JPS63171838A - Esr melting device - Google Patents

Esr melting device

Info

Publication number
JPS63171838A
JPS63171838A JP293787A JP293787A JPS63171838A JP S63171838 A JPS63171838 A JP S63171838A JP 293787 A JP293787 A JP 293787A JP 293787 A JP293787 A JP 293787A JP S63171838 A JPS63171838 A JP S63171838A
Authority
JP
Japan
Prior art keywords
melting
voltage
electrode
current
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP293787A
Other languages
Japanese (ja)
Inventor
Iwao Sugitani
杉谷 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP293787A priority Critical patent/JPS63171838A/en
Publication of JPS63171838A publication Critical patent/JPS63171838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide an ESR melting device which has a wide setting rang of melting conditions and can prevent malfunction, by comparing the amplitude amt. and reference value of melting current and making constant value or follow-up control via the increase and decrease in the melting voltage according to the result of said comparison. CONSTITUTION:A difference between the detected value and the set value is positive if the output detected by a current amplitude amt. detector 28 is smaller than the set value of a melting current amplitude program device 26, i.e., if the erosion of an electrode is large as shown in the figure. As a result, the above-mentioned output is amplified by a current amplitude amt. controller 25 and the output voltage of a voltage regulating transformer 32 is gradually increased via a melting voltage controller 18 and a voltage increasing/decreasing driver 14. The melting voltage 20' and melting current 12' are consequently respectively increased successively in the average value and amplitude amt. in parallel. The difference between said output and the set value of the device 26, i.e., the input to the controller 25 is decreased by an increase in the current amplitude amt., i.e., an increase in the output of the detector 28. The input to the controller 18 is decreased by the increase in the voltage 20' simultaneously therewith, by which the output thereof is decreased to substantially zero and the voltage increasing/decreasing driver 14 is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エレクトロ・スラブ・リメルト(本発明にお
いてESRと記す)装置の特に溶解制御系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electro-slab remelting (hereinafter referred to as ESR) apparatus, particularly a melting control system.

〔従来の技術〕[Conventional technology]

ESR溶解法の概要を従来のESR装置の例で説明する
。第4図は、従来法による溶解制御系を有するESR溶
解装置の一例を示す図である。
An outline of the ESR dissolution method will be explained using an example of a conventional ESR device. FIG. 4 is a diagram showing an example of an ESR melting apparatus having a conventional melting control system.

るつぼl内に導電性スラグ4が高温溶融状態で収容され
、該スラグ4の液面下に消耗電極(以下電極と記す)3
がその下端部を浸漬されている(以下浸漬深さを電極浸
量40と記す)。該電極3には、図示しない電源から、
電圧調整トランス32、溶解トランス31および可飽和
リアクトル21を経て通電されて奴り、この電流はスラ
グ4をジュール熱で加熱し、この熱により電極の下端部
は融解して液滴となってスラグ4による精錬作用を受け
つつ沈降し、底部に溶湯プールを形成する。そしてこの
プールは下部から順次凝固することにより鋳塊2を形成
していく。かくして、電極3はその全長を順次溶解精錬
されて鋳塊2へと変換される。
A conductive slag 4 is contained in a crucible 1 in a high temperature molten state, and a consumable electrode (hereinafter referred to as electrode) 3 is placed below the liquid surface of the slag 4.
is immersed at its lower end (hereinafter, the immersion depth will be referred to as electrode immersion amount 40). The electrode 3 is connected to a power source (not shown).
Electricity is applied through the voltage adjustment transformer 32, the melting transformer 31, and the saturable reactor 21, and this current heats the slag 4 with Joule heat, and this heat melts the lower end of the electrode, turning it into droplets and forming the slag. It settles under the refining action of 4, forming a molten metal pool at the bottom. This pool then solidifies sequentially from the bottom to form an ingot 2. In this way, the entire length of the electrode 3 is sequentially melted and refined to be converted into an ingot 2.

ESR溶解法において、溶解条件は製造される鋳塊の品
質に重大な影響を与える。例えば、電極浸量40は鋳塊
2とるつぼ1の内面との間に生成されるスキンスラグ3
0および精錬効果に影響を与え、鋳塊の表面および内部
の品質に重大な影響を与える。すなわち、電極重量40
が適正かつ安定であれば、スキンスラグ30の厚みは安
定し、精錬効果も良好となり、内外品質の良好な鋳塊を
得ることができる。
In the ESR melting method, melting conditions have a significant impact on the quality of the produced ingot. For example, the electrode immersion amount 40 is the skin slag 3 generated between the ingot 2 and the inner surface of the crucible 1.
0 and the refining effect, and have a significant impact on the surface and internal quality of the ingot. That is, the electrode weight is 40
If it is appropriate and stable, the thickness of the skin slag 30 will be stable, the refining effect will be good, and an ingot with good internal and external quality can be obtained.

また、優良な鋳塊を得るためには、溶湯プールが可能の
限り広い面積に亘って定深さを保持することが望ましく
、このとき、電極先端は偏平状で電極重量は小さい。
In addition, in order to obtain a high-quality ingot, it is desirable that the molten metal pool maintain a constant depth over as wide an area as possible, and in this case, the tip of the electrode is flat and the weight of the electrode is small.

さらに、溶解開始時および溶解完了直前には、溶解が不
安定となって不健全な鋳塊となり易いので適切な溶解制
御が必要である。
Furthermore, at the start of melting and immediately before the completion of melting, melting becomes unstable and tends to result in an unhealthy ingot, so appropriate melting control is required.

ESR装置において、追従制御を行う場合、電極重量4
0等が種々の理由で周期的変動(ハンチング)を生じ、
これに伴って電流値等諸条件が変動する。しかし、この
ハンチングの変動幅(以下振幅と記す)および周期を適
当に選定することにより鋳塊への悪影響を防止すること
ができる。
In the ESR device, when performing follow-up control, the electrode weight 4
0 etc. cause periodic fluctuations (hunting) for various reasons,
Along with this, various conditions such as the current value fluctuate. However, by appropriately selecting the variation width (hereinafter referred to as amplitude) and period of this hunting, it is possible to prevent an adverse effect on the ingot.

第4図に示した従来の制御系は、 (i)溶解電流12′の平均値を制御するとともに、溶
解速度プログラム設定装置6の設定値7′と、ロードセ
ル23で計測した電極重量8′を微分処理して得た溶解
速度9′とを比較し、この比較結果により電圧調整トラ
ンス32の電圧昇降駆動装置14を制御する溶解速度制
御県人および(ii )溶解電圧20′の平均値を制御
するとともに、該電圧20′のハンチングによる振幅量
を電圧振幅量設定装置16の設定値と比較し、この比較
結果で電極昇降駆動装置22を駆動することにより、電
極重量40を制御する電極漫量制御系旦の二基の閉ルー
プ制御系並びに (iii )可飽和リアクトル21を組合せたものであ
る。ここで可飽和リアクトル21は、そこを流れる電流
が十分大きいときは通常のりアクドルと同様に過大な電
流を抑制するように、また電流が低下したときは自身の
磁路を磁気飽和してインダクタンスを低下し、電流を増
加させるように作動する。
The conventional control system shown in FIG. 4 (i) controls the average value of the dissolution current 12', and also controls the set value 7' of the dissolution rate program setting device 6 and the electrode weight 8' measured by the load cell 23; The dissolution rate 9' obtained by differential processing is compared with the dissolution rate 9', and based on the comparison result, the dissolution rate control function that controls the voltage raising/lowering drive device 14 of the voltage regulating transformer 32 and (ii) the average value of the dissolution voltage 20' is controlled. At the same time, the amplitude amount due to hunting of the voltage 20' is compared with the setting value of the voltage amplitude amount setting device 16, and the electrode lifting device 22 is driven based on the comparison result, thereby controlling the electrode weight 40. This is a combination of two closed loop control systems (1) and (iii) a saturable reactor 21. Here, the saturable reactor 21 suppresses the excessive current when the current flowing through it is sufficiently large, like a normal glue reactor, and when the current decreases, it magnetically saturates its own magnetic path and increases the inductance. It operates to decrease the current and increase the current.

上記従来のESR装置の等価回路を第5図に、電極重量
の制御特性を第6図に示す。第6図において横軸は電極
重量40、縦軸はスラグ4および電極3がなすスラグ電
極抵抗Rrおよび溶解電圧Vrである。
FIG. 5 shows an equivalent circuit of the conventional ESR device, and FIG. 6 shows the control characteristics of the electrode weight. In FIG. 6, the horizontal axis is the electrode weight 40, and the vertical axis is the slag electrode resistance Rr formed by the slag 4 and the electrode 3 and the melting voltage Vr.

電極3のスラグ4への浸漬部は、第7図に溶解要部の断
面図を示すように、略球面状となる。そして電極重量に
対するスラグ電極抵抗Rrは、第6図に図示したごとき
ものとなる。すなわち、電極3がその先端をスラグ4に
接した状態から重量を増加するとき、初期はスラグ4と
の接触面積が急激に増加することからスラグ電極抵抗R
rは急激に低下する。この状態は、電極3がその外径円
筒面と先端部の球状面とがなす線(以下外周下端と記す
)3′をスラグ4の液面に一致させる状態(以下これを
臨界と記す)まで継続する。スラグ電極抵抗Rrは、臨
界以上の電極重量範囲では、主にスラグ4層の厚みに支
配されこれに比例して直線的に低下する。
The part of the electrode 3 immersed in the slag 4 has a substantially spherical shape, as shown in FIG. 7, which is a cross-sectional view of the main melting part. The slug electrode resistance Rr with respect to the electrode weight is as shown in FIG. That is, when the weight of the electrode 3 increases from the state where its tip is in contact with the slug 4, the contact area with the slug 4 increases rapidly at the beginning, so the slag electrode resistance R
r decreases rapidly. In this state, the electrode 3 reaches a state where the line 3' formed by its outer diameter cylindrical surface and the spherical surface of the tip (hereinafter referred to as the outer circumference lower end) coincides with the liquid level of the slag 4 (hereinafter referred to as critical). continue. In the electrode weight range above the critical level, the slag electrode resistance Rr is mainly controlled by the thickness of the four slag layers and decreases linearly in proportion to this.

電極3が臨界を越えである電極重量を中心としてハンチ
ングしつつ時間経過した場合、先端部の溶解により、ハ
ンチングの中心が臨界となる。
When the electrode 3 continues to hunt around the electrode weight which exceeds the criticality over time, the center of the hunting becomes critical due to melting of the tip.

上記従来のESR装置は、可飽和リアクトル21の作用
による略定電流特性を示すから、溶解電圧Vrはほぼス
ラグ電極抵抗Rrに比例したものとなる。ここで溶解電
圧Vrは、電極重量の小さい範囲を除外すると下に凸の
単調減少関数的である。したがって、この範囲以上の領
域では、ハンチングによる定振幅の電極重量40変化に
よって生ずる溶解電圧Vrの振幅を測定することにより
電極重量40を知ることができる。前記第4図に示す電
極浸量制御系一旦−はこの原理を利用するものである。
Since the conventional ESR device described above exhibits substantially constant current characteristics due to the action of the saturable reactor 21, the melting voltage Vr is approximately proportional to the slag electrode resistance Rr. Here, the melting voltage Vr is a downwardly convex monotonically decreasing function, excluding a range where the electrode weight is small. Therefore, in a region above this range, the electrode weight 40 can be determined by measuring the amplitude of the melting voltage Vr caused by a constant amplitude change in the electrode weight 40 due to hunting. The electrode immersion amount control system shown in FIG. 4 utilizes this principle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記、従来のESR溶解制御系において、溶解電圧Vr
は第6図に示したごとく電極重量がΔlの精度で制御さ
れている場合に電極重量を11から12に変化させると
、溶解電圧Vrの振幅量はΔVr、からΔVr2となる
。電極重量が少ないときり高電圧の領域で(電極重量が
小さい領域)電圧変化が小さくなる部分がある。これは
可飽和リアクトル21の定電流制御による溶解電圧20
′の電圧変化範囲が過度に増加して設備コスト高となる
ことを避けるために生ずるものである。しかし、この電
圧不変化範囲の存在は、ESR装置の溶解条件設定の自
由度を低下させ、また、優良な鋳塊を得るため、電極重
量を小さくした場合、臨界点が第6図の原点側に移行す
るため、この電極重量振幅範囲がこの電圧不変化範囲に
及び易くなり、極端な場合電極重量が無く浮いた状態と
なる。これは溶解の継続を不可能とする最も不都合、誤
動作現象である。
In the conventional ESR melting control system, the melting voltage Vr
As shown in FIG. 6, when the electrode weight is controlled with an accuracy of Δl, when the electrode weight is changed from 11 to 12, the amplitude of the melting voltage Vr changes from ΔVr to ΔVr2. When the electrode weight is small, there is a part where the voltage change is small in the high voltage region (region where the electrode weight is small). This is the melting voltage 20 due to constant current control of the saturable reactor 21.
This is done to avoid an excessive increase in the voltage variation range of ', which would increase equipment costs. However, the existence of this voltage constant range reduces the degree of freedom in setting the melting conditions of the ESR device, and when the electrode weight is reduced in order to obtain a high-quality ingot, the critical point is closer to the origin in Figure 6. Therefore, this electrode weight amplitude range tends to reach this voltage unchanged range, and in extreme cases, the electrode becomes weightless and floating. This is the most inconvenient and malfunctioning phenomenon that makes it impossible to continue dissolving.

本発明は、溶解条件設定範囲が広く、誤動作を防止した
ESR溶解装置を提供することを目的とする。
An object of the present invention is to provide an ESR melting device that has a wide melting condition setting range and prevents malfunctions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ESR溶解装置において、溶解電流の振幅量
を基準値と比較しその結果により溶解電圧の昇降を介し
て定値または追従制御することを特徴とするESR溶解
装置である。
The present invention is an ESR melting device characterized in that the amplitude of the melting current is compared with a reference value, and based on the result, the melting voltage is increased or decreased to perform constant value or follow-up control.

〔作 用〕[For production]

本発明は不変動域を生ずることがない溶解電流を検出し
てその振幅量を溶解電圧の昇降を介して定値または追従
制御するものである。したがって変動域の選定範囲が拡
大し、電流中断の誤動作を防止することができる。
The present invention detects a melting current that does not cause an invariant range, and controls its amplitude to a constant value or follow-up by increasing and lowering the melting voltage. Therefore, the selection range of the fluctuation range is expanded, and malfunctions due to current interruption can be prevented.

〔実施例〕〔Example〕

第1図は本発明のESR装置の溶解制御系の一例を示す
ものである。溶解速度制御系へ′は、電極重量測定手段
として設けたロードセル23、該ロードセル23で検出
された重量値を微分処理して溶解速度を検出する微分器
9、溶解速度設定装置である溶解速度プログラム設定装
置6、該プログラム装置の出力信号7′と前記溶解速度
値9′との差を入力され、これを増幅する溶解速度制御
装置5、溶解電流12′を検出しこれから時間的平均値
を算出する溶解電流平均装置12′、前記溶解速度制御
装置5の出力11’と前記溶解電流平均装置12の出力
との差を入力される増幅装置10、該増幅装置10の出
力を油圧制御弁の駆動に適する形態に変換する電極昇降
制御装置21および電極3を懸垂取付けされたパワーシ
リンダとこのシリンダに制御された圧油を送る電極昇降
駆動装置22からなっている。
FIG. 1 shows an example of the dissolution control system of the ESR apparatus of the present invention. The dissolution rate control system' includes a load cell 23 provided as an electrode weight measuring means, a differentiator 9 for differentiating the weight value detected by the load cell 23 to detect the dissolution rate, and a dissolution rate program serving as a dissolution rate setting device. A setting device 6 receives the difference between the output signal 7' of the programming device and the dissolution rate value 9', and a dissolution rate control device 5 amplifies the difference, detects the dissolution current 12' and calculates a temporal average value from this. a dissolution current averaging device 12', an amplifier 10 which receives the difference between the output 11' of the dissolution rate control device 5 and the output of the dissolution current averaging device 12, and an amplifier 10 that uses the output of the amplifier 10 to drive a hydraulic control valve It consists of an electrode lift control device 21 that converts the electrode 3 into a form suitable for use, a power cylinder to which the electrode 3 is suspended, and an electrode lift drive device 22 that sends controlled pressure oil to this cylinder.

この溶解速度制御系へ′は、前記第4図の従来の溶解速
度制御県人が制御対象を電圧調整トランス32による電
圧としているのに対し、本発明では電極昇降である点が
異なる。
The dissolution rate control system differs from the conventional dissolution rate control system shown in FIG. 4 in that the object to be controlled is the voltage generated by the voltage adjustment transformer 32, whereas in the present invention, the control object is the elevation and descent of the electrodes.

次に振幅量制御系旦′は、溶解電流12′からその変動
の振幅量を取り出す電流振幅量検出装置28、溶解電流
振幅プログラム装置26、該プログラム装置26と前記
電流振幅′量検出装置28との差を入力され、これを増
幅する電流振幅量制御装置25、該制御装置25の出力
と溶解電圧2゜との差を入力されて電力増幅する溶解電
圧制御装置18および該溶解電圧制御装置1日により駆
動される電圧昇降駆動装置14からなる。
Next, the amplitude amount control system 1' includes a current amplitude amount detection device 28 for extracting the amplitude amount of fluctuation from the melting current 12', a melting current amplitude programming device 26, and the programming device 26 and the current amplitude amount detection device 28. a current amplitude control device 25 that receives the difference between the output of the control device 25 and the melting voltage 2° and amplifies it; a melting voltage control device 18 that receives the difference between the output of the control device 25 and the melting voltage 2° and amplifies the power; and the melting voltage control device 1 It consists of a voltage raising/lowering drive device 14 driven by the sun.

該振幅量制御系旦′は、第4図の従来のそれが溶解電圧
20′の振幅量をメインループとして電極昇降を介して
制御しているのに対し、溶解電流12′の電流振幅量を
メインループとして電圧昇降駆動装置を介して制御する
点が異なる。
The amplitude control system DA' controls the current amplitude of the melting current 12', whereas the conventional system shown in FIG. The difference is that control is performed via a voltage raising/lowering drive device as the main loop.

本発明の溶解装置においては第4図の従来例のような可
飽和リアトクル21は不要である。
In the melting apparatus of the present invention, the saturable reactor 21 as in the conventional example shown in FIG. 4 is not necessary.

本発明の溶解装置の等価回路を第2図、電極昇降制御装
置を第3図に示す。第3図において、電極重量がΔEの
精度で制御されている場合に前記同様に電極重量を1.
からj2tに変化させると、溶解電流1rの振幅量はΔ
Ir、からΔIr、となる。
An equivalent circuit of the melting device of the present invention is shown in FIG. 2, and an electrode elevation control device is shown in FIG. 3. In FIG. 3, when the electrode weight is controlled with an accuracy of ΔE, the electrode weight is changed to 1.
When changing from j2t to j2t, the amplitude of the melting current 1r becomes Δ
Ir, becomes ΔIr.

電極重量が少ないとき なる。Ir曲線の全域が上に凸の単調増加関数的であり
、したがって電流の振幅量〔A〕、又は電極重量の振幅
値〔菖〕に対する電流振幅値(A)の比(A / tm
 )が制御のためのパラメータとして有効であること、
つまり第6図で示された不変化部分等がなく誤動作を完
全に防止できることが判る。
This occurs when the weight of the electrode is low. The entire region of the Ir curve is an upwardly convex monotonically increasing function, and therefore the current amplitude [A] or the ratio of the current amplitude value (A) to the electrode weight amplitude value [iris] (A / tm
) is valid as a parameter for control,
In other words, it can be seen that there are no unchanged parts shown in FIG. 6, and malfunctions can be completely prevented.

インダクタンスLが大きい場合は更に顕著になる。This becomes even more noticeable when the inductance L is large.

またインダクタンスLが小さい場合でも、Ir曲線が臨
界前後でその勾配が上に凸状に大きく変化するとき、例
えば電極3の下端面が少電極重量溶解により平坦端面状
となったときは、電極重量の振幅の一部が臨界以下であ
ればその振幅の中心以下の範囲を制御帯域として使用す
ることができる。このことは前記のように健全な鋳塊を
得るため少重量で操業する場合非常に有利となる。
Furthermore, even when the inductance L is small, when the slope of the Ir curve changes significantly in an upwardly convex manner before and after the criticality, for example, when the lower end surface of the electrode 3 becomes flat due to low electrode weight dissolution, the electrode weight If a part of the amplitude is below the critical value, the range below the center of the amplitude can be used as the control band. This is very advantageous when operating with a small weight in order to obtain a sound ingot as described above.

ここで仮に電流振幅量検出装置28で検出された出力が
、溶解電流振幅プログラム装置26の設定値より小すな
わち第3図より判るように電極重量が大きい場合、検出
値を設定値の差は(+)となる。その結果、電流振幅量
制御装置25で増幅され溶解電圧制御装置18、電圧昇
降駆動装置14を経て電圧調整トランス32の出力電圧
を徐々に増加させる。これにより溶解電圧20′、溶解
電流12′は、それぞれその平均値および振幅量を並行
的に増加してゆく、この過程で、電流振幅量の増加、つ
まり電流振幅量検出装置28の出力の増加により、この
出力と溶解電流振幅プログラム装置26の設定値との差
分力つまり電流振幅量制御装置25の入力の減少となる
。これと同時に溶解電圧20’の増加により、溶解電圧
制御装置1日への入力は減少し、その出力はほとんどO
となり電圧昇降駆動装置14は停止する。
Here, if the output detected by the current amplitude detecting device 28 is smaller than the set value of the melting current amplitude programmer 26, that is, if the electrode weight is large as shown in FIG. 3, the difference between the detected value and the set value is ( +). As a result, the current is amplified by the current amplitude control device 25, passes through the melting voltage control device 18 and the voltage raising/lowering drive device 14, and gradually increases the output voltage of the voltage regulating transformer 32. As a result, the average value and amplitude of the melting voltage 20' and the melting current 12' increase in parallel, and in this process, the current amplitude increases, that is, the output of the current amplitude detecting device 28 increases. This results in a decrease in the differential force between this output and the set value of the melting current amplitude programming device 26, that is, the input of the current amplitude control device 25. At the same time, due to the increase in the melting voltage 20', the input to the melting voltage controller 1 decreases, and its output becomes almost O
As a result, the voltage raising/lowering drive device 14 stops.

一方、前記溶解電流12′の平均値の増加により、溶解
電圧制御装置′が作動し、電極昇降駆動装置22により
電極3を上昇して電極重量を減少して、溶解電流12′
を溶解速度プログラム設定装置6の設定値に対応した値
に制御する。
On the other hand, due to the increase in the average value of the melting current 12', the melting voltage control device' is activated, and the electrode lifting device 22 raises the electrode 3 to reduce the weight of the electrode, so that the melting current 12' increases.
is controlled to a value corresponding to the setting value of the dissolution rate program setting device 6.

上記と逆に電流振幅量が大きいときは、上述と全て逆の
作動を行なう。その他の場合も上記の作動説明から容易
に理解することができる。
In contrast to the above, when the current amplitude is large, the operation is completely opposite to that described above. Other cases can also be easily understood from the above explanation of operation.

本実施例は、電力系にリアクタを有せず装置が簡略であ
る特徴がある。しかし、本発明において電極浸量制御範
囲をより広くするため小容量のりアクタを設けてもよい
This embodiment is characterized in that the power system does not include a reactor and the device is simple. However, in the present invention, a small capacity glue actor may be provided in order to further widen the electrode immersion amount control range.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、健全な鋳塊の製造におい
て、重要な電極重量の小さい領域での溶解制御が安定で
、溶解中断等の誤動作を完全に防止するもので、ESR
溶解装置の機能を大幅に向上するものである。
As described above, the present invention provides stable melting control in the region where the electrode weight is small, which is important in the production of healthy ingots, and completely prevents malfunctions such as melting interruptions.
This greatly improves the functionality of the melting device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図並びに第4図、第5図およ
び第6図は、それぞれ本発明並びに従来のESR溶解装
置のそれぞれ溶解制御系のブロックダイヤグラムの一例
、等価回路および電極重量の制御特性を示すものである
。第7図は溶解局部の拡大図である。 第1図
FIGS. 1, 2, and 3, and FIGS. 4, 5, and 6 are examples of block diagrams, equivalent circuits, and electrode weights of the melting control system of the present invention and the conventional ESR melting apparatus, respectively. This shows the control characteristics of FIG. 7 is an enlarged view of the dissolved local area. Figure 1

Claims (1)

【特許請求の範囲】 1、ESR溶解装置において、溶解電流の振幅量を基準
値と比較しその結果により溶解電圧の昇降を介して定値
または追従制御することを特徴とするESR溶解装置。 2、溶解電流の平均値を基準値と比較しその結果により
電極の昇降を介して定値または追従制御することを特徴
とする特許請求の範囲第1項記載のESR溶解装置。
[Claims] 1. An ESR melting device, characterized in that the amplitude of the melting current is compared with a reference value, and based on the result, constant value or follow-up control is performed by raising and lowering the melting voltage. 2. The ESR melting apparatus according to claim 1, wherein the average value of the melting current is compared with a reference value, and based on the result, constant value or follow-up control is performed by raising and lowering the electrode.
JP293787A 1987-01-09 1987-01-09 Esr melting device Pending JPS63171838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP293787A JPS63171838A (en) 1987-01-09 1987-01-09 Esr melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP293787A JPS63171838A (en) 1987-01-09 1987-01-09 Esr melting device

Publications (1)

Publication Number Publication Date
JPS63171838A true JPS63171838A (en) 1988-07-15

Family

ID=11543266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP293787A Pending JPS63171838A (en) 1987-01-09 1987-01-09 Esr melting device

Country Status (1)

Country Link
JP (1) JPS63171838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479832B1 (en) * 2001-12-24 2005-03-30 주식회사 포스코 Electrode feed rate control method for Electro-Slag Remelting process
KR100479833B1 (en) * 2001-12-24 2005-03-30 주식회사 포스코 Melting voltage control method for Electro-Slag Remelting process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479832B1 (en) * 2001-12-24 2005-03-30 주식회사 포스코 Electrode feed rate control method for Electro-Slag Remelting process
KR100479833B1 (en) * 2001-12-24 2005-03-30 주식회사 포스코 Melting voltage control method for Electro-Slag Remelting process

Similar Documents

Publication Publication Date Title
US4788412A (en) Method of control and apparatus for hot-wire welding
US3300820A (en) System for controlling the liquid level in a continuous-casting mold or the like
Melgaard et al. Controlling remelting processes for superalloys and aerospace Ti alloys
JPH0554968A (en) Method and device for controlling electrode of dc arc furnace
US5539768A (en) Electric arc furnace electrode consumption analyzer
JPS63171838A (en) Esr melting device
US5331661A (en) Method and apparatus for controlling electroslag remelting
US4131754A (en) Automatic melt rate control system for consumable electrode remelting
US4586187A (en) Control apparatus for controlling movements of an electrode in an electric arc furnace
US3937869A (en) Force sensing control apparatus and method for electric arc furnaces
EP0068180A1 (en) Direct current arc furnace control system
US5737355A (en) Directly induced swing for closed loop control of electroslag remelting furnace
SE419930B (en) PROCEDURE AND DEVICE FOR CONTROL OF THE ELECTRO-LAYER GRAPHICATION OF MELTABLE ELECTRODES IN AN EXTENDED COOKILL
JP2969069B2 (en) Output control device of consumable electrode type pulse arc welding machine
RU2334926C2 (en) Position regulator of electrode of electric arc steel smelting furnace
US6496530B2 (en) Control of electrode depth in electroslag remelting
JPH0254892A (en) Voltage control method of dc arc furnace
JP2769326B2 (en) Control method for raising and lowering electrodes of DC arc furnace
RU2227167C1 (en) Method of control and an inter-electrode gap adjustment in process of a vacuum arc melting and a device for its realization
JPS62223999A (en) Electrode lifter of arc furnace
JP6910741B2 (en) Electrode lifting device for arc furnace
JPH04284955A (en) Method and device for plasma-heating molten steel in tundish
JPH06176865A (en) Control method for input power to melting furnace
RU2278176C1 (en) Method for controlling of vacuum arc-melting process
JPS6261382B2 (en)