JPH0198618A - Thermosetting polyester resin composition - Google Patents

Thermosetting polyester resin composition

Info

Publication number
JPH0198618A
JPH0198618A JP25648887A JP25648887A JPH0198618A JP H0198618 A JPH0198618 A JP H0198618A JP 25648887 A JP25648887 A JP 25648887A JP 25648887 A JP25648887 A JP 25648887A JP H0198618 A JPH0198618 A JP H0198618A
Authority
JP
Japan
Prior art keywords
group
polyester
acid
polyester resin
50mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25648887A
Other languages
Japanese (ja)
Inventor
Hisanori Tanabe
久記 田辺
Ryozo Takagawa
高川 良三
Yoshio Eguchi
江口 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP25648887A priority Critical patent/JPH0198618A/en
Priority to AU23620/88A priority patent/AU612707B2/en
Priority to KR1019880013307A priority patent/KR890006697A/en
Priority to EP88309548A priority patent/EP0312331B1/en
Priority to DE3853865T priority patent/DE3853865T2/en
Publication of JPH0198618A publication Critical patent/JPH0198618A/en
Priority to US07/560,226 priority patent/US5306806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the title normally solid, liquid crystal composition which is excellent in storage stability, can form an anisotropic molten phase at a low melting temperature, shows good flow in baking and can give a paint film excellent in appearance, by the esterification of transesterification of a mixture of a specified alcohol with a specified acid. CONSTITUTION:An alcohol or acid mixture (A) comprising 100-50mol.% mesogen group-introducing component of formulas I-IV and 0-50mol.% component other than said mesogen group-introducing component, such as formulas V-VII, and a spacer group-introducing component (B) such as (di)ethylene glycol or adipic acid are esterified or transesterified in an alcohol-excess condition to obtain the title composition comprising repeating units A-X-B [wherein 100-50mol.% of A groups are those composed of at least two benzene rings bonded in para position through an azo, azoxy or the like group or a mesogen group such as 2,6-naphthylene, 0-50mol.% of them are phenylene groups or the like, B is a spacer group such as VIII or IX (wherein n is 2-20 and m is 1-19), and X is an ester group] and terminated with OH, COOH or the like and having a total of an acid number and an OH number of 10-200.

Description

【発明の詳細な説明】 技術分野 本発明は異方性溶融相を形成することができ、水酸基お
よび/またはカルボキシル基の反応性官能基を有し、熱
硬化性を示す新規なるポリエステル樹脂組成物に関する
ものである。
Detailed Description of the Invention Technical Field The present invention relates to a novel polyester resin composition capable of forming an anisotropic melt phase, having a reactive functional group of a hydroxyl group and/or a carboxyl group, and exhibiting thermosetting properties. It is related to.

従来技術 ここ20数年間に低分子液晶については多種類の液晶性
物質が合成され、時計、計算機、テレビなどの光学用表
示素子として応用されている。一方高分子液晶に関して
はサーモトロピック液晶の研究が注目され、特開昭54
−50594号、同55−144024号などの全芳香
族ポリエステル樹脂にみられるように、溶融時の液晶性
に基づく粘度低下により溶融成形が容易な高強度、高耐
熱性樹脂が脚光を浴びている。さらにサーモトロピック
液晶を示す高分子として、D、Van Luyenら(
Eur、 Polym、 J、。
Prior Art Over the past 20 years, many types of low-molecular liquid crystal materials have been synthesized and have been applied as optical display elements for watches, calculators, televisions, and the like. On the other hand, regarding polymer liquid crystals, research on thermotropic liquid crystals attracted attention, and
As seen in fully aromatic polyester resins such as No. 50594 and No. 55-144024, high-strength and highly heat-resistant resins that are easy to melt and mold due to their reduced viscosity due to liquid crystallinity during melting are in the spotlight. . Furthermore, D. Van Luyen et al. (
Eur, Polym, J.

16、303.1980 ) W、R,Kringba
u+s、 J、 $1atanabe(Polymer
、 24.1299.1983 ;高分子加工、註。
16, 303.1980) W, R, Kringba
u+s, J, $1atanabe(Polymer
, 24.1299.1983; Polymer processing, note.

[1]、 39.1985)の研究があり、主鎖に剛直
なメソゲン(mesogenic group)と柔軟
な屈曲鎖(spacergroup )の繰り返し構造
により、低分子液晶と同様、液晶性(光学異方性)を発
現する。この主鎖型高分子液晶は一般に分子の運動の緩
和時間が大きく、低分子液晶におけるような高応答性の
デイスプレィへの応用には必ずしも適さないが、高分子
特有のフィルム・繊維形成能を生かした熱記録媒体、波
長選択透過、反射膜への応用研究が進められている。
[1], 39, 1985), and due to the repeating structure of a rigid mesogenic group and a flexible bent chain (spacer group) in the main chain, it exhibits liquid crystallinity (optical anisotropy) similar to low-molecular liquid crystals. Express. This main-chain polymer liquid crystal generally has a long relaxation time for molecular motion, and is not necessarily suitable for applications in high-responsive displays such as low-molecular liquid crystals. Application research is underway for thermal recording media, wavelength selective transmission, and reflective films.

しかしながら、従来提案されてきた一液晶性ポリエステ
ル樹脂はすべて熱可塑性樹脂であって、末端官能基が残
存すると 250〜400℃といった高い溶融温度にお
いて樹脂が熱分解し易く、従って末端基は可能な限りア
セチル基、フェニルエステルなどブロックされたエステ
ル結合にしており、またその分子量も溶融成形に適した
致方乃至数十万の高分子量に規定されている。このよう
に末端に反応性の官能基が含まれず、あるいは残存する
としても高々酸価lO以下の程度であるため、従来の熱
可塑性液晶性ポリエステル樹脂は、フィルム成形、繊維
などに好適ではあっても塗料などの熱硬化性樹脂として
は使用することができなかった。
However, all mono-liquid crystalline polyester resins that have been proposed so far are thermoplastic resins, and if terminal functional groups remain, the resin is likely to thermally decompose at high melting temperatures of 250 to 400°C. It has a blocked ester bond such as an acetyl group or phenyl ester, and its molecular weight is specified to be a high molecular weight of 100,000 to several hundred thousand, which is suitable for melt molding. As such, conventional thermoplastic liquid crystalline polyester resins are not suitable for film molding, fibers, etc. because they do not contain reactive functional groups at the terminals, or even if they remain, the acid value is at most 1O or less. However, it could not be used as a thermosetting resin for paints, etc.

発明が解決しようとする問題点 そこで、熱硬化性樹脂として使用することができ、しか
もより低い溶融温度で異方性溶融相を形成しうるポリエ
ステル樹脂が得られるならば塗料分野で極めて有用であ
り、かかる新規な熱硬化性ポリエステル樹脂を提供する
ことが本発明目的である。
Problems to be Solved by the Invention Therefore, if a polyester resin that can be used as a thermosetting resin and can form an anisotropic melt phase at a lower melting temperature can be obtained, it would be extremely useful in the paint field. It is an object of the present invention to provide such a novel thermosetting polyester resin.

問題点を解決するための手段 本発明に従えば、上記目的が式 (式中、Aの100〜50モル%は2コ以上のベンゼン
環がパラ位で相互に結合されてなる基、2コ以上のベン
ゼン環がパラ位でアゾ、アゾキシ、エステルあるいはト
ランスビニレンにより結合されてなる基および2.6−
ナフチレン基からなる群より選ばれるメソゲン基で、5
0モル%未満はp−フェニレン基、鳳−フェニレン基、
0−フェニレン基あるいはトランス1.4−シクロヘキ
シレン基であってもかまわない;Bは−(CH2)。−
または −(CH2CH20→rCH2CH2−で表されるスペ
ーサー基;nは2〜20、mは1〜19の整数;Xはエ
ステル結合) で示される繰り返し単位からなり、各隣接単位はエステ
ル結合で結合され、末端はOHあるいはC0OH基ある
いはそれらの反応性誘導体で、酸価とOH価の和が10
〜200である、異方性溶融相を形成しうる熱硬化性ポ
リエステル樹脂組成物により達成せられる。
Means for Solving the Problems According to the present invention, the above object is achieved by the formula A group in which the above benzene ring is bonded at the para position with azo, azoxy, ester or transvinylene, and 2.6-
A mesogenic group selected from the group consisting of naphthylene groups, 5
Less than 0 mol% is p-phenylene group, Otori-phenylene group,
It may be a 0-phenylene group or a trans-1,4-cyclohexylene group; B is -(CH2). −
or - (spacer group represented by CH2CH20→rCH2CH2-; n is an integer of 2 to 20, m is an integer of 1 to 19; X is an ester bond), and each adjacent unit is bonded with an ester bond. , the terminal is an OH or C0OH group or a reactive derivative thereof, and the sum of the acid value and OH value is 10.
This is achieved with a thermosetting polyester resin composition that is capable of forming an anisotropic melt phase and has a molecular weight of 200 to 200%.

本発明のポリエステル樹脂はA−X−Bの繰り返し単位
で表されるようにメソゲン基(A)とスペーサー基(B
)とが交互にエステル結合で結合された主鋳型の高分子
液晶構造を有し、しかも末端基としてOHあるいはHO
OCの架橋性の官能基を有し、樹脂中に高濃度で熱硬化
性官能基を含む点において、従来の主鎖型高分子液晶物
質と明確に区別せられるものである0本発明のボリエス
ル樹脂中に八として組み入れられる成分は、その100
〜50モル%が2コ以上のベンゼン環がパラ位で相互に
結合されてなる基、例えば4.4′−ビフェニレンd4
.4′’−p−チルフェニレン()処X(Xなど、2コ
以上のベンゼン環がパラ位でアゾ、アゾキシ、エステル
あるいはトランスビニレンにより結合さυ 一@)−cH=CI()など、あるいは2,6−ナフチ
レン50モル%未満はP−フェニレン、m−フェニレン
、0−フェニレンあるいはトランス14−シクロヘキシ
レン基であってもよい。
The polyester resin of the present invention has a mesogenic group (A) and a spacer group (B) as represented by repeating units of A-X-B.
) are alternately bonded by ester bonds, and the main template has a polymer liquid crystal structure in which OH or HO is used as the terminal group.
The polyester of the present invention is clearly distinguishable from conventional main chain type polymeric liquid crystal materials in that it has a crosslinking functional group of OC and contains a thermosetting functional group in a high concentration in the resin. The ingredients incorporated into the resin as 8 are 100
~50 mol% is a group consisting of two or more benzene rings bonded to each other at the para position, such as 4,4'-biphenylene d4
.. 4''-p-tylphenylene () X (such as Less than 50 mol% of 2,6-naphthylene may be P-phenylene, m-phenylene, 0-phenylene or trans-14-cyclohexylene groups.

上記^成分はポリエステルの酸成分として、あるいは多
価アルコール成分として好都合に組込まれるので末端が
カルボキシル基、カルボン酸エステル、酸塩化物、水酸
基、アセチル基などである化合物から誘導せられること
が好ましい。かかる代表的化合物としては下記のものが
挙げられる。
Since the above component is conveniently incorporated as an acid component of a polyester or as a polyhydric alcohol component, it is preferably derived from a compound whose terminal terminal is a carboxyl group, a carboxylic acid ester, an acid chloride, a hydroxyl group, an acetyl group, or the like. Such representative compounds include the following.

メソゲン基として導入せられる場合: 1100 C◇X今C0OH、CH300C■XフーC
00CII 3、U     υ         U
     Uメソゲン基以外の構成成分として導入せら
れる場合: 0       トランス1,4−シクロへキリンジカ
ルボン酸ジエステルこれらは勿論、本発明のA成分を導
入する目的で使用せられる具体的化合物の例示にすぎず
、本発明はこれら化合物により何ら制限せられるもので
はない。
When introduced as a mesogenic group: 1100 C◇X NowC0OH, CH300C■XfuC
00CII 3, U υ U
When introduced as a component other than U mesogenic group: 0 trans 1,4-cyclohekyrine dicarboxylic acid diester These are, of course, only examples of specific compounds used for the purpose of introducing component A of the present invention. However, the present invention is not limited in any way by these compounds.

Bとして組み入れられる成分は式−(CH2)fi−あ
るいは=(CH2CH20)、−CH2−CH2−で示
されるスペーサー基であり、このスペーサー基は前述の
A成分と、また隣接するA−X−B単位と各々エステル
結合により結合せられる。従ってかかるスペーサー基を
導入するために使用せられる化合物も、末端が各々OH
あるいはC0OHもしくはその反応性誘導体であること
が好ましく、具体的には下記の如き化合物が使用せられ
る。
The component incorporated as B is a spacer group of the formula -(CH2)fi- or =(CH2CH20), -CH2-CH2-, and this spacer group is connected to the aforementioned A component and also to the adjacent A-X-B. The units are each bonded by an ester bond. Therefore, the compounds used to introduce such spacer groups also have terminal ends of OH
Alternatively, COOH or a reactive derivative thereof is preferable, and specifically, the following compounds are used.

−(CH2)−−を有する化合物: エチレングリコール1,1.3−プロパンジオール、1
.4−ブタンジオール、1,5−ベンタンジオール、l
Compound having -(CH2)--: ethylene glycol 1,1.3-propanediol, 1
.. 4-butanediol, 1,5-bentanediol, l
.

6−ヘキサンジオール、1,8−オクタンジオール、1
゜9−ノナンジオール、1,10−デカンジオール、1
,12−ドデカンジオールなど、アジピン酸、セパチン
酸、アゼライン酸などの脂肪族ジカルボン酸など−(C
H2・CH20)−CH2−CH2−を有する化合物ニ
ジエチレングリコール、トリエチレングリコール、テト
ラエチレングリコールなど 本発明のポリエステル樹脂は上述のAおよびB成分を導
入するに適したアルコールあるいは酸原料化合物を所定
割合で使用し、通常のエステル形成手法により容易に製
造することが可能である。
6-hexanediol, 1,8-octanediol, 1
゜9-nonanediol, 1,10-decanediol, 1
, 12-dodecanediol, aliphatic dicarboxylic acids such as adipic acid, sepatic acid, azelaic acid,
The polyester resin of the present invention, such as compounds having H2・CH20)-CH2-CH2-, diethylene glycol, triethylene glycol, and tetraethylene glycol, is prepared by adding an alcohol or acid raw material compound suitable for introducing the above-mentioned A and B components in a predetermined ratio. can be easily produced using conventional ester formation techniques.

すなわち原料化合物を通常はアルコール過剰に用い、1
30〜300℃の温度で常法によりエステル化反応ある
いはエステル交換反応で反応せしめる。
That is, the raw material compound is usually used in excess of alcohol, and 1
The reaction is carried out by esterification or transesterification using a conventional method at a temperature of 30 to 300°C.

反応は窒素ガスなどの不活性気体を通じつつ、実施する
ことが好ましく、また所望によりエステル化触媒あるい
はエステル交換触媒を用いて行われる。かかる触媒とし
ては鉛、亜鉛、マンガン、バリウム、カルシウム、マグ
ネシウム、リチウム、ゲルマニウム、アンチモンなどの
金属の酸化物、酢酸塩などや、p−)ルエンスルホン酸
、チタン酸アルキルエステルなどや、有機錫化合物など
が好適で、通常酸成分に対し帆01〜0.5重量%程度
の割合で使用せられる。アルコール過剰では末端がヒド
ロキシル基のポリエステルが得られるが、所望によりさ
らに酸無水物を反応させ、末端カルボキシル基に導くこ
とができる。尚、酸過剰でエスチル化反応を実施するこ
とも可能であるが、酸が溶解し難いとか、昇華するなど
、均一反応が困難で、未反応の酸が残存するため、通常
はアルコール過剰でエステル化反応を実施することが好
ましい。
The reaction is preferably carried out while passing an inert gas such as nitrogen gas, and if desired, an esterification catalyst or transesterification catalyst is used. Such catalysts include oxides and acetates of metals such as lead, zinc, manganese, barium, calcium, magnesium, lithium, germanium, and antimony, p-)luenesulfonic acid, alkyl titanate, and organotin compounds. etc. are suitable, and are usually used in a proportion of about 0.1 to 0.5% by weight based on the acid component. If the alcohol is excessive, a polyester having a hydroxyl group at the end can be obtained, but if desired, an acid anhydride can be further reacted to form a terminal carboxyl group. Although it is possible to carry out the esterification reaction with excess acid, it is difficult to achieve a homogeneous reaction because the acid is difficult to dissolve or sublimate, and unreacted acid remains. Preferably, a reaction is carried out.

本発明のポリエステル樹脂には面構造を有する比較的剛
直なメソゲン基(A)と屈曲性スペーサー基(B)とが
エステル結合で結合された単位を繰り返し、エステル結
合で結合して含み、所謂主鎖型高分子液晶化合物を構成
し、その末端はOHあるいはC0OHあるいはそれらの
反応性誘導体で、樹脂酸価とOH価の和が10〜200
、好ましくは20〜100の間に制御され、充分な熱硬
化性を示しうる0分子量に関しては選択せられる各成分
の種類によるが通常、GPCのポリスチレン換算で、数
、平均分子量500〜20000で相転移温度は約80
〜230℃の範囲内にある。尚、本発明は前記Aで示さ
れるメソゲン基の50モル%未満を特定の芳香族環ある
いはシクロヘキサン環構造の有機基、すなわちp−フェ
ニレン、m−フェニレン、0−フェニレンあるいは1.
4−シクロヘキシンで置換しても、所期の液晶性を損な
うことなく本発明目的に適したポリエステル樹脂組成物
が得られることを見出した。
The polyester resin of the present invention contains repeating units in which a relatively rigid mesogenic group (A) having a planar structure and a flexible spacer group (B) are bonded by ester bonds, and are bonded by ester bonds. It constitutes a chain-type polymeric liquid crystal compound, and its terminal end is OH or COOH or a reactive derivative thereof, and the sum of the resin acid value and OH value is 10 to 200.
The molecular weight is preferably controlled between 20 and 100, and exhibits sufficient thermosetting properties.The molecular weight depends on the type of each component selected, but it is generally compatible with a number and average molecular weight of 500 to 20,000 in terms of polystyrene by GPC. The transition temperature is about 80
It is within the range of ~230°C. In addition, in the present invention, less than 50 mol% of the mesogenic group represented by A is replaced with a specific aromatic ring or an organic group having a cyclohexane ring structure, that is, p-phenylene, m-phenylene, 0-phenylene, or 1.
It has been found that even when substituted with 4-cyclohexene, a polyester resin composition suitable for the purpose of the present invention can be obtained without impairing the desired liquid crystallinity.

かくして得られる本発明にかかるポリエステル樹脂組成
物は常温固体で貯安性に優れ、架橋性官能基のヒドロキ
シル基あるいはカルボキシル基を多数有するため、例え
ばヒドロキシルに対してはポリイソシアナート化合物、
アミノプラストなどを、またカルボキシルに対してはグ
リシジル基を有する化合物を硬化剤に選択することによ
り、熱硬化性塗料に用いることができしかも液晶性であ
るため、焼付時のフロー性が極めて良好で外観に優れた
塗膜を与えることができ産業上極めて有用である。
The thus obtained polyester resin composition according to the present invention is solid at room temperature and has excellent storage stability, and has a large number of hydroxyl groups or carboxyl groups as crosslinkable functional groups.
By selecting aminoplast, etc., or a compound having a glycidyl group for carboxyl as a curing agent, it can be used in thermosetting paints, and since it is liquid crystalline, it has extremely good flowability during baking. It is extremely useful industrially as it can provide a coating film with excellent appearance.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

(以下余白) 実施例1 加熱装置、攪拌機、窒素導入管および分留塔を有する反
応器に、4,4゛−ジフェニルカルボン酸ジメチルエス
テル10モル、1,9−ノナンジオール11モル、ジブ
チルスズオキサイド2.2gを仕込み、乾燥窒素下加熱
を開始し、原料を融解させた0次いで130〜230℃
の温度でエステル交換反応させてメタノールを留出させ
た。230℃で保温しメタノール7601を捕集した後
、エステル交換反応を完結させるため10mmHHの減
圧下で1時間反応させてポリエステル■を得た。
(Left below) Example 1 10 moles of 4,4'-diphenylcarboxylic acid dimethyl ester, 11 moles of 1,9-nonanediol, and 2 moles of dibutyltin oxide were placed in a reactor equipped with a heating device, a stirrer, a nitrogen inlet tube, and a fractionating column. .2g was charged and heating was started under dry nitrogen to melt the raw materials at 0 and then 130-230°C.
Methanol was distilled off by transesterification at a temperature of . After keeping the temperature at 230° C. and collecting methanol 7601, the mixture was reacted for 1 hour under a reduced pressure of 10 mmHH to complete the transesterification reaction to obtain polyester (①).

得られたポリエステルは水酸基価25の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数平均分子量(ポリ
スチレン換算)は6800であった。
The obtained polyester had a curable functional group with a hydroxyl value of 25, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 6,800.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約148℃において大き
な鋭い吸熱ピークを示し、毎分10℃の冷却、をした場
合、約116℃において同じく大きな鋭い発熱ピークが
認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at about 148°C, and when cooled at a rate of 10°C per minute, it showed a large sharp endothermic peak at about 116°C. A large sharp exothermic peak was also observed.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■とブロックイソシアナート化合物フレラ
ン01(IP口■のε−カ10ラクタムブロック、Ba
yer社製、NCO当量= 365)をOH7/NCO
当量比= 1/1に配合し、さらに硬化触媒としてジブ
チル錫ジラウレート 1.0重量%/′全固形分を加え
た後lOμ以下の粒径に粉砕した。この粉末サンプルを
ブリキ板上に塗布し、230℃で20分間焼き付けた。
The thermosetting polyester resin (■) which can form an anisotropic melt phase obtained here and the blocked isocyanate compound Fulleran 01 (epsilon-cal 10 lactam block of IP opening (■), Ba
Manufactured by Yer, NCO equivalent = 365) as OH7/NCO
They were blended at an equivalent ratio of 1/1, and 1.0% by weight/'total solids of dibutyltin dilaurate was added as a curing catalyst, and then ground to a particle size of 10μ or less. This powder sample was applied onto a tin plate and baked at 230°C for 20 minutes.

得られた硬化膜は透明で、且つ平滑であり、熱硬化性ポ
リエステル樹脂として適用できることを確認した。その
結果を第1表に示す。
It was confirmed that the obtained cured film was transparent and smooth and could be applied as a thermosetting polyester resin. The results are shown in Table 1.

実施例2 実施例1で得られたポリエステルr  IOQgを反応
容器に仕込み、乾燥窒素下150℃で溶融状態に保った
まま無水フタル酸6.65gを加え、1時間反応させて
ポリエステル■を得た。
Example 2 The polyester rIOQg obtained in Example 1 was charged into a reaction vessel, and while kept in a molten state at 150°C under dry nitrogen, 6.65 g of phthalic anhydride was added and reacted for 1 hour to obtain polyester ■. .

得られたポリエステルは、水酸基価1.0、酸価22.
0の硬fヒ性官能基を有しており、溶媒としてトリクロ
ルベンゼン、カラム温度135℃でGPC測定した結果
、数平均分子JL(ポリスチレン換算)は7100であ
った。
The obtained polyester had a hydroxyl value of 1.0 and an acid value of 22.
As a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular JL (in terms of polystyrene) was 7100.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約148°Cにおいて大
きな鋭い吸熱ピークを示し、毎分10℃の冷却をした場
合、約108℃において同じく大きな鋭い発熱ピークが
認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it exhibited a large sharp endothermic peak at approximately 148°C, and when cooled at a rate of 10°C per minute, it exhibited a large sharp endothermic peak at approximately 108°C. A large sharp exothermic peak was also observed.

さらに、ヒートステージ1寸m微鏡を用いた直交偏光下
での観察により、光学異方性に基づくテクスチャーを確
認しな。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarization using a heat stage 1-m microscope.

ここで得られた異方性溶融相を形成しうる熱硬fヒ性ポ
リエステル樹脂■とエポキシ樹脂エボトートYD〜01
1(東部化成製、エポキシ当量=475)をOH/エポ
キシ当量比=1/1に配合した後、lOμ以下の粒径に
粉砕する。この粉末サンプルをブリキ板上に塗布し、2
30℃で20分間焼き付けた。得られた硬化膜について
実施例1と同様に評価しその結果を第1表に示す。
The thermosetting polyester resin ■ which can form an anisotropic melt phase obtained here and the epoxy resin Evototo YD~01
1 (manufactured by Tobu Kasei Co., Ltd., epoxy equivalent = 475) was blended at an OH/epoxy equivalent ratio of 1/1, and then ground to a particle size of 10μ or less. Apply this powder sample on a tin plate and
Baked at 30°C for 20 minutes. The obtained cured film was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 4.4″−ジフェニルカルボン酸ジメチルエステル3モ
ル、1,9−ノナンジオール4モル、ジブチルスズオキ
サイド0.8gを仕込み、乾燥窒素下加熱を開始し、原
料を融解させた。次いで130〜230℃の温度でエス
テル交換反応させてメタノールを留出させた。230℃
で保温しメタノール2301を捕集した後、エステル交
換反応を完結させるため10mmHgの減圧下で1時間
反応させてポリエステル■を得た。
Example 3 3 moles of 4.4″-diphenylcarboxylic acid dimethyl ester, 4 moles of 1,9-nonanediol, and 0.8 g of dibutyltin oxide were charged, and heating under dry nitrogen was started to melt the raw materials. Methanol was distilled out by transesterification at a temperature of 230°C.
After keeping the mixture warm and collecting methanol 2301, the mixture was reacted for 1 hour under a reduced pressure of 10 mmHg to complete the transesterification reaction to obtain polyester (2).

得られたポリエステルは水酸基価82の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数平均分子量(ポリ
スチレン換算)は1550であった。
The obtained polyester had a curable functional group with a hydroxyl value of 82, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 1,550.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約138℃において大き
な吸熱ピークを示し、毎分10℃の冷却をした場合、約
95℃において同じく大きな発熱ピークが認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large endothermic peak at about 138°C, and when it was cooled at a rate of 10°C per minute, it showed a similarly large endothermic peak at about 95°C. An exothermic peak was observed.

さらに、ヒートステージ付顕微鏡を用いた直交漏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal light leakage using a microscope with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■について実施例1と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin ① which can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例4 実施例3で得られたポリエステルI[I 100gを反
応容器に仕込み、乾燥窒素下150℃で溶融状態に保っ
たまま無水フタル酸21.7部を加え、1時間反応させ
てポリエステル■を得た。
Example 4 100 g of polyester I [I obtained in Example 3 was charged into a reaction vessel, 21.7 parts of phthalic anhydride was added while keeping it in a molten state at 150°C under dry nitrogen, and the mixture was reacted for 1 hour to form polyester I got it.

得られたポリエステルは、水酸基価1.5、酸価68.
5の硬1ヒ性官能基を有しており、溶媒としてトリクロ
ルベンゼン、カラム温度135℃でGPC測定した結果
、数平均分子量(ポリスチレン換算)は1830であっ
た。
The obtained polyester had a hydroxyl value of 1.5 and an acid value of 68.
As a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 1830.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約135℃において大き
な吸熱ピークを示し、毎分10℃の冷却をした場合、約
96℃において同じく鋭い発熱ピークが認められた。
In addition, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large endothermic peak at about 135°C, and when it was cooled at a rate of 10°C per minute, it showed a similarly sharp peak at about 96°C. An exothermic peak was observed.

さらに、ヒートステージ付顕微鏡を用いた直交情交下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal conditions using a microscope with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂4について実施例2と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin 4 capable of forming an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 2. The results are shown in Table 1.

実施例5 4.4′−ジフェニルカルボン酸ジメチルエステル7モ
ル、1,9−ノナンジオール8モル、ジブチルスズオキ
サイド1.5gを仕込み、乾燥窒素下加熱を開始し、原
料を融解させた。次いで130〜230℃の温度でエス
テル交換反応させてメタノールを留出させた。230℃
で保温しメタノール5301を捕集した後、エステル交
換反応を完結させるため10龍Hgの減圧下で1時間反
応させてポリエステルVを得た。
Example 5 7 moles of 4.4'-diphenylcarboxylic acid dimethyl ester, 8 moles of 1,9-nonanediol, and 1.5 g of dibutyltin oxide were charged, and heating under dry nitrogen was started to melt the raw materials. Then, a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol. 230℃
After keeping warm and collecting methanol 5301, polyester V was obtained by reacting for 1 hour under a reduced pressure of 10 Hg to complete the transesterification reaction.

得られたポリエステルは水酸基価37の硬fヒ性官能基
を有しており、溶媒としてトリクロルベンゼン、カラム
温度135℃でGPC測定した結果、数平均分子量(ポ
リスチレン換算)は4000であった。
The obtained polyester had a hard arsenic functional group with a hydroxyl value of 37, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 4,000.

また、このポリエステルを示差走査熱量計(DSC)で
毎分lO℃の昇温をした場合、約180℃において大き
な鋭い吸熱ピークを示し、毎分10℃の冷却をした場合
、約173℃において同じく大きな鋭い発熱ピークが認
められた。
In addition, when this polyester was heated at 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at about 180°C, and when cooled at 10°C per minute, it showed the same temperature at about 173°C. A large sharp exothermic peak was observed.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂Vについて実施例1と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin V capable of forming an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例6 4.4′−ジフェニルカルボン酸ジメチルエステル7モ
ル、1,6−ヘキサンジオール8モル、ジブチルスズオ
キサイド1.5gを仕込み、乾燥窒素下加熱を開始し、
原料を融解させた。次いで130〜230℃の温度でエ
ステル交換反応させてメタノールを留出させた。230
℃で保温しメタノール530m lを捕集した後、エス
テル交換反応を完結させるため10m+aHHの減圧下
で1時間反応させてポリエステル■を得た。
Example 6 7 moles of 4.4'-diphenylcarboxylic acid dimethyl ester, 8 moles of 1,6-hexanediol, and 1.5 g of dibutyltin oxide were charged, and heating under dry nitrogen was started.
The raw materials were melted. Then, a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol. 230
After keeping the temperature at ℃ and collecting 530 ml of methanol, the mixture was reacted for 1 hour under a reduced pressure of 10 m+aHH to complete the transesterification reaction to obtain polyester ①.

得られたポリエステルは水酸基価40の硬化性官能基を
有しており、溶媒としてI・リクロルベンゼン、カラム
温度135℃でGPC測定した結果、数平均分子量(ポ
リスチレン換算)は4250であった。
The obtained polyester had a curable functional group with a hydroxyl value of 40, and as a result of GPC measurement using I-lychlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 4,250.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約215℃において大き
な鋭い吸熱ピークを示し、毎分10℃の冷却をした場合
、約180℃において同じく大きな鋭い発熱ピークが認
められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it exhibited a large sharp endothermic peak at about 215°C, and when cooled at a rate of 10°C per minute, it showed a similar peak at about 180°C. A large sharp exothermic peak was observed.

さらに、ヒートステージ付屈微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarization using a heat-stage converging microscope.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■について実施例1と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin ① which can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例7 4.4′−ジフェニルカルボン酸ジメチルエステル8モ
ル、テレフタル酸ジメチルエステル2モル、1.9−ノ
ナンジオール11モル、ジブチル錫オキサイド2.2g
を仕込み、乾燥窒素下加熱を開始し、原料を融解させた
0次いで130〜230℃の温度でエステル交換反応さ
せてメタノールを留出させた。
Example 7 8 mol of 4.4'-diphenylcarboxylic acid dimethyl ester, 2 mol of terephthalic acid dimethyl ester, 11 mol of 1.9-nonanediol, 2.2 g of dibutyltin oxide
was charged, heating was started under dry nitrogen, the raw materials were melted, and then a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol.

230℃で保温しメタノール7451を捕集した後、エ
ステル交換反応を完結させるため10mmHHの減圧下
で1時間反応させてポリエステル■を得た。
After keeping the temperature at 230° C. and collecting methanol 7451, the mixture was reacted for 1 hour under a reduced pressure of 10 mmHH to complete the transesterification reaction to obtain polyester ①.

得られたポリエステルは水酸基価26の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数千。
The obtained polyester has a curable functional group with a hydroxyl value of 26, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135°C, it has a value of several thousand.

均分子量(ポリスチレン換算)は6100であった。The average molecular weight (in terms of polystyrene) was 6,100.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約125℃において大き
な吸熱ピークを示し、毎分10℃の冷却をした場合、約
83℃において同じく大きな発熱ピークが認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large endothermic peak at about 125°C, and when it was cooled at a rate of 10°C per minute, it showed a similarly large endothermic peak at about 83°C. An exothermic peak was observed.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■について実施例1と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin ① which can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例8 4.4′−ジフェニルカルボン酸ジメチルエステル6モ
ル、テレフタル酸ジメチルエステル4モル、1.9−ノ
ナンジオール11モル、ジブチル錫オキサイド2.0g
を仕込み、乾燥窒素下加熱を開始し、原料を融解させた
。次いで130〜230℃の温度でエステル交換反応さ
せてメタノールを留出させた。
Example 8 6 moles of 4.4'-diphenylcarboxylic acid dimethyl ester, 4 moles of terephthalic acid dimethyl ester, 11 moles of 1.9-nonanediol, 2.0 g of dibutyltin oxide
was charged and heating under dry nitrogen was started to melt the raw materials. Then, a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol.

230℃で保温しメタノール7601を捕集した後、エ
ステル交換反応を完結させるなめ10mm1−1gの減
圧下で1時間反応させてポリエステル■を得た。
After keeping the temperature at 230 DEG C. and collecting methanol 7601, the mixture was reacted for 1 hour under a reduced pressure of 10 mm 1-1 g to complete the transesterification reaction, thereby obtaining polyester (2).

得られたポリエステルは水酸基価27の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数平均分子量(ポリ
スチレン換算)は5900であった。
The obtained polyester had a curable functional group with a hydroxyl value of 27, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 5,900.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約95℃においてブロー
ドな吸熱ピークを示し、毎分10℃の冷却をした場合、
約83℃において同じくブロードな発熱ピークが認めら
れた。
In addition, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a broad endothermic peak at about 95°C, and when cooled at a rate of 10°C per minute,
A similarly broad exothermic peak was observed at about 83°C.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■について実施例1と同様の方法で硬化性
の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin ① which can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例9 反応溶媒としてトルエン1000g 、ピリジン100
gを仕込んだ反応容器に、2,6−ナフタレンジカルボ
ン酸クロライド0.5モル、テトラエチレングリコール
帆55モルを続いて仕込み、乾燥窒素下前怨念開始し、
100℃の温度で反応させた。IRにより1780cm
  のカルボン酸クラロイドに基づく吸収ピークが消失
するまで反応させてポリエステル■を得た。
Example 9 1000g of toluene and 100g of pyridine as reaction solvents
0.5 mol of 2,6-naphthalene dicarboxylic acid chloride and 55 mol of tetraethylene glycol were added to the reaction vessel containing g, and the reaction was started under dry nitrogen.
The reaction was carried out at a temperature of 100°C. 1780cm by IR
The reaction was carried out until the absorption peak based on the carboxylic acid chloride disappeared, to obtain polyester (2).

得られたポリエステルは水酸基価30の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数平均分子j1(ポ
リスチレン換算)は4900であった。
The obtained polyester had a curable functional group with a hydroxyl value of 30, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecule j1 (in terms of polystyrene) was 4900.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温した場合、約195℃において大きな
鋭い吸熱ピークを示し、毎分10℃の冷却をした場合、
約183℃において同じく発熱ピークが認められた。
In addition, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at about 195°C, and when cooled at a rate of 10°C per minute,
An exothermic peak was also observed at about 183°C.

さらに、ヒートステージ付顕微鏡を用いた直光偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under direct polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂■について、実施例1と同様の方法で硬化
性の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin (1) capable of forming an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

実施例10 反応溶媒としてトルエン1000g 、ピリジン100
gを仕込んだ反応容器に、4−[4’−(カルボニルク
ロライド)ベンゾイルオキシ1安息香酸クロライド0.
5モル、1,9−ノナンジオール0,55モルを続いて
仕込み、乾燥窒素下前熱を開始し、100℃の温度で反
応させた。IRにより1780cn+  のカルボン酸
クラロイドに基づく吸収ピークが消失するまで反応させ
てポリエステルXを得た。
Example 10 Toluene 1000g, pyridine 100g as reaction solvent
4-[4'-(carbonyl chloride)benzoyloxy 1benzoic acid chloride was added to a reaction vessel containing 0.
5 mol, 0.55 mol of 1,9-nonanediol were subsequently charged, preheating under dry nitrogen was started and the reaction was carried out at a temperature of 100°C. Polyester

得られたポリエステルは水酸基価27の硬化性官能基を
有しており、溶媒としてトリクロルベンゼン、カラム温
度135℃でGPC測定した結果、数平均分子量(ポリ
スチレン換算)は5300であった。
The obtained polyester had a curable functional group with a hydroxyl value of 27, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135° C., the number average molecular weight (in terms of polystyrene) was 5,300.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温した場合、約165℃において大きな
鋭い吸熱ピークを示し、毎分10℃の冷却をした場合、
約134℃において同じく発熱ピークが認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at approximately 165°C, and when cooled at a rate of 10°C per minute,
An exothermic peak was also observed at about 134°C.

さらに、ヒートステージ付諷微鏡を用いた直光偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under direct polarized light using a heat-staged microscope.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂Xについて、実施例1と同様の方法で硬化
性の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin X that can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1. The results are shown in Table 1.

比較例1 4.4′−ジフェニルカルボン酸ジメチルエステル20
モル、1.6−ヘキサンジオール21モル、ジブチル錫
オキサイド5.0gを仕込み、乾燥窒素下前熱を開始し
、原料を融解させた。次いで130〜230℃の温度で
エステル交換反応させてメタノールを留出させた。23
0℃で保温しメタノール1500mlを捕集した後、エ
ステル交換反応を完結させるためlmmHgの減圧下で
5時間反応させてポリエステルAを得た。
Comparative example 1 4.4'-diphenylcarboxylic acid dimethyl ester 20
21 moles of 1.6-hexanediol and 5.0 g of dibutyltin oxide were charged, and preheating under dry nitrogen was started to melt the raw materials. Then, a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol. 23
After keeping the temperature at 0° C. and collecting 1500 ml of methanol, polyester A was obtained by reacting for 5 hours under a reduced pressure of 1 mmHg to complete the transesterification reaction.

得られたポリエステルは水酸基価5の硬化性官能基を有
し、溶媒としてトリクロルベンゼン、カラム温度135
℃でGPC測定した結果、数平均分子量(ポリスチレン
換算)は28.000であった。
The obtained polyester has a curable functional group with a hydroxyl value of 5, trichlorobenzene as a solvent, and a column temperature of 135
As a result of GPC measurement at ℃, the number average molecular weight (polystyrene equivalent) was 28.000.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約215℃において大き
な吸熱ピークを示し、毎分10℃の冷却をした場合、約
180°Cにおいて同じく大きな発熱ピークが認められ
た。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large endothermic peak at about 215°C, and when cooled at a rate of 10°C per minute, it showed the same temperature at about 180°C. A large exothermic peak was observed.

さらに、ヒートステージ1寸顕微鏡を用いた直交偏光下
での観察により、光学異方性に基づくテクスチャーを確
認した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarization using a heat stage 1-inch microscope.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂Aについて実施例1と同様の方法で硬化性
の試験を行ったが、硬化膜は白濁したもろい膜で粒子の
形状が残っており、熱硬化性ポリエステル樹脂として適
用できない。この結果を第1表に示す。
A curability test was conducted on the thermosetting polyester resin A capable of forming an anisotropic melt phase obtained here in the same manner as in Example 1, but the cured film was a cloudy brittle film with a particle shape. However, it cannot be used as a thermosetting polyester resin. The results are shown in Table 1.

比較例2 4.4°−ジフェニルカルボン酸ジメチルエステル10
モル、1.4−ブタンジオール11モル、ジブチル錫オ
キサイド2.0gを仕込み、乾燥窒素上加熱を開始し、
原料を融解させた0次いで130〜270℃の温度でエ
ステル交換反応させてメタノールを留出させた。270
℃で保温しメタノール7451を捕集した後、エステル
交換反応を完結させるため10emHgの減圧下で1時
間反応させてポリエステルBを得た。
Comparative Example 2 4.4°-diphenylcarboxylic acid dimethyl ester 10
mol, 11 mol of 1.4-butanediol, and 2.0 g of dibutyltin oxide were charged, and heating over dry nitrogen was started.
The raw materials were melted and then transesterified at a temperature of 130 to 270°C to distill methanol. 270
After keeping the temperature at ℃ and collecting methanol 7451, polyester B was obtained by reacting for 1 hour under a reduced pressure of 10 emHg to complete the transesterification reaction.

得られたポリエステルは水酸基価34の硬化性官能基を
有し、溶媒としてトリクロルベンゼン、カラム温度13
5℃でGPC測定した結果、数平均分子量(ポリスチレ
ン換算)は4400であった。
The obtained polyester has a curable functional group with a hydroxyl value of 34, trichlorobenzene as a solvent, and a column temperature of 13
As a result of GPC measurement at 5° C., the number average molecular weight (in terms of polystyrene) was 4,400.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10℃の昇温をした場合、約255℃において大き
な鋭い吸熱ピークを示し、毎分10℃の冷却をした場合
、約245℃において同じく大きな鋭い発熱ピークが認
められた。
In addition, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at about 255°C, and when cooled at a rate of 10°C per minute, it showed a similar peak at about 245°C. A large sharp exothermic peak was observed.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal polarized light using a microscope equipped with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂Bについて実施例1と同様の方法で硬化性
の試験を行ったが、熔融せず粒子の形状が残っており、
熱硬化性ポリエステル樹脂として適用できない。この結
果を第1表に示す。
The thermosetting polyester resin B capable of forming an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 1, but it did not melt and the particle shape remained.
Cannot be used as a thermosetting polyester resin. The results are shown in Table 1.

比較例3 4.4′−ジフェニルカルボン酸ジメチルエステル2モ
ル、テレフタル酸ジメチルエステル8モル、1.9−ノ
ナンジオール11モル、ジブチル錫オキサイド2.0g
を仕込み、乾燥窒素上加熱を開始し、原料を融解させた
。次いで130〜230℃の温度でエステル交換反応さ
せてメタノールを留出させた。
Comparative Example 3 2 mol of 4.4'-diphenylcarboxylic acid dimethyl ester, 8 mol of terephthalic acid dimethyl ester, 11 mol of 1.9-nonanediol, 2.0 g of dibutyltin oxide
was charged and heating over dry nitrogen was started to melt the raw materials. Then, a transesterification reaction was carried out at a temperature of 130 to 230°C to distill methanol.

230℃で保温しメタノール7451を捕集した後、エ
ステル交換反応を完結させるため10mmHHの減圧下
で1時間反応させてポリエステルCを得た。
After keeping the temperature at 230°C and collecting methanol 7451, polyester C was obtained by reacting for 1 hour under a reduced pressure of 10 mmHH to complete the transesterification reaction.

得られたポリエステルは水酸基価8の硬化性官能基を有
し、溶媒としてトリクロルベンゼン、カラム温度135
℃でGPC測定した結果、数平均分子量(ポリスチレン
換算)は3940であった。
The obtained polyester has a curable functional group with a hydroxyl value of 8, trichlorobenzene is used as a solvent, and the column temperature is 135.
As a result of GPC measurement at ℃, the number average molecular weight (polystyrene equivalent) was 3940.

また、このポリエステルを示差走査熱量計(DSC)で
毎分lO℃の昇温をした場合、はっきりした吸熱ピーク
が認められなかった。毎分lO℃の冷却をした場合につ
いても同じく発熱ピークが認められなかった。
Further, when this polyester was heated at 10° C. per minute using a differential scanning calorimeter (DSC), no clear endothermic peak was observed. Similarly, no exothermic peak was observed when cooling was performed at 10° C. per minute.

さらに、ヒートステージ付顕微鏡を用いた直交偏光下で
の観察により、光学異方性に基づくテクスチャーは全く
認められなかった。
Furthermore, observation under orthogonal polarization using a microscope with a heat stage did not reveal any texture based on optical anisotropy.

ここで得られたポリエステル樹脂Cは無定型樹脂で相転
移点をもたなかった。
The polyester resin C obtained here was an amorphous resin and did not have a phase transition point.

実施例11 1.10−デカンジカルボン酸ジメチルエステル7モル
、4.4′−ビフェノール8モル、ジブチル錫オキサイ
ド1.5gを仕込み、乾燥窒素上加熱を開始し、原料を
融解させた。次いで130〜250°Cの温度でエステ
ル交換反応させてメタノールを留出させた。250℃で
保温しメタノール500m lを捕集した後、エステル
交換反応を完結させるため10關Hgの減圧下で2時間
反応させた。200℃まで冷却した時点からN−メチル
ピロリドンlo00gを徐々に加えていく、続いて15
0℃に保ったまま、無水フタル酸295gを加え1時間
反応させた後、トルエン5000m lを入れた混合槽
に攪拌しながら滴下した。
Example 11 7 moles of 1.10-decanedicarboxylic acid dimethyl ester, 8 moles of 4.4'-biphenol, and 1.5 g of dibutyltin oxide were charged, and heating over dry nitrogen was started to melt the raw materials. Then, a transesterification reaction was carried out at a temperature of 130 to 250°C to distill methanol. After keeping the temperature at 250° C. and collecting 500 ml of methanol, the mixture was reacted for 2 hours under a reduced pressure of 10 degrees Hg to complete the transesterification reaction. After cooling to 200°C, gradually add 00g of N-methylpyrrolidone, then add 150g of N-methylpyrrolidone.
While maintaining the temperature at 0°C, 295 g of phthalic anhydride was added and reacted for 1 hour, and then added dropwise to a mixing tank containing 5000 ml of toluene with stirring.

この混合槽内で析出した樹脂を濾過してポリエステルX
Iを得た。
The resin precipitated in this mixing tank is filtered and polyester
I got I.

得られたポリエステルは水酸基価0.1、酸価35の硬
化性官能基を有し、溶媒としてトリクロルベンゼン、カ
ラム温度135°CでGPC測定した結果、数平均分子
量(ポリスチレン換算)は4680であった。
The obtained polyester has a curable functional group with a hydroxyl value of 0.1 and an acid value of 35, and as a result of GPC measurement using trichlorobenzene as a solvent and a column temperature of 135°C, the number average molecular weight (in terms of polystyrene) was 4680. Ta.

また、このポリエステルを示差走査熱量計(DSC)で
毎分10°Cの昇温をした場合、約205℃において大
きな鋭い吸熱ピークを示し、毎分10℃の冷却をした場
合、約183℃において同じく大きな鋭い発熱ピークが
認められた。
Furthermore, when this polyester was heated at a rate of 10°C per minute using a differential scanning calorimeter (DSC), it showed a large sharp endothermic peak at about 205°C, and when cooled at a rate of 10°C per minute, it showed a large sharp endothermic peak at about 183°C. A large sharp exothermic peak was also observed.

さらに、ヒートステージ付顕微鏡を用いた直交漏光下で
の観察により、光学異方性に基づくテクスチャーを確認
した。
Furthermore, the texture based on optical anisotropy was confirmed by observation under orthogonal light leakage using a microscope with a heat stage.

ここで得られた異方性溶融相を形成しうる熱硬化性ポリ
エステル樹脂XIについて実施例2と同様の方法で硬化
性の試験を行った。この結果を第1表に示す。
The thermosetting polyester resin XI which can form an anisotropic melt phase obtained here was subjected to a curability test in the same manner as in Example 2. The results are shown in Table 1.

(以下余白)(Margin below)

Claims (4)

【特許請求の範囲】[Claims] (1)式 A−X−B (式中、Aの100〜50モル%は2コ以上のベンゼン
環がパラ位で相互に結合されてなる基、2コ以上のベン
ゼン環がパラ位でアゾ、アゾキシ、エステルあるいはト
ランスビニレンにより結合されてなる基および2,6−
ナフチレン基からなる群より選ばれるメソゲン基で、5
0モル%未満はp−フェニレン基、m−フェニレン基、
o−フェニレン基あるいはトランス1,4−シクロヘキ
シレン基であってもかまわない;Bは−(CH_2)_
n−または ▲数式、化学式、表等があります▼で表されるスペーサ
ー基; nは2〜20、mは1〜19の整数;Xはエステル結合
) で示される繰り返し単位からなり、各隣接単位はエステ
ル結合で結合され、末端はOHあるいはCOOH基ある
いはそれらの反応性誘導体で、酸価とOH価の和が10
〜200である、異方性溶融相を形成しうる熱硬化性ポ
リエステル樹脂組成物。
(1) Formula A-X-B (In the formula, 100 to 50 mol% of A is a group formed by two or more benzene rings bonded to each other at the para position, , azoxy, ester or transvinylene, and 2,6-
A mesogenic group selected from the group consisting of naphthylene groups, 5
Less than 0 mol% is p-phenylene group, m-phenylene group,
It may be an o-phenylene group or a trans-1,4-cyclohexylene group; B is -(CH_2)_
A spacer group represented by n- or ▲ (there are mathematical formulas, chemical formulas, tables, etc.); n is an integer of 2 to 20, m is an integer of 1 to 19; X is an ester bond), and each adjacent unit is connected by an ester bond, and the terminal is an OH or COOH group or a reactive derivative thereof, and the sum of the acid value and OH value is 10.
200, a thermosetting polyester resin composition capable of forming an anisotropic melt phase.
(2)相転移溶融温度が80〜230℃である特許請求
の範囲第1項記載の組成物。
(2) The composition according to claim 1, which has a phase transition melting temperature of 80 to 230°C.
(3)水酸基価が20〜100である特許請求の範囲第
1項記載の組成物。
(3) The composition according to claim 1, which has a hydroxyl value of 20 to 100.
(4)数平均分子量が500〜20000である特許請
求の範囲第1項記載の組成物。
(4) The composition according to claim 1, which has a number average molecular weight of 500 to 20,000.
JP25648887A 1987-10-12 1987-10-12 Thermosetting polyester resin composition Pending JPH0198618A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25648887A JPH0198618A (en) 1987-10-12 1987-10-12 Thermosetting polyester resin composition
AU23620/88A AU612707B2 (en) 1987-10-12 1988-10-11 Thermosetting polyester resin and powder coating resinous composition containing the same
KR1019880013307A KR890006697A (en) 1987-10-12 1988-10-12 Thermosetting polyester resin and resin composition for powder coating containing this resin
EP88309548A EP0312331B1 (en) 1987-10-12 1988-10-12 Thermosetting polyester resin and powder coating resinous composition containing the same
DE3853865T DE3853865T2 (en) 1987-10-12 1988-10-12 Thermosetting polyester resin and powder coating resin composition containing this polyester.
US07/560,226 US5306806A (en) 1987-10-12 1990-07-20 Thermosetting polyester resin and powder coating resinous composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25648887A JPH0198618A (en) 1987-10-12 1987-10-12 Thermosetting polyester resin composition

Publications (1)

Publication Number Publication Date
JPH0198618A true JPH0198618A (en) 1989-04-17

Family

ID=17293334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25648887A Pending JPH0198618A (en) 1987-10-12 1987-10-12 Thermosetting polyester resin composition

Country Status (1)

Country Link
JP (1) JPH0198618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010050202A1 (en) * 2008-10-30 2012-03-29 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
WO2012090407A1 (en) 2010-12-27 2012-07-05 東レ株式会社 Wholly aromatic liquid crystal polyester and method for manufacturing same
JPWO2011033815A1 (en) * 2009-09-16 2013-02-07 株式会社カネカ Organic thermal conductive additive, resin composition and cured product
JP2013221117A (en) * 2012-04-18 2013-10-28 Kaneka Corp Thermoplastic resin composition with high thermal conductivity
JP2015196794A (en) * 2014-04-02 2015-11-09 ポリプラスチックス株式会社 Thermosetting liquid crystal polyester composition and cured product of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010050202A1 (en) * 2008-10-30 2012-03-29 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
JP5731199B2 (en) * 2008-10-30 2015-06-10 株式会社カネカ High thermal conductivity thermoplastic resin composition and molded article of thermoplastic resin
JPWO2011033815A1 (en) * 2009-09-16 2013-02-07 株式会社カネカ Organic thermal conductive additive, resin composition and cured product
JP6133012B2 (en) * 2009-09-16 2017-05-24 株式会社カネカ Organic thermal conductive additive, resin composition and cured product
WO2012090407A1 (en) 2010-12-27 2012-07-05 東レ株式会社 Wholly aromatic liquid crystal polyester and method for manufacturing same
US8440780B2 (en) 2010-12-27 2013-05-14 Toray Industries, Inc. Wholly aromatic liquid crystalline polyester and method of producing the same
JP2013221117A (en) * 2012-04-18 2013-10-28 Kaneka Corp Thermoplastic resin composition with high thermal conductivity
JP2015196794A (en) * 2014-04-02 2015-11-09 ポリプラスチックス株式会社 Thermosetting liquid crystal polyester composition and cured product of the same

Similar Documents

Publication Publication Date Title
KR100786659B1 (en) Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers
KR960008480B1 (en) Polymeric vehicle for coating
EP0312331B1 (en) Thermosetting polyester resin and powder coating resinous composition containing the same
JPS61174222A (en) Thermotropic polyester
JPS6251292B2 (en)
JPH0198618A (en) Thermosetting polyester resin composition
CN100580003C (en) Method for manufacturing thermotropic liquid-crystalline polymer
JPH01221469A (en) Powder coating resin composition
JPH0198619A (en) Thermoplastic polyester resin composition
US5306806A (en) Thermosetting polyester resin and powder coating resinous composition containing the same
JP4559789B2 (en) Liquid crystalline polymer composition containing non-liquid crystalline optically active polyester
JP2681229B2 (en) Liquid crystalline polymer
JPH0735435B2 (en) Copolyester, molded article thereof, composite structure thereof, and method for producing copolyester
JP2630357B2 (en) Resin composition for powder coating
JPH09309946A (en) Aromatic polyester having branched aliphatic side chains
US5185424A (en) Thermotropic polyesteramides
AU624855B2 (en) Thermotropic liquid crystalline aromatic polyesters
Ranganathan Synthesis and Characterization of Main Chain Thermotropic Liquid Crystalline Polyurethanes and Polyesters Containing Biphenyl Mesogens Based on AB-Type Self-Polycondensation Approach: Effect of Connectivity
JPH02269722A (en) Crosslinkable thermotropic liquid-crystal aromatic polyester
JP3950931B2 (en) Cholesteric liquid crystalline polyester composition
JPS63270729A (en) Wholly aromatic polyester and its production
Kricheldorf et al. LC‐polyimides XXXIV. Noncrystalline thermotropic copoly (ester‐imide) s based on PET
Choi et al. Synthesis and Characterization of Thermotropic Aromatic Polyesters Derived from 3-Phenyl-4.4′-biphenyldicarboxylic Acid
JPH09316345A (en) Thermosetting resin composition
JPH01201327A (en) Thermotropic liquid crystal aromatic ester