JPS63171890A - Production of alloy foil - Google Patents

Production of alloy foil

Info

Publication number
JPS63171890A
JPS63171890A JP190287A JP190287A JPS63171890A JP S63171890 A JPS63171890 A JP S63171890A JP 190287 A JP190287 A JP 190287A JP 190287 A JP190287 A JP 190287A JP S63171890 A JPS63171890 A JP S63171890A
Authority
JP
Japan
Prior art keywords
metal
alloy
fine powder
insoluble
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP190287A
Other languages
Japanese (ja)
Inventor
Shigeo Matsubara
茂雄 松原
Akinobu Takezoe
竹添 明信
Shoji Inoue
正二 井上
Yukihiro Shirataki
白滝 之博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP190287A priority Critical patent/JPS63171890A/en
Publication of JPS63171890A publication Critical patent/JPS63171890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce alloy foil, by preparing an electrolytic bath contg. ions which deposit as a metal by electrolysis, suspending fine powder of an insoluble metal in the bath, depositing thin foil on the cathode and alloying it by heating after stripping. CONSTITUTION:An electrolytic bath contg. ions of a metal such as Cu, Fe, Ni, Zn, Sn, Pb, Co or Cr capable of depositing on the cathode by electrolysis is prepd. and fine powder of a metal or alloy which does not dissolve in the bath is suspended in the bath. The particle size of the fine powder is <=2mum. The resulting electrolytic bath is electrolyzed to form a thin film of a deposited metal contg. the suspended powdery metal on the surface of a rotating drum made of Ti or Ta having superior releasability as the cathode. The thin film is stripped from the drum and heated to a high temp. in vacuum or in an atmosphere of an inert gas such as Ar or N2 to alloy the deposited metal with the suspended metal by counter diffusion. Thus, alloy foil is stably produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比較的簡単な工程で安定して実施でき従って
コスト的にも有利な合金箔の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an alloy foil that can be stably performed through relatively simple steps and is therefore advantageous in terms of cost.

〔従来の技術〕[Conventional technology]

合金箔には純金属箔では得られない強度、耐食性、耐熱
性、磁気特性等の特性を有するものがあり、近年その用
途が開発されつつある。
Some alloy foils have properties such as strength, corrosion resistance, heat resistance, and magnetic properties that cannot be obtained with pure metal foils, and their uses are being developed in recent years.

従来、このような合金箔を製造する方法としては、圧延
法と電解法とがあった。圧延法は合金インゴットを分塊
、熱延を経てホットコイルとし、更に冷間圧延と焼鈍と
を繰り返して所定の厚さまでに圧延する方法であって、
最近では5−程度のものまで製造が可能になってきてい
る。しかしながらこの圧延法では生産性や歩留りが非常
に低くコストが高いという経済的な問題点以外に、難圧
延性の合金にはこの方法を実施することができないとい
う根本的に重大な問題点があった。一方。
Conventionally, methods for producing such alloy foils include a rolling method and an electrolytic method. The rolling method is a method in which an alloy ingot is made into a hot coil through blooming and hot rolling, and then cold rolling and annealing are repeated to roll it to a predetermined thickness.
Recently, it has become possible to manufacture products up to about 5. However, in addition to the economic problems of extremely low productivity and yield and high cost, this rolling method also has a fundamentally serious problem that it cannot be applied to alloys that are difficult to roll. Ta. on the other hand.

電解法は金属製回転ドラムを陰極として合金成分のイオ
ンを含む電解液中で回転ドラム面上に合金を電着させつ
つ順次これを剥離して合金箔を連続的に製造する方法で
あり、厚さの薄い合金の箔が一挙に得られる利点があり
、現在この方法で鉄−ニッケル、鉄−ニツケルーコバル
ト、鉄−クロム等の合金箔が製造されている。しかなが
らこの電解法では合金として析出させる2種又はそれ以
上の金属イオンの析出電位が実用的電流密度のある範囲
にわたって等しいことが必要であり、このため製造可能
な合金箔はかなり限定されてしまうという重大な問題点
があった。
The electrolytic method is a method in which alloy foil is continuously manufactured by electrodepositing an alloy onto the rotating drum surface in an electrolytic solution containing ions of alloy components using a metal rotating drum as a cathode, and then sequentially peeling it off. This method has the advantage that thin alloy foils can be obtained at once, and currently iron-nickel, iron-nickel-cobalt, iron-chromium, and other alloy foils are manufactured using this method. However, this electrolytic method requires that the deposition potentials of two or more metal ions to be deposited as an alloy be equal over a certain range of practical current densities, and for this reason, the types of alloy foils that can be manufactured are considerably limited. There was a serious problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記従来技術の問題点を解決し。 The present inventors solved the problems of the prior art described above.

比較的簡単な工程で安定して実施できてコスト的にも有
利であり、更に2種以上の広い範囲にわたる金属の組合
せの合金箔を製造することのできる方法を提供すること
を目的に検討した結果1本発明に到達したものである。
The purpose of this study was to provide a method that is relatively simple, can be carried out stably, is cost-effective, and can produce alloy foils with a wide range of combinations of two or more metals. Result 1: The present invention has been achieved.

即ち、本発明は、電解により金属として析出する金属イ
オンを含有する電解浴に該電解浴に不溶の不溶性金属の
微粉末を懸濁させて電解を行なって析出金属と共に上記
不溶性金属の微粉末を電極上に付着させて得た金属箔を
該電極から剥離した後、該金属箔に熱処理を施して祈出
金属及び不溶性金属を相互に拡散させて合金化すること
を特徴とする合金箔の製造方法に関するものである。
That is, the present invention suspends a fine powder of an insoluble metal in an electrolytic bath containing metal ions that are precipitated as a metal by electrolysis, and performs electrolysis to remove the fine powder of the insoluble metal along with the precipitated metal. Manufacture of an alloy foil characterized in that the metal foil obtained by adhering to an electrode is peeled from the electrode, and then the metal foil is subjected to heat treatment to mutually diffuse the praying metal and the insoluble metal to form an alloy. It is about the method.

〔構成の説明〕[Explanation of configuration]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

金属イオンとなって含有されている電解浴から電解によ
って陰極上に析出可能な金属としては、銅、鉄、ニッケ
ル、亜鉛、スズ、鉛、コバルト。
Metals that can be deposited on the cathode by electrolysis from the electrolytic bath containing metal ions include copper, iron, nickel, zinc, tin, lead, and cobalt.

クロムなどがある。また、このような金属として電気メ
ツキ可能な公知の合金も含めて考えることができる0本
発明において使用するこれらの金属又は合金を析出させ
るための電解浴としては、これらの金属又は合金のみか
ら成る金属箔を電解法で製造するための公知の電解浴を
用いることが出来る。このような電解浴に含まれている
金属成分を目的の合金箔の金属成分に利用し、それだけ
では不足する金属成分として上記電解浴に不溶性の純金
属又は合金(以下、不溶性金属と言う)の微粉末を添加
して浴中に懸濁させる。不溶性金属の微粉末としては、
電解によって析出させる金属の電解浴に溶解せず大気中
で安定な純金属や合金の微粉末であればよく、その粒径
は小さいほど浴中によく分散して比較的比重の大きい純
金属や合金粉末でも沈みにくいので好ましい0通常は、
 27j以下の粒径のものを使用する。これは1粒径が
2pを超えると電解時に析出金属と共に陰極上に付着す
る不溶性金属の付着量の変動が大きく、またメッキ層中
に均一に分散しなくなる等の理由による。粒径の下限は
設ける必要がなく、現在粒径1pまでは入手容易である
There is chromium etc. In addition, such metals may include known alloys that can be electroplated.The electrolytic bath for depositing these metals or alloys used in the present invention may consist only of these metals or alloys. A known electrolytic bath for manufacturing metal foil by electrolytic method can be used. The metal components contained in such an electrolytic bath are used as the metal components of the target alloy foil, and pure metals or alloys that are insoluble in the electrolytic bath (hereinafter referred to as insoluble metals) are used as the metal components that are insufficient. Add fine powder and suspend in the bath. As a fine powder of insoluble metal,
Fine powders of pure metals or alloys that do not dissolve in the electrolytic bath of the metal to be deposited by electrolysis and are stable in the atmosphere are sufficient.The smaller the particle size, the better the particles will be dispersed in the bath, and the finer particles of pure metals or alloys with relatively high specific gravity can be used. It is preferable because even alloy powder does not sink easily. 0Usually,
Use particles with a particle size of 27j or less. This is because if the particle size exceeds 2p, the amount of insoluble metal deposited on the cathode together with the precipitated metal during electrolysis will vary greatly and will not be uniformly dispersed in the plating layer. There is no need to set a lower limit for the particle size, and particles up to particle size 1p are currently readily available.

上記の如く不溶性金属の微粉末を添加した電解液を使用
し、公知の電解法に従って先ず合金化されてない金属箔
を造る。すなわち、例えばチタン。
An unalloyed metal foil is first prepared according to a known electrolytic method using an electrolytic solution to which fine powder of an insoluble metal is added as described above. i.e. titanium, for example.

タンタル等の剥離性を有する金属で少なくとも周面を形
成している回転ドラムを陰極として上記電解液を極間に
供給しながら電気分解を行ないつつこの回転ドラムを回
転させると、電気分解によって析出する析出金属と共に
不溶性金属の微粉末がドラム表面に付着して金属箔が形
成され、この金属箔を連続的に剥離しながら巻き芯に巻
き取るのである0次いで、このようにして得られた析出
金属素地中に純金属又は合金の微粉末を分散せしめた金
属箔を、好ましくはアルゴン、窒素、真空等の不活性な
雰囲気下で熱処理して相互の金属間で拡散せしめて合金
化するのである。温度2時間等の熱処理条件や雰囲気の
種類は目的とする合金により既知の技術に従って決める
ことができる。
When this rotating drum is rotated while performing electrolysis while supplying the above-mentioned electrolytic solution between the electrodes using a rotating drum whose circumferential surface is formed of at least a peelable metal such as tantalum as a cathode, the electrolytic solution is deposited by electrolysis. Fine powder of insoluble metal adheres to the surface of the drum along with the precipitated metal to form a metal foil, and this metal foil is continuously peeled off and wound onto a winding core.Next, the precipitated metal thus obtained is A metal foil in which fine powder of pure metal or alloy is dispersed in a matrix is heat-treated, preferably in an inert atmosphere such as argon, nitrogen, or vacuum, to diffuse the metals and form an alloy. The heat treatment conditions such as temperature for 2 hours and the type of atmosphere can be determined according to known techniques depending on the target alloy.

〔効果〕〔effect〕

本発明方法は、電解法によって合金箔を製造するための
電解浴に不溶性金属の微粉末を懸濁させて電解を行なっ
て析出金属と共に不溶性金属の微粉末を電極上に付着さ
せて得た金属箔を電極から剥離した後に、これに熱処理
を施して合金化する構成を採ったことにより、難圧延法
のため圧延法を適用することのできない合金や合金成分
の組合せが電解法を適用することのぞきない合金につい
ても、これらの合金箔を比較的簡単な工程で、コスト的
にも有利に製造することができる。
The method of the present invention involves suspending a fine powder of an insoluble metal in an electrolytic bath for producing alloy foil by an electrolytic method, and performing electrolysis to deposit the fine powder of an insoluble metal on an electrode together with the precipitated metal. By adopting a structure in which the foil is heat-treated and alloyed after being peeled from the electrode, it is possible to apply the electrolytic method to alloys and combinations of alloy components that cannot be applied by the rolling method due to the difficult rolling method. As for alloys that do not show through, these alloy foils can be produced in a relatively simple process and cost-effectively.

〔実施例〕〔Example〕

タンタルの回転ドラムを陰極とし表面に白金メッキした
タンタル電極を陽極として構成し電解槽の極間に、塩化
第1鉄(Fe(u、 ・nH,O) 600 g / 
Qを主成分とする電解浴に、90%Cr−10%Niの
合金の微粉末(平均粒径24)を50g/Qの濃度で添
加し懸濁させたものを100℃に昇温しで送り込みつつ
30〜50A#dの電流密度で電解し、回転ドラムに付
着形成された金属箔を回転ドラムから連続的に剥離して
巻き取り、上記合金の微粉末を15重量%含む厚さ35
−2板幅200■の金属箔のコイルを得た0次いでこの
金属箔をアルゴン雰囲気下1100℃で6時間熱処理し
た。得られた合金箔の断面を電子線マイクロアナライザ
ー(EPMA)で分析したところ、Fe−13重量%C
r−2重量%Niのほぼ均質な合金箔であった。
A rotating tantalum drum was used as the cathode, and a tantalum electrode whose surface was plated with platinum was used as the anode. Ferrous chloride (Fe(u, ・nH, O) 600 g/
Fine powder of 90% Cr-10% Ni alloy (average particle size 24) was added at a concentration of 50 g/Q to an electrolytic bath mainly composed of Q, and the suspension was heated to 100°C. While feeding, electrolysis is carried out at a current density of 30 to 50 A#d, and the metal foil formed on the rotating drum is continuously peeled off from the rotating drum and wound up to a thickness of 35 mm containing 15% by weight of the fine powder of the above alloy.
-2 A coil of metal foil having a plate width of 200 cm was obtained.Then, this metal foil was heat treated at 1100 DEG C. for 6 hours in an argon atmosphere. When the cross section of the obtained alloy foil was analyzed using an electron beam microanalyzer (EPMA), it was found that Fe-13% by weight C
It was a substantially homogeneous alloy foil containing r-2% by weight Ni.

Claims (1)

【特許請求の範囲】 1 電解により金属として祈出する金属イオンを含有す
る電解浴に該電解浴に不溶の不溶性金属の微粉末を懸濁
させて電解を行なって析出金属と共に上記不溶性金属の
微粉末を電極上に付着させて得た金属箔を該電極から剥
離した後、該金属箔に熱処理を施して祈出金属及び不溶
性金属を相互に拡散させて合金化することを特徴とする
合金箔の製造方法。 2 不溶性金属として純金属を使用する特許請求の範囲
第1項に記載の合金箔の製造方法。 3 不溶性金属として合金を使用する特許請求の範囲第
1項に記載の合金箔の製造方法。 4 不溶性金属の微粉末として粒径が2μm以下のもの
を使用する特許請求の範囲第1項から第3項までのいず
れか1項に記載の合金箔の製造方法。 5 合金箔に施す熱処理を不活性な雰囲気下で行なう特
許請求の範囲第1項から第4項までのいずれか1項に記
載の合金箔の製造方法。
[Scope of Claims] 1. A fine powder of an insoluble metal that is insoluble in the electrolytic bath is suspended in an electrolytic bath containing metal ions to be deposited as a metal by electrolysis, and the fine powder of the insoluble metal is removed together with the precipitated metal. An alloy foil characterized in that after a metal foil obtained by adhering powder onto an electrode is peeled from the electrode, the metal foil is subjected to heat treatment to mutually diffuse the praying metal and the insoluble metal to form an alloy. manufacturing method. 2. The method for producing an alloy foil according to claim 1, wherein a pure metal is used as the insoluble metal. 3. The method for producing alloy foil according to claim 1, wherein an alloy is used as the insoluble metal. 4. The method for manufacturing an alloy foil according to any one of claims 1 to 3, wherein the insoluble metal fine powder has a particle size of 2 μm or less. 5. The method for producing an alloy foil according to any one of claims 1 to 4, wherein the heat treatment to be applied to the alloy foil is performed in an inert atmosphere.
JP190287A 1987-01-09 1987-01-09 Production of alloy foil Pending JPS63171890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP190287A JPS63171890A (en) 1987-01-09 1987-01-09 Production of alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP190287A JPS63171890A (en) 1987-01-09 1987-01-09 Production of alloy foil

Publications (1)

Publication Number Publication Date
JPS63171890A true JPS63171890A (en) 1988-07-15

Family

ID=11514508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP190287A Pending JPS63171890A (en) 1987-01-09 1987-01-09 Production of alloy foil

Country Status (1)

Country Link
JP (1) JPS63171890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172713A (en) * 2019-06-26 2019-08-27 天长市祥龙电气有限公司 A kind of tin plating copper foil processing method of high shielding properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172713A (en) * 2019-06-26 2019-08-27 天长市祥龙电气有限公司 A kind of tin plating copper foil processing method of high shielding properties

Similar Documents

Publication Publication Date Title
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
US4349581A (en) Method for forming an anticorrosive coating on a metal substrate
JPH0681187A (en) Method for forming metal foam and metal foam obtained by said method
CN109306487A (en) Electromagnetic shielding material and the preparation method and application thereof based on Kapton
JPS59100283A (en) Metal products and manufacture
US2085543A (en) Process for coating metals
CN109306459A (en) Two-sided conductive electromagnetic shielding material of a kind of high temperature resistant and the preparation method and application thereof
JP2003525346A (en) A method for making surface-treated cold-rolled steel sheets that can be deep drawn or drawn, and preferably cold rolled steel sheets for making cylindrical containers, especially battery containers.
WO2017159324A1 (en) Conductive material and method for producing same
JPH03173798A (en) Formation of high temperature gas corrosion layer deposited electrically
US2805192A (en) Plated refractory metals
US3871973A (en) Electroplating of iron and coating substrates with an iron-aluminum coating
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPS63171890A (en) Production of alloy foil
US4601795A (en) Alloy coating method
US4212725A (en) Electrodes for electrolysis purposes
JP2691368B2 (en) Method for electrolytic zinc coating of stainless steel
JPH01152294A (en) Production of material for insoluble anode
JPS60187690A (en) Activated metal anode and manufacture
JPH01129987A (en) Production of alloy foil and device therefor
US3046205A (en) Nickel-aluminum alloy coatings
JPS6360243A (en) Manufacture of alloy foil
JPS63203786A (en) Production of metallic foil by electrolysis
JP2529557B2 (en) Lead alloy insoluble anode
US2763606A (en) Electrodepositing baths and plating methods