordance with the increase in the viscosity of the polymer to substantially prevent the crosslinking reaction. To be in control.

特徴とする架橋ポリエステル樹脂の製造方法を提供する
ものである。
The present invention provides a method for producing a characteristic crosslinked polyester resin.

4〉y〉α8(1+x)   ・・・(1)(式(1)
中yは、 ジオール成分中の水酸基の数 Iは、     ・ である。) 本発明において、5価以上の力!ボン酸成分(a)とし
て3価以上のカルボン酸またはその酸無水物またはその
低級アμキμエステルが用いられ、1分子中に3ケ以上
の力μホキシル基を有する化合物、1分子中に存在する
3ケ以上のカルボキシル基のうち1対以上が酸無水物と
なったものまたは、1分子中に存在する3ケ以上のカー
〃ボキVA/基のうち1ケ以上が低級アルコールのエス
テルとがったものが挙げられる。具体的には1.2.4
−ベンゼントリカルボン酸、1,2゜4 + yクロヘ
キサントリカルボン酸、1.2.4−ナフタレントリカ
ルボン酸、2.a7−ナフタレントリカルボン酸、L2
.4−ブタントリカルボン酸、1,2.5−ヘキサント
リカルボン酸、1,2゜7、8−オクタンテトラカルボ
ン酸またはこれらの酸無水物もしくはこれらのエチルエ
ステル、エチルエステル、プロピルエステル、イソプロ
ピルエステル等の沸点200℃以下の低級アルコールの
エステル等が挙げられる。本発明においては、全力μポ
ン酸成分に対して5価以上のカルボン酸成分は2モ〃チ
以上100モA/−以下の範囲で用いられ、2モル−未
満では良好な架橋状節が得られない。
4〉y〉α8(1+x) ...(1) (Formula (1)
y is the number I of hydroxyl groups in the diol component. ) In the present invention, a force with a valence of more than 5! A trivalent or higher carboxylic acid, an acid anhydride thereof, or a lower acid μ ester thereof is used as the boxylic acid component (a), and a compound having 3 or more hydroxyl groups in one molecule, One or more of the three or more carboxyl groups present is an acid anhydride, or one or more of the three or more carboxyl groups present in one molecule is an ester of a lower alcohol. There are many things that can be mentioned. Specifically 1.2.4
-benzenetricarboxylic acid, 1,2゜4+ychlorohexanetricarboxylic acid, 1.2.4-naphthalenetricarboxylic acid, 2. a7-naphthalene tricarboxylic acid, L2
.. 4-butanetricarboxylic acid, 1,2.5-hexanetricarboxylic acid, 1,2゜7,8-octanetetracarboxylic acid or their acid anhydrides or their ethyl esters, ethyl esters, propyl esters, isopropyl esters, etc. Examples include esters of lower alcohols with a boiling point of 200°C or less. In the present invention, the carboxylic acid component having a valence of 5 or more is used in the range of 2 moles or more and 100 moA/- or less relative to the total μ-ponic acid component, and if it is less than 2 moles, good crosslinked nodes are obtained. I can't.

又、2価のカルボン酸成分(6)としては2価のカルボ
ン酸またはその酸無水物またはその低級ア〃キ〃エステ
ルが用いられ、1分子中に2ケの力〜ボキVIW基を有
する化合物あるいはこれらの酸無水物、または1分子中
に存在する2ケの力〃ホキシル基のうち1ケ以上が低級
アルコールのエステルとなったものが挙げられ、具体的
には例えばマレイン酸、フマール酸、メサコニン酸、シ
トツコン酸、イタコン酸、グルタコン酸、フターμ酸、
イソフタル酸、テレフタμ酸、Vクロヘキサンジカルボ
ン酸、コハク酸、アジピン酸、セバシン酸、マロン酸、
ソμイン酸またはその酸無水物もしくはそのモノメチル
エステル、ジメチルエステル、モノエチルエステル、シ
エチ〃エステル、モノプロピルエステル、ジデロビ〃エ
ステル、メチルエチルエステμ、エチμプロピルエステ
μ等の沸点200℃以下の低級アルコ−pのモノエステ
fi/またはジエステルが挙げられる。
Further, as the divalent carboxylic acid component (6), a divalent carboxylic acid, an acid anhydride thereof, or a lower oxyester thereof is used, and a compound having two VIW groups in one molecule. Alternatively, examples include acid anhydrides of these, or those in which one or more of the two hydroxyl groups present in one molecule is an ester of a lower alcohol, such as maleic acid, fumaric acid, Mesaconic acid, sitotsonic acid, itaconic acid, glutaconic acid, phthalic acid,
Isophthalic acid, terephthalic acid, V-chlorohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, malonic acid,
Somuic acid, its acid anhydride, or its monomethyl ester, dimethyl ester, monoethyl ester, siethyl ester, monopropyl ester, diderobi ester, methyl ethyl ester, ethyl propyl ester, etc. with a boiling point of 200°C or less Examples include lower alcohol-p monoesters and diesters.

本発明に用いられるジオール成分(c)は1分子中に水
酸基を2ケ有する化合物であシ、具体的ニハエチレング
リコール、ジエチレンクリコーμ、トリエチレングリコ
−〜、プロピレングリコ−A/1j−プロパンジオ−〜
、1.4−ブタンジオ−μ、シクロヘキサンジメタツー
ル、ネオペンチルグリコール、ヘキサメチレンジオー〜
、ビスフェノ−/L’A1水添ビスフェノー/L’A。
The diol component (c) used in the present invention is a compound having two hydroxyl groups in one molecule, and specific examples include niethylene glycol, diethylene glycol μ, triethylene glycol ~, propylene glyco-A/1j-propane. Geo-~
, 1,4-butanedio-μ, cyclohexane dimetatool, neopentyl glycol, hexamethylene diol ~
, bispheno-/L'A1 hydrogenated bispheno-/L'A.

ポリオキシプロピレン(2,0)−2,2−ビス(4−
ヒドロキシフエニlv)プロパン、ポリオキシエチレン
(九〇)−2,2−ビス(4−ヒドロキVフエニ/I/
)プロパン、2.2’−(1,4−フェニレンビスオキ
V)ビスエタノ−/L/、1.1’−ジメチ/M−2,
2’−(1,4−フェニレンビスオキV)ビスエタノ−
I’s  1.1.1; 1/−テトフメチp−2,2
’−(1,4−フェニレンビスオキV)ビスエタノール
が挙げられる。
Polyoxypropylene (2,0)-2,2-bis(4-
Hydroxyphenylene lv) propane, polyoxyethylene (90)-2,2-bis(4-hydroxyphenylene/I/
) Propane, 2.2'-(1,4-phenylenebisoki V)bisethano-/L/, 1.1'-dimethy/M-2,
2'-(1,4-phenylenebisoki V)bisethano-
I's 1.1.1; 1/-tetofumethi p-2,2
'-(1,4-phenylenebisoki V)bisethanol is mentioned.

本発明では、全力!ボン酸成分、つまり5価以上のカル
ボン酸と2価のカルボン酸成分の合計量に対して前記式
(1)を満足する範囲のジオール成分とカルボン酸成分
とを混合し、加熱昇温することによジエステル化反応ま
たはエステル交換反応を行う。このとき必要に応じて硫
酸、チタンブトキサイド、ジブチルスズオキシド、酢酸
マグネシウム、酢酸マンガン等の通常のエステル化反応
またはエステル交換反応で使用されるエステル化触媒ま
たはエステル交換触媒を使用することができる。
With this invention, we are going all out! Mixing a diol component and a carboxylic acid component in a range that satisfies the above formula (1) with respect to the total amount of a carboxylic acid component, that is, a carboxylic acid with a valence of 5 or more and a divalent carboxylic acid component, and heating and increasing the temperature. A diesterification reaction or transesterification reaction is carried out. At this time, an esterification catalyst or a transesterification catalyst used in a normal esterification reaction or transesterification reaction, such as sulfuric acid, titanium butoxide, dibutyltin oxide, magnesium acetate, manganese acetate, etc., can be used as necessary.

本発明においては、上記エステル化反応又はエステル交
換反応の際にゲル化反応が生じない事が条件であシ、ジ
オール成分(c)の添加量は前記の式(1)を満足する
ことが必要である。
In the present invention, the condition is that no gelation reaction occurs during the esterification reaction or transesterification reaction, and the amount of diol component (c) added must satisfy the above formula (1). It is.

次いで、エステル化反応もしくはエステル交換反応によ
シ水もしくは低級アルコールを反応系よシ留出除去せし
めた後、反応系の圧力を15011IIH9以下としジ
オール成分(c)を反応系より留出除去させなから縮合
反応を行う。又、重合に際しては通常公知の重合触媒、
例えばチタンブトキサイド、ジブチルスズオキシド、酢
酸スズ、酢酸亜鉛、2硫化スズ、3酸化アンチモン、2
酸化ゲルマニウム、酢酸亜鉛等を用いることができる。
Next, water or lower alcohols are removed by distillation from the reaction system by esterification reaction or transesterification reaction, and then the pressure of the reaction system is reduced to 15011IIH9 or less so that the diol component (c) is not removed by distillation from the reaction system. A condensation reaction is carried out from In addition, for polymerization, commonly known polymerization catalysts,
For example, titanium butoxide, dibutyltin oxide, tin acetate, zinc acetate, tin disulfide, antimony trioxide,
Germanium oxide, zinc acetate, etc. can be used.

該反応において、ジオール成分(c)の留出除去に伴い
粘度が上昇するが、ある粘度に到達した時点でゲル化反
応が生じはじめ重合体の粘度は急速に上昇する。このと
き反応系の圧力を、ゲル化反応による重合体粘度の上昇
に応じて上昇せしめ、反応を緩和しながら所望の架橋度
に達した時点で反応系を実質的に反応が停止する圧力下
におけば、任意の架橋度を有するポリエステル樹脂が製
造可能となる。すなわち、本発明はゲル化点に達してか
らの急速な粘度の上昇を反応系の圧力制御により緩和さ
せ、容易に所望の架橋度のポリエステル樹脂を製造する
方法を提供するものである。
In this reaction, the viscosity increases as the diol component (c) is removed by distillation, but when a certain viscosity is reached, a gelation reaction begins to occur and the viscosity of the polymer rapidly increases. At this time, the pressure in the reaction system is increased in accordance with the increase in polymer viscosity due to the gelation reaction, and when the desired degree of crosslinking is reached while easing the reaction, the reaction system is brought under a pressure that substantially stops the reaction. By doing so, it becomes possible to produce a polyester resin having an arbitrary degree of crosslinking. That is, the present invention provides a method for easily producing a polyester resin having a desired degree of crosslinking by alleviating the rapid increase in viscosity after the gelation point is reached by controlling the pressure of the reaction system.

尚、ジオール成分(c)の留出除去は反応系の圧力と温
度により決まるが、反応を実質的に停止するための反応
系の加圧条件を考慮すると真空度は150■H9以下が
好ましく、30■Hg以下が特に好ましい。
Incidentally, the distillation removal of the diol component (c) is determined by the pressure and temperature of the reaction system, but considering the pressurizing conditions of the reaction system to substantially stop the reaction, the degree of vacuum is preferably 150 μH9 or less, Particularly preferred is 30 ■Hg or less.

以下、実施例によυ本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〈実施例1〉 無水トリメリット酸、テレフタル酸、エチレングリコー
ルを、第1表の組成に従い蒸留塔を有する反応器に投入
した。
<Example 1> Trimellitic anhydride, terephthalic acid, and ethylene glycol were charged into a reactor having a distillation column according to the composition shown in Table 1.

(表中の数字は重量部を表す) さらに反応容器にジブチ!スズオキシドヲ全酸成分に対
してα03モ/’ % 添加し、内温を220℃、攪拌
回転数を20 Or、p、mに保ち、常圧下でエステル
化反応せしめたところ、水が留出し始めてから約5時間
後に反応系内は透明になυ水の留出は停止した。このと
きの攪拌機のトルクメーターはα9ゆ一国であった。次
に、内温を235℃、攪拌回転数を20 Or、p、m
に保ち、反応系内の圧力を1.0wHgになるまで減圧
せしめたところ、反応系内よりエチレングリコールが留
出し、徐々に攪拌トルクは上昇し、約1.5時間後、攪
拌トルクが1.2 kliF−百に到達した時点でゲル
化が始シ、攪拌トμりは急激に上昇し始めた。このとき
、反応系の圧力を1O−Ellに変えたところ、攪拌ト
ルクの上昇速度は緩慢となりエチレングリコールが留出
し始めてから約2.6時間後に攪拌トμりはl Okg
 −cmに到達した。このとき、反応系内の圧力を常圧
とし、そのitの状態で約1時間攪拌し続けた。
(The numbers in the table represent parts by weight) Djibouti is added to the reaction vessel! When tin oxide was added at α03 mo/'% based on the total acid component, and the internal temperature was kept at 220°C and the stirring speed was kept at 20 Or, p, m, and the esterification reaction was carried out under normal pressure, water started to distill out. After about 5 hours, the inside of the reaction system became transparent and the distillation of υ water stopped. The torque meter for the stirrer at this time was an α9 Yuichikuni. Next, the internal temperature was set to 235°C, and the stirring rotation speed was set to 20 Or, p, m.
When the pressure inside the reaction system was reduced to 1.0wHg, ethylene glycol was distilled out from inside the reaction system, and the stirring torque gradually increased until about 1.5 hours later, when the stirring torque reached 1.0wHg. At the time when 2 kliF-100 was reached, gelation began and the stirring temperature began to rise rapidly. At this time, when the pressure of the reaction system was changed to 1 O-Ell, the rate of increase in stirring torque became slow, and about 2.6 hours after ethylene glycol began to distill, the stirring torque reached 1 Okg.
- cm was reached. At this time, the pressure in the reaction system was set to normal pressure, and stirring was continued in that state for about 1 hour.

その結果、攪拌トμりは五〇5kliF−cmのままほ
ぼ一定値を保った。第1図にその結果を示した。
As a result, the stirring torque remained almost constant at 505 kliF-cm. Figure 1 shows the results.

本実施例は反応系内の圧力制御により重合体の架橋度す
なわち攪拌トルク、または粘度の制御が容易であり、し
かも実質的にゲル化反応を停止させ得る事を示すもので
ある。
This example shows that the degree of crosslinking of the polymer, that is, the stirring torque, or the viscosity, can be easily controlled by controlling the pressure within the reaction system, and that the gelation reaction can be substantially stopped.

〈実施例2〉 無水トリメリツF酸、テレフタル酸、エチレングリコー
ルを使用し、第1表の組成に従って、蒸留塔を有した反
応釜へ投入した。触媒及び温度条件、攪拌回転数は実施
例1と同一条件にて、常圧下で約5時間エステル化反応
せしめた。反応系よシ留出する水が停止したときの攪拌
トμりは19 kli −ytであった。次に反応系内
の圧力を1.OmHJilになるまで減圧し、該減圧下
でエチレングリコールを留出せしめた。反応系よジエチ
レングリコ−〃が留出するとともに徐々に攪拌トルクは
上昇し、エチレングリコ−〜が留出し始めてから約1.
5時間後攪拌トルクが1.2時−百に到達した時点でゲ
ル化が始まシ攪拌ト〃りは急激に上昇し始めた。このと
き、反応系内の圧力を10 wa Ellに変えたとこ
ろ、攪拌トルクの上昇速度は緩慢となシ、約1時間で五
〇ゆm個に到達した。このとき、さらに反応系内の圧力
を2O−H9に変えたところ、攪拌トμりの上昇速度は
再び緩慢となった。さらに、約1時開俵攪拌トルクが&
 Okg −3に到達したところで反応系内を常圧にも
どしその!!まの状態で約1時間攪拌し続けた。その結
果、攪拌トμりは5.0ニー1を示しほぼ一定値を示し
た。
<Example 2> Trimeriz F acid anhydride, terephthalic acid, and ethylene glycol were used and charged into a reaction vessel equipped with a distillation column according to the composition shown in Table 1. The esterification reaction was carried out under normal pressure for about 5 hours under the same catalyst, temperature conditions, and stirring speed as in Example 1. The stirring rate when water stopped distilling out of the reaction system was 19 kli-yt. Next, the pressure in the reaction system was increased to 1. The pressure was reduced to OmHJil, and ethylene glycol was distilled off under the reduced pressure. As diethylene glyco〃 is distilled out of the reaction system, the stirring torque gradually increases, and about 1.
After 5 hours, when the stirring torque reached 1.2 hours, gelation started and the stirring torque began to rise rapidly. At this time, when the pressure in the reaction system was changed to 10 wa Ell, the rate of increase in stirring torque was slow and reached 50 yum in about 1 hour. At this time, when the pressure in the reaction system was further changed to 2O-H9, the rate of increase in the stirring rate became slow again. In addition, the opening bale stirring torque is approximately 1 hour &
When Okg -3 is reached, the pressure inside the reaction system is returned to normal pressure. ! Stirring was continued for about 1 hour. As a result, the stirring torque was 5.0 knee 1, which was a substantially constant value.

本実施例は、反応系内の圧力制御によりゲル化点に到達
してからの攪拌トルク、つまり粘度、の制御が可能であ
り、換言すればゲル化反応の制御が可能であることを示
す。
This example shows that it is possible to control the stirring torque, that is, the viscosity, after the gelation point is reached by controlling the pressure within the reaction system; in other words, it is possible to control the gelation reaction.

〈実施例3〉 1.2.″18−オクタンテトフカμボン酸、テレフタ
ル酸、1.4−ブタンジオールを使用し、第2表の組成
に従って、蒸留塔を有する反応釜へ投入した。
<Example 3> 1.2. ``18-octane tetofukanic acid, terephthalic acid, and 1,4-butanediol were used and charged into a reaction vessel having a distillation column according to the composition shown in Table 2.

第  2  表 (表中の数字は重量部を示す。) さらにチタンブトキサイドを全酸成分に対してQ、03
モ/%/チ添加し、内温250℃、攪拌機の回転数20
 Or、p、m 、常圧下にてエステル化反応せしめた
。水が留出し始めてから約4時間後、反応釜内の混合物
は透明となυ、約5時間後には水の留出は停止し、この
とき攪拌トルクはα9kl?−(であった。次に、内温
を240℃とし、反応系内の圧力が1.0■Hgとなる
まで減圧し、該減圧下で1.4−ブタンジオールを留出
せしめた。1.4−ブタンジオ−yが留出し始めた時の
攪拌トルクは1.0 kg −〇であった。そして、1
゜4−ブタンジオールの留出に伴い攪拌トルクは上昇し
、1.4−ブタンジオールが留出し始めてから2時間後
、攪拌トルクは1.1 kg −cmとな虱4時間後に
1.2 kl −51となった時点でゲル化が始シ攪拌
トルクは急激に上昇しはじめた。このとき、反応系内の
圧力を1O−Ellとしたところ、攪拌トルクの上昇速
度は緩慢となった。さらに約1.5時間後、攪拌トルク
は2.5 kl −百に到達した。このとき、反応系内
の圧力を20mHfiとしたところ、攪拌トルクの上昇
速度は再び緩慢となり、約1.5時間で6.0 kl 
−anに到達した。これと同時に反応系内の圧力を常圧
にし、そのままの状態で約1時間攪拌し続けた。その結
果、攪拌トμりは6.、 Okg −crsであり、は
ぼ一定の値を示した。結果を第2図に示した。
Table 2 (The numbers in the table indicate parts by weight.) In addition, titanium butoxide was added to the total acid component by Q, 03
Add mo/%/ti, internal temperature 250℃, stirrer rotation speed 20
The esterification reaction was carried out using Or, p, m under normal pressure. Approximately 4 hours after water began to distill out, the mixture in the reaction vessel became transparent υ, and approximately 5 hours later, water distillation stopped, and at this time the stirring torque was α9kl? -(.Next, the internal temperature was set to 240°C, and the pressure inside the reaction system was reduced to 1.0 μHg, and 1.4-butanediol was distilled out under the reduced pressure.1. .The stirring torque when 4-butanedio-y started to distill out was 1.0 kg -〇.
As 4-butanediol was distilled off, the stirring torque increased, and 2 hours after 1.4-butanediol started distilling off, the stirring torque was 1.1 kg-cm, and 4 hours later, it was 1.2 kl. When the temperature reached -51, gelation started and the stirring torque began to rise rapidly. At this time, when the pressure inside the reaction system was set to 1 O-Ell, the rate of increase in stirring torque became slow. After about a further 1.5 hours, the stirring torque reached 2.5 kl-hundred. At this time, when the pressure inside the reaction system was set to 20 mHfi, the rate of increase in stirring torque became slow again, and the rate of increase in stirring torque became 6.0 kl in about 1.5 hours.
-an has been reached. At the same time, the pressure inside the reaction system was brought to normal pressure, and stirring was continued in that state for about 1 hour. As a result, the stirring rate was 6. , Okg-crs, which showed almost constant values. The results are shown in Figure 2.

本実施例は4価のカルボン酸を用いた場合でも反応系内
の圧力によりゲル化点に到達した攪拌トルクの制御つま
り粘度の制御が可能であることを示し、換言すればゲル
化反応の制御が可能であることを示す。
This example shows that even when a tetravalent carboxylic acid is used, it is possible to control the stirring torque that reaches the gelation point, that is, the viscosity, by the pressure within the reaction system. In other words, it is possible to control the gelation reaction. is possible.

〈実施例4〉 無水トリメリット酸、テレフタル酸、エチレングリコ−
μを使用し、第1表の組成に従って蒸留塔を有した反応
釜へ投入した。触媒及び温度条件、攪拌回転数は実施例
1と同一条件にて常圧下で約5時間エステル化反応せし
めた。反応系より留出する水が停止したときの攪拌トル
クは0.9 kg −3であった。次に反応系内の反応
を1.0 xi H9になるまで減圧し、該減圧下でエ
チレングリコールを留出せしめた。反応系よりエチレン
グリコ−yが留出するとともに徐々に攪拌トルクは上昇
し、エチレングリコールが留出し始めてから約1.5時
間後、攪拌トルクが1、1 kg −cmに到達した時
点でゲル化が始まり攪拌トルクは急激に上昇し始めたの
で、反応系の圧力を毎分15 M Fi pの割合で上
昇せしめた。
<Example 4> Trimellitic anhydride, terephthalic acid, ethylene glycol
μ was used and charged into a reaction vessel equipped with a distillation column according to the composition shown in Table 1. The esterification reaction was carried out under normal pressure for about 5 hours using the same catalyst, temperature conditions, and stirring rotation speed as in Example 1. The stirring torque when water stopped distilling from the reaction system was 0.9 kg -3. Next, the reaction pressure in the reaction system was reduced to 1.0 xi H9, and ethylene glycol was distilled out under the reduced pressure. As ethylene glycol-y was distilled out of the reaction system, the stirring torque gradually increased, and about 1.5 hours after ethylene glycol started to be distilled out, gelation occurred when the stirring torque reached 1.1 kg-cm. Since the stirring torque started to increase rapidly, the pressure of the reaction system was increased at a rate of 15 M Fi p per minute.

このとき、攪拌トルクは徐々に上昇し約2時間後に攪拌
トルクは五〇klil−一に到達したので反応系の圧力
を常圧にもどし、そのままの状態で約1時間攪拌し続け
た。その結果、攪拌トルクは五〇ゆm−を示しほぼ一定
の値を示した。その結果を第3図に示す。
At this time, the stirring torque gradually increased and reached 50 klil-1 after about 2 hours, so the pressure of the reaction system was returned to normal pressure and stirring was continued in that state for about 1 hour. As a result, the stirring torque was 50 ym-, which was a nearly constant value. The results are shown in FIG.

本実施例は反応系内の圧力を連続的に制御することによ
シゲル化点に到達してからの擾拌トμりつまシ粘度の制
御が可能であり、換言すればゲル化反応の制御が可能で
あることを示す。
In this example, by continuously controlling the pressure inside the reaction system, it is possible to control the viscosity of the agitation after reaching the gelation point, in other words, it is possible to control the gelation reaction. is possible.

〈実施例5〉 トリメリット酸トリメチル、テレフタル酸ジメチル、エ
チレングリコール、ネオベンチNljリコールを使用し
、第3表の割合に従って蒸留塔を有する反応容器に投入
した。
<Example 5> Trimethyl trimellitate, dimethyl terephthalate, ethylene glycol, and Neobenchi Nlj Recall were used and charged into a reaction vessel having a distillation column according to the proportions shown in Table 3.

さらにチタングドキサイドを全カルボン酸成分に対して
α03モ/L/%添加し、内温230℃、撹拌回転数2
0 Or、p、mに保ち常圧下で5時間エステル交換反
応せしめたところ、蒸留塔よりメタノールが出なくなっ
た。このとき攪拌トルクは17 kl −cmであった
。次に内温235℃、攪拌回転数を20 Or、p、!
Dに保ち、反応系の圧力を1.0■Hyまで減圧し、該
減圧下でジオール成分を留出せしめた。反応系よりジオ
ール成分が留出するとともに攪拌トルクは徐々に上昇し
、攪拌トルクが1.5 kg−cmに到達した時点でゲ
ル化反応が始まり急激に攪拌トyりは上昇するので、反
応系の圧力を毎分18−H9の割合で上昇せしめたとこ
ろ、粘度は徐々に上昇し、約3時間後に攪拌トルクは五
akg−個に到達したので反応系の圧力を常圧にもどし
反応が停止することを確認した。
Further, titanium oxide was added at α03mol/L/% based on the total carboxylic acid components, and the internal temperature was 230°C and the stirring rotation speed was 2.
When the transesterification reaction was carried out for 5 hours under normal pressure while maintaining the pressure at 0 Or, p, m, methanol no longer came out from the distillation column. At this time, the stirring torque was 17 kl-cm. Next, the internal temperature was set to 235°C and the stirring speed was set to 20 Or, p,!
D, the pressure of the reaction system was reduced to 1.0 Hy, and the diol component was distilled out under the reduced pressure. As the diol component is distilled out from the reaction system, the stirring torque gradually increases, and when the stirring torque reaches 1.5 kg-cm, the gelation reaction begins and the stirring torque rapidly increases, so that the reaction system When the pressure was increased at a rate of 18-H9 per minute, the viscosity gradually increased, and after about 3 hours, the stirring torque reached 5 kg-1, so the pressure of the reaction system was returned to normal pressure and the reaction stopped. It was confirmed that

本実施例はエステル交換法を用いた場合にも、反応系内
の圧力を連続的に制御することによりゲル化点に到達し
てからの攪拌ト〜りつまシ粘度の制御が可能であシ、換
言すればゲル化反応の制御が可能であることを示す。
In this example, even when using the transesterification method, by continuously controlling the pressure inside the reaction system, it is possible to control the viscosity of the stirrer after the gelation point is reached. In other words, it shows that the gelation reaction can be controlled.

〈比較例1〉 無水トリメリット酸、テレフタル酸、エチレングリコー
ルを使用し、第1表に従って蒸留塔を有した反応釜へ投
入した。触媒及び温度条件、攪拌回転数は実施例1と同
一条件にて常圧下で約5時間エステル化反応せしめた。
<Comparative Example 1> Trimellitic anhydride, terephthalic acid, and ethylene glycol were used and charged into a reaction vessel equipped with a distillation column according to Table 1. The esterification reaction was carried out under normal pressure for about 5 hours using the same catalyst, temperature conditions, and stirring rotation speed as in Example 1.

反応系より留出する水が停止したときの攪拌トpりはO
,?ゆm個であった。次に反応系内の圧力を101Hf
iになるまで減圧し、該減圧下でエチレングリコールを
留出せしめた。反応系よりエチレングリコールが留出す
るとともに徐JK攪拌トルクは上昇し、エチレングリコ
ールが留出し始めてから約1.5時間後に攪拌トルクは
1.2 kg −cmに達し、ゲル化反応の開始ととも
に攪拌トルクは急速に上昇し五〇ゆ一国に達した。この
時点で反応系内の圧力を常圧にもどし、そのままの状顔
で約1時間攪拌し続けた。その結果攪拌トルクは一時的
に上昇し、最終的に& 7 kl −ctyzに達した
。このことはゲル化反応を停止させようとしても所望す
る攪拌ト〜り(五O)C9−eIR)を越えて反応が進
んでしまうことを示すものである。結果を第4図に示し
た。
When the water distilled from the reaction system has stopped, the stirring top is O.
,? There were Yum pieces. Next, the pressure inside the reaction system was increased to 101Hf.
The pressure was reduced to i, and ethylene glycol was distilled off under the reduced pressure. As ethylene glycol was distilled out from the reaction system, the Xu JK stirring torque increased, and approximately 1.5 hours after ethylene glycol began to distill out, the stirring torque reached 1.2 kg-cm, and the stirring stopped with the start of the gelation reaction. The torque increased rapidly and reached 50 yen. At this point, the pressure in the reaction system was returned to normal pressure, and stirring was continued for about 1 hour. As a result, the stirring torque temporarily increased and finally reached &7 kl-ctyz. This indicates that even if an attempt is made to stop the gelation reaction, the reaction proceeds beyond the desired stirring rate ((5O)C9-eIR). The results are shown in Figure 4.

く比較例2〉 無水トリメリット酸39.0部、テレフタル酸516部
、エチレングリコ−/I/ 57.8部を実施例1と同
一の反応容器に入れ、全力pボン酸成分に対しα03モ
fi19Gのジブチルスズオキシドを加え内温230℃
、攪拌機の回転数を20゜r、p、mに保ち常圧下でエ
ステル化反応せしめた。
Comparative Example 2> 39.0 parts of trimellitic anhydride, 516 parts of terephthalic acid, and 57.8 parts of ethylene glycol/I/ were placed in the same reaction vessel as in Example 1, and α03 mole was added to the total p-boxylic acid component. Add fi19G dibutyltin oxide and bring the internal temperature to 230°C.
The esterification reaction was carried out under normal pressure while keeping the rotational speed of the stirrer at 20 degrees r, p, m.

蒸留塔よυ水が留出しはじめてから2時間後にゲル化現
象が生じ反応物の粘度が急激に上昇しはじめたので反応
容器を水冷したが反応温度の降下が間合わずゲル化現象
の発現後、約6分後に攪拌機が停止してしまった。その
結果反応物の取出しが不可能となシ正常な架橋ポリエス
テμ樹脂の製造ができなかった。結果を第5図に示した
Two hours after water began to distill from the distillation column, a gelation phenomenon occurred and the viscosity of the reactant began to rise rapidly, so the reaction vessel was cooled with water, but the reaction temperature could not be lowered in time and the gelation phenomenon occurred. , the stirrer stopped after about 6 minutes. As a result, it was impossible to take out the reactants, and normal production of crosslinked polyester μ resin was not possible. The results are shown in Figure 5.

〈発明の効果〉 本発明の方法により、従来の方法ではなし得なかったゲ
ル化現象の制御、つまり反応時に生じる攪拌ト〃りの急
激な上昇を緩和させ、目標とする攪拌トルクにて反応を
停止させることが可能であり、その結果目標とする架橋
度を有するポリエステル樹脂を容品に得ることが可能で
あり、各種用途の目的に応じた架橋ポリエステμ樹脂を
提供することができ、その効果は極めて大である。
<Effects of the Invention> The method of the present invention allows the gelation phenomenon to be controlled, which could not be achieved with conventional methods, that is, the rapid increase in stirring torque that occurs during the reaction can be alleviated, and the reaction can be carried out at the target stirring torque. As a result, it is possible to obtain a polyester resin with a target degree of crosslinking in a package, and it is possible to provide crosslinked polyester μ resins that meet the purposes of various uses. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、それぞれ実施例1.3.4及び比較例1
.2における重合系の攪拌トルク及び系内圧力の経時変
化を示すものであシ、図中の■は系内圧力曲線を、■は
攪拌トルク曲線をそれぞれ示す。 第 1 @ 反忘・所間 幅2 車 2 回 UjiByIf 関 (hrλ 第3図 反応時間(hr) 第 4 図 反応時間 (/u−ラ 第5図 反応時間(hrン 手続補正書 昭和62年 4月20日
Figures 1 to 5 are Example 1.3.4 and Comparative Example 1, respectively.
.. 2 shows the changes over time in the stirring torque and internal pressure of the polymerization system in No. 2. In the figure, ■ indicates the internal pressure curve, and ■ indicates the stirring torque curve, respectively. Part 1 @ Anti-forget/Tokoro Width 2 Car 2 times UjiByIf Seki (hrλ Figure 3 reaction time (hr) Figure 4 Reaction time (/u-ra Figure 5 Reaction time (hr) Procedure amendment book 1986 4 20th of the month

Claims (1)

【特許請求の範囲】 (a)全カルボン酸成分に対して2モル%以上100モ
ル%以下の3価のカルボン酸成分、(b)全カルボン酸
成分に対して98モル%以下の2価のカルボン酸成分か
らなる多価カルボン酸成分及び式(1)で示される量の
(c)ジオール成分とをエステル化反応もしくはエステ
ル交換反応せしめた後、150mmHg以下の真空下で
ジオール成分(c)を留出除去せしめながら架橋状態を
形成させる操作において重合体の粘度上昇に応じて反応
系の圧力を上昇せしめて実質的に架橋反応速度を制御す
ることを特徴とする架橋ポリエステル樹脂の製造方法。 4>y>0.8(1+x)・・・(1) (式(1)中yは y=ジオール成分中の水酸基の数/全カルボン酸成分中
のカルボニル基の数xは x=成分(a)に由来するカルボニル基の数/全カルボ
ン酸成分中のカルボニル基の数である。)
Scope of Claims: (a) a trivalent carboxylic acid component of 2 mol% or more and 100 mol% or less based on the total carboxylic acid component; (b) a divalent carboxylic acid component of 98 mol% or less based on the total carboxylic acid component; After carrying out an esterification reaction or transesterification reaction with a polyhydric carboxylic acid component consisting of a carboxylic acid component and the diol component (c) in an amount represented by formula (1), the diol component (c) is reacted under a vacuum of 150 mmHg or less. A method for producing a crosslinked polyester resin, which comprises substantially controlling the crosslinking reaction rate by increasing the pressure of the reaction system in accordance with the increase in the viscosity of the polymer in an operation of forming a crosslinked state while removing the polymer by distillation. 4>y>0.8(1+x)...(1) (In formula (1), y is y = number of hydroxyl groups in the diol component/number of carbonyl groups in all carboxylic acid components x is x = component ( The number of carbonyl groups derived from a)/the number of carbonyl groups in the total carboxylic acid component.)
JP465487A 1987-01-12 1987-01-12 Production of crosslinked polyester resin Pending JPS63172727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP465487A JPS63172727A (en) 1987-01-12 1987-01-12 Production of crosslinked polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP465487A JPS63172727A (en) 1987-01-12 1987-01-12 Production of crosslinked polyester resin

Publications (1)

Publication Number Publication Date
JPS63172727A true JPS63172727A (en) 1988-07-16

Family

ID=11589933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP465487A Pending JPS63172727A (en) 1987-01-12 1987-01-12 Production of crosslinked polyester resin

Country Status (1)

Country Link
JP (1) JPS63172727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180923A (en) * 1988-11-11 1990-07-13 Toray Ind Inc Fine polyester particle and composition containing same
WO2003093343A1 (en) * 2002-04-30 2003-11-13 Basf Aktiengesellschaft Method for producing highly functional, hyperbranched polyesters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180923A (en) * 1988-11-11 1990-07-13 Toray Ind Inc Fine polyester particle and composition containing same
WO2003093343A1 (en) * 2002-04-30 2003-11-13 Basf Aktiengesellschaft Method for producing highly functional, hyperbranched polyesters

Similar Documents

Publication Publication Date Title
JPS63280729A (en) Production of polyester resin for toner
US4482700A (en) Method for the preparation of light-colored polyesters with the use of titanium catalysts
DE2703376B2 (en) Process for the preparation of aromatic copolyesters
EP1355970B1 (en) Process for manufacture of polyesters based on 1,4-cyclohexanedimethanol and isophthalic acid
JP2567614B2 (en) Method for producing crosslinked polyester resin
JPS63172727A (en) Production of crosslinked polyester resin
JPS60147430A (en) Production of polyester copolymerized with adipic acid and having high whiteness and high polymerization degree
US4046739A (en) Process for reducing the processing time in the production of polyesters
JPH06293707A (en) Hydroxyethyl dibenzoic acid
JP4649709B2 (en) Method for producing copolyester
JP2555377B2 (en) Method for producing polyester resin
JPS63156821A (en) Production of crosslinked polyester resin
JP2630357B2 (en) Resin composition for powder coating
JPH08120061A (en) Branched polyester and its production
JPH0198619A (en) Thermoplastic polyester resin composition
JP4059981B2 (en) Production method of copolyester
JPH1095840A (en) Production of unsaturated polyester
JPH1077336A (en) Production of copolyester
JPH0198618A (en) Thermosetting polyester resin composition
US3492274A (en) Method of inhibiting foam generation in the manufacture of terephthalate polyesters
JPS6050819B2 (en) Polyester manufacturing method
JP2021008639A (en) Polyester resin and method for producing polyester resin
JP2602892B2 (en) Polyester production method
USRE30481E (en) Process for reducing the processing time in the production of polyesters
JPH09136948A (en) Preparation of modified polyester resin