JPS63170867A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPS63170867A
JPS63170867A JP62002982A JP298287A JPS63170867A JP S63170867 A JPS63170867 A JP S63170867A JP 62002982 A JP62002982 A JP 62002982A JP 298287 A JP298287 A JP 298287A JP S63170867 A JPS63170867 A JP S63170867A
Authority
JP
Japan
Prior art keywords
fuel
air
solid electrolyte
electrode
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002982A
Other languages
Japanese (ja)
Inventor
Shozo Kaneko
祥三 金子
Tadashi Gengo
義 玄後
Masayasu Sakai
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62002982A priority Critical patent/JPS63170867A/en
Publication of JPS63170867A publication Critical patent/JPS63170867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To be stable in structure and have the same volume efficiency as the monolithic type by taking each unit cell structure that a polygonal grating type fuel electrode and an air electrode are connected through solid electrolyte by arranging a fuel passage and an air passage parallel and alternately. CONSTITUTION:Each unit cell 22 has a structure that a rectangular grating type fuel electrode 24 and a same type air electrode 25 are connected through a laterally situated solid electrolyte 26 by arranging a fuel passage F and an air passage A in parallel. By the arrangement, the effective area of the cell can be formed 2-50 times in a same volume compared with that of cylindrical one, achieving high efficiency power generation. Also, since the laminate 21 composed of laminated unit cells 22 has a complete self-supporting nature, the assembly is easy and the mass-production is feasible. Furthermore, the structural stability and durability can be improved compared with the monolithic type.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、固体電解質燃料電池の改良に関する。[Detailed description of the invention] [A field of use in business] The present invention relates to improvements in solid electrolyte fuel cells.

[従来の技術] 固体電解質燃料電池(Solid  0xide  F
uelCell 、以下5OFCと称す)は、高効率発
電システムの1つとして注目されている。この5OFC
は、酸化物固体内での酸素イオン導電性を利用し、約1
000℃の作動温度で燃料ガスと空気とを用いて電極反
応を起こさせて発電するものである。
[Prior art] Solid electrolyte fuel cell (Solid Oxide F
uelCell (hereinafter referred to as 5OFC) is attracting attention as one of the highly efficient power generation systems. This 5OFC
utilizes the oxygen ion conductivity within the oxide solid, and approximately 1
It generates electricity by causing an electrode reaction using fuel gas and air at an operating temperature of 1,000°C.

ところで、従来の5OFCとしては第9図又は第10図
に示す構造ものが作製乃至提案されている。
By the way, as a conventional 5OFC, a structure shown in FIG. 9 or FIG. 10 has been manufactured or proposed.

即ち、第9図の5OFGは円筒状の多孔質セラミックス
基体1の表面に電池n膜2を形成したちのである。この
電池薄膜2は燃料極 (又は空気極)、固体電解質及び
空気極(又は燃料極)を順次薄膜状に積滞したものであ
る。この5OFCでは、基体1の内側に燃料(又は空気
)を、外側に空気(又は燃料)を流して発電を行なう。
That is, in 5OFG shown in FIG. 9, a battery film 2 is formed on the surface of a cylindrical porous ceramic substrate 1. This battery thin film 2 is made up of a fuel electrode (or air electrode), a solid electrolyte, and an air electrode (or fuel electrode) stacked one after another in the form of a thin film. In this 5OFC, power is generated by flowing fuel (or air) inside the base 1 and flowing air (or fuel) outside.

これにより、電流は図中の矢印に示すような流路で流れ
る。
As a result, the current flows in a flow path as shown by the arrow in the figure.

また、第10図の5OFCはいわゆるモノシリツク型で
、上述した電池@膜自体で例えばハニカム状ブロック1
1を形成するものである。かかる5OFCでは図中のF
で示す領域に燃料ガスを、Aに示す領域に空気を夫々流
す。これにより、電流は図中の矢印に示すような流路を
流れる。
In addition, 5OFC in Fig. 10 is a so-called monolithic type, and the above-mentioned battery @ membrane itself is, for example, a honeycomb-shaped block 1.
1. In such 5OFC, F in the figure
Fuel gas is flowed into the region shown by , and air is flowed into the region shown by A. As a result, the current flows through the flow path as shown by the arrow in the figure.

[発明がが解決しようとする問題点] しかしながら、従来の5OFCはいずれも以下に示す問
題があった。
[Problems to be Solved by the Invention] However, all conventional 5OFCs have the following problems.

即ち、第9図図示の5OFCでは単位体積当りの電池有
効面積が小さく、体積効率が低い。また、モジュールの
構成が複雑であるばかりか、電池薄膜2の成膜が困難で
あり、量産性に劣る。
That is, in the 5OFC shown in FIG. 9, the effective battery area per unit volume is small and the volumetric efficiency is low. Moreover, not only the structure of the module is complicated, but also the formation of the battery thin film 2 is difficult, resulting in poor mass productivity.

一方、第10図図示威いはこれと類似のモノシリツク型
の5OFCでは高い体積効率が期待できるものの、電池
M膜内体でハニカム状ブロック11を形成するため、強
度及び組立てが困難であり、実際には試作すらされてい
ない。
On the other hand, a monolithic type 5OFC similar to the one shown in Figure 10 can be expected to have high volumetric efficiency, but since a honeycomb-shaped block 11 is formed in the inner body of the cell M membrane, strength and assembly are difficult, and in practice Not even a prototype was made.

本発明は、上記従来の問題点を解決するためになされた
もので、構造的に安定で、かつモノシリツク型と同等の
体積効率を有し、更に組立てが容易で量産性に優れた固
体電解質燃料電池を提供しようとするものである。
The present invention was made to solve the above-mentioned conventional problems, and is a solid electrolyte fuel that is structurally stable, has volumetric efficiency equivalent to that of a monolithic type, is easy to assemble, and has excellent mass productivity. The aim is to provide batteries.

[問題点を解決するための手段] 本発明は、多角格子状の燃料極及び空気極を燃料流路と
空気流路とが平行かつ交互に形成されるように固体電解
質を介して連結してなる格子構造の単層セルと、これら
単層セルをインクコネクタを介して8!層した積層体と
、この積層体の端部に夫々設けられたガス用マニホール
ドとを具備したことを特徴とするものである。
[Means for Solving the Problems] The present invention connects polygonal lattice-shaped fuel electrodes and air electrodes via a solid electrolyte so that fuel channels and air channels are formed in parallel and alternately. Single-layer cells with a lattice structure, and these single-layer cells are connected via ink connectors to 8! The device is characterized by comprising a stacked body and gas manifolds provided at each end of the stacked body.

[作用1 本発明によれば、単位セルは多角格子状の燃料極及び空
気極を燃料流路と空気流路とが平行かつ交互に形成され
るように固体電解質を介して連結した構造をなすため、
従来の円筒状の5OFCに比べて単位体積当りの電池有
効面積を大きくでき、体積効率を向上できると共に、コ
ンパクト化が可能となる。また、かかる単位セルは殆ど
セラミックスで構成することが可能であるため、支持構
造が簡素となり、更に構造上の信頼性を向上できると共
に、各部品の膨張による応力を軽減できる。
[Function 1 According to the present invention, a unit cell has a structure in which a polygonal lattice-shaped fuel electrode and air electrode are connected via a solid electrolyte so that fuel channels and air channels are formed in parallel and alternately. For,
Compared to the conventional cylindrical 5OFC, the effective area of the battery per unit volume can be increased, the volumetric efficiency can be improved, and the battery can be made more compact. Moreover, since such a unit cell can be made mostly of ceramics, the support structure becomes simple, the structural reliability can be further improved, and the stress caused by expansion of each component can be reduced.

[発明の*施例コ 以下、本発明の実施例を第1図〜第3図を参照して説明
する。
[*Embodiments of the Invention] Examples of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、5OFCの構成図、第2図は第1図の5OF
Cの積層体を示す斜視図、第3図は第2図の積層体を構
成する単位セルを示す平面図であり、図中の21は積層
体である。この積層体21は、例えば5つの単位セル2
2をインクコネクタ23を介して水平方向に積層したも
のである。なお、前記積層体21における端部側の単位
セル22の側面には夫々前記と同様なインタコネクタ2
3が設けられており、これらインタコネクタ23は例え
ばLa Cr O9、Ni Cr YSZサーメット、
Ni AQ−AQ20:lサーメットから形成されてい
る。前記各単位セル22は、第2図及び第3図に示すよ
うに長方形格子状の燃料極24及び同形状の空気極25
を燃料流路Fと空気流路Aとが平行に配列されるように
それら側面間に配置した固体電解質26を介して連結し
た構造になっている。前記燃料極24は、例えばNi 
YSZサーメットにより、前記空気極25はLa Ca
 Mn O3により、前記電解質26は安定化ジルコニ
アにより、夫々形成されている。また、単位セル22は
一体押出しでも、各燃料極と空気極毎の押出し部品への
電解質の充填、一体焼結でも作製できる。前記積層体2
1の端部で、ある上下部には、ガス用マニホールド27
.28が設けられており、上部のマニホールド27には
空気出入口29及び燃料出口30が、前記下部マニホー
ルド28には燃料入口31及び空気出入口32が、夫々
接続されている。
Figure 1 is a configuration diagram of 5OFC, Figure 2 is the 5OFC of Figure 1.
FIG. 3 is a perspective view showing the laminate shown in C, and FIG. 3 is a plan view showing unit cells constituting the laminate shown in FIG. 2, and numeral 21 in the figure is the laminate. This laminate 21 includes, for example, five unit cells 2.
2 are stacked horizontally via an ink connector 23. Note that interconnectors 2 similar to those described above are provided on the side surfaces of the unit cells 22 on the end side of the laminate 21, respectively.
3 are provided, and these interconnectors 23 are made of, for example, La Cr O9, Ni Cr YSZ cermet,
It is formed from Ni AQ-AQ20:1 cermet. As shown in FIGS. 2 and 3, each unit cell 22 has a fuel electrode 24 in the shape of a rectangular lattice and an air electrode 25 in the same shape.
It has a structure in which the fuel flow path F and the air flow path A are connected via a solid electrolyte 26 arranged between their sides so that they are arranged in parallel. The fuel electrode 24 is made of, for example, Ni
Due to the YSZ cermet, the air electrode 25 is made of La Ca
The electrolyte 26 is formed of Mn O3 and stabilized zirconia, respectively. Further, the unit cell 22 can be manufactured by integral extrusion, by filling the extruded parts of each fuel electrode and air electrode with electrolyte, and by integral sintering. The laminate 2
At the end of 1, there is a gas manifold 27 at the top and bottom.
.. 28, an air inlet/outlet 29 and a fuel outlet 30 are connected to the upper manifold 27, and a fuel inlet 31 and an air inlet/outlet 32 are connected to the lower manifold 28, respectively.

このような構成の5OFGは、次のような操作により発
電がなされる。即ち、燃料は燃料入口31から下部マニ
ホールド28を通して積層体21を構成する各単位セル
22の燃料流路F内を上昇する。一方、空気は空気出入
口29から上部マニホールド27を通して積層体21を
構成する各単位セル22の空気流路A内を下降する。こ
の場合、空気を下部マニホールド28の空気出入り口3
2を通して積層体21を構成する各単位セル22の空気
流路A内を上昇させるようにしてもよい。前記積層体2
1内は、600〜1200℃に保持されており、ここで
前記燃料と空気が単位セル22の電解質26を介して電
極反応が起こって発電がなされ、単位セル22の積層方
向く水平方向)に電流が流れる。こうして発生した電流
は、積層体21両側面の集電を兼ねるインクコネクタ2
3から取出される。そして、発電中は単位セル22当り
約0.6Vの電圧となるので、20個の単位セル22を
積層すれば20V ?!!源として使用できる。
The 5OFG having such a configuration generates power through the following operations. That is, the fuel rises from the fuel inlet 31 through the lower manifold 28 in the fuel flow path F of each unit cell 22 that constitutes the stacked body 21 . On the other hand, air descends from the air inlet/outlet 29 through the upper manifold 27 in the air flow path A of each unit cell 22 constituting the stacked body 21 . In this case, the air is transferred to the air outlet 3 of the lower manifold 28.
2 may be used to raise the inside of the air flow path A of each unit cell 22 constituting the stacked body 21. The laminate 2
1 is maintained at a temperature of 600 to 1200°C, and here, an electrode reaction occurs between the fuel and air through the electrolyte 26 of the unit cell 22 to generate electricity, and the unit cell 22 is stacked in the horizontal direction). Current flows. The current generated in this way is transferred to the ink connectors 2 which also serve as current collectors on both sides of the laminate 21.
It is taken out from 3. During power generation, the voltage is approximately 0.6V per unit cell 22, so if 20 unit cells 22 are stacked, the voltage will be 20V? ! ! Can be used as a source.

従って、上述した固体電解質燃料電池によれば以下に列
挙する種々の効果を発揮できる。
Therefore, the solid electrolyte fuel cell described above can exhibit various effects listed below.

■、電池有効面積を従来の円筒型のものに比べて同一体
積内において2〜50倍形成でき、高効率発電を達成で
きる。
(2) The effective area of the battery can be 2 to 50 times larger than that of conventional cylindrical batteries within the same volume, and high efficiency power generation can be achieved.

■、単位セル22の[1により構成された積層体21は
充分な自立性を有するため、組立てが容易で、量産化が
可能である。
(2) The laminate 21 constituted by [1] of the unit cell 22 has sufficient self-reliance, so it is easy to assemble and can be mass-produced.

■、単位セル22の積層数を変更することにより、容易
に発電電圧を調整できる。
(2) By changing the number of stacked unit cells 22, the generated voltage can be easily adjusted.

■、モノシリツク型のものに比べて構造安定性、耐力に
浸れ、かつ電流経路を簡素化することができる。
(2) Compared to the monolithic type, it has higher structural stability and strength, and the current path can be simplified.

■、単位セル22は多角格子状の燃料極24及び空気極
25を固体電解質26で連結した構造をなすため、燃料
極24、空気極25及び固体電解質26の部品間で膨張
差が生じても、これに伴う応力を容易に解放でき、信頼
性を高めることができる。
(2) Since the unit cell 22 has a structure in which a polygonal lattice-shaped fuel electrode 24 and air electrode 25 are connected by a solid electrolyte 26, even if there is an expansion difference between the fuel electrode 24, air electrode 25, and solid electrolyte 26, , stress associated with this can be easily released and reliability can be improved.

なお、本発明の5OFGは第1図〜第3図に示す実施例
に限定されない。例えば、以下に説明する第4図及び第
5図に示す構造、又は第6図〜第8図に示す構造にして
もよい。
Note that the 5OFG of the present invention is not limited to the embodiments shown in FIGS. 1 to 3. For example, the structure shown in FIGS. 4 and 5 described below or the structure shown in FIGS. 6 to 8 may be used.

即ち、第4図は本発明の他の実施例を示す5OFGの平
面図、第5図は第4図の5OFGの要部を示す斜視図で
あり、図中の41はfa!ii体である。この積層体4
1は、例えば4つの単位セル42をインタコネクタ43
を介して垂直方向に積層したものである。なお、前記積
層体21における上下の単位セル42の上面及び下面に
は夫々前記と同様なインタコネクタ43が設けられてい
る。前記各単位セル42は、第5図に示すように長方形
格子状の燃料極44及び同形状の空気極45を燃料流路
Fと空気流路Aとが交差して配列されるようにそれら上
下面間に配置した固体電解質46を介して連結した構造
になっている。また、前記積層体41の端部である4つ
の側面には燃料入口用マニホールド47及び燃料出口用
マニホールド48と空気出入口用マニホールド49.5
0が夫々互いに対向するように設けられている。
That is, FIG. 4 is a plan view of 5OFG showing another embodiment of the present invention, and FIG. 5 is a perspective view showing main parts of 5OFG of FIG. 4, and 41 in the figure is fa! ii body. This laminate 4
1 connects, for example, four unit cells 42 to an interconnector 43.
They are stacked vertically with each other in between. Note that interconnectors 43 similar to those described above are provided on the upper and lower surfaces of the upper and lower unit cells 42 in the laminate 21, respectively. As shown in FIG. 5, each unit cell 42 has a rectangular lattice-shaped fuel electrode 44 and a rectangular lattice-shaped air electrode 45 arranged so that the fuel flow path F and the air flow path A intersect with each other. It has a structure in which they are connected via a solid electrolyte 46 placed between the lower surfaces. Furthermore, on the four side surfaces which are the ends of the stacked body 41, a fuel inlet manifold 47, a fuel outlet manifold 48, and an air inlet/outlet manifold 49.5 are provided.
0 are provided so as to face each other.

このような構成の5OFCは、次のような操作により発
電がなされる。即ち、燃料は燃料入口用マニホールド4
7を通して積層体41を構成する各単位セル42の燃料
流路F内を水平方向に流通して燃料出口用マニホールド
48から排出される。一方、空気は空気出入口用マニホ
ールド49を通して積層体41を構成する各単位セル4
2の空気流路A内を水平方向に流通して空気出入口用マ
ニホールド50から排出される。この場合、空気を空気
出入口用マニホールド50を通して積層体41を構成す
る各単位セル42の空気流路A内を水平方向に流通して
空気出入口用マニホールド49から排出させるようにし
てもよい。前記積層体41内は、600〜1200℃に
保持されており、ここで前記燃料と空気が単位セル42
の電解質46を介して電極反応が起こって発電がなされ
、単位セル42の積層方向(垂直方向)に電流が流れる
。こうして発生した電流は、M温体41上下面の集電を
兼ねるインタコネクタ43から取出される。そして、発
電中は前記実施例と同様に単位セル42当り約0.6 
Vの電圧となるので、20個の単位セル42を積層すれ
ば20V電源として使用できる。従って、かかる第4回
及び第5図図示5OFCにおいても既述した実施例と同
様な種々効果を発揮できる。
The 5OFC having such a configuration generates power through the following operations. That is, the fuel is supplied to the fuel inlet manifold 4.
7, the fuel flows horizontally through the fuel flow path F of each unit cell 42 constituting the stacked body 41, and is discharged from the fuel outlet manifold 48. On the other hand, air passes through the air inlet/outlet manifold 49 to each unit cell 4 constituting the stacked body 41.
The air flows horizontally through the air flow path A of No. 2 and is discharged from the air inlet/outlet manifold 50. In this case, the air may be passed through the air inlet/outlet manifold 50, horizontally circulated within the air flow path A of each unit cell 42 constituting the stacked body 41, and may be discharged from the air inlet/outlet manifold 49. The inside of the laminate 41 is maintained at a temperature of 600 to 1200°C, and the fuel and air are supplied to the unit cells 42.
An electrode reaction occurs through the electrolyte 46 to generate electricity, and current flows in the stacking direction (vertical direction) of the unit cells 42. The current generated in this way is taken out from the interconnector 43 which also serves as a current collector on the upper and lower surfaces of the M hot body 41. During power generation, approximately 0.6
Since the voltage is V, if 20 unit cells 42 are stacked, it can be used as a 20V power source. Therefore, various effects similar to those of the previously described embodiments can be exhibited in the fourth and fifth OFCs shown in FIG.

また、第6図は本発明の更に他の実施例を示す5OFG
の構成図、第7図は第6図の5OFCの積層体を示す斜
視図、第8図は第6図のX−Xaに沿う断面図であり、
図中の51は積層体である。
Further, FIG. 6 shows a 5OFG showing still another embodiment of the present invention.
7 is a perspective view showing the laminate of 5OFC in FIG. 6, and FIG. 8 is a sectional view taken along the line X-Xa in FIG. 6.
51 in the figure is a laminate.

この積層体51は、第7図及び第8図に示すように例え
ば10個の単位セル52をインクコネクタ53を介して
各単位セル52の後述する燃料極同志、空気極同志が合
致するように垂直方向に積層したものである。前記各単
位セル52は、第7図に示すように長方形格子状の燃料
極54及び同形状の空気極55を燃料流路Fと空気流路
Aとが平行に配列されるようにそれら側面間に配置した
固体電解質56を介して交互に連結した構造になってい
る。また、前記積層体51の端部である上下部には、ガ
ス用マニホールド57.58が設けられており、上部の
マニホールド57には空気出入口59及び燃料出口60
が、前記下部マニホールド58には燃料人口61及び空
気出入口62が、夫々接続されている。
As shown in FIGS. 7 and 8, this laminate 51 is constructed by connecting, for example, 10 unit cells 52 via an ink connector 53 so that the fuel electrodes and air electrodes of each unit cell 52, which will be described later, match each other. They are stacked vertically. As shown in FIG. 7, each unit cell 52 has a rectangular lattice-shaped fuel electrode 54 and a rectangular lattice-shaped air electrode 55 arranged between their sides so that the fuel flow path F and the air flow path A are arranged in parallel. It has a structure in which they are alternately connected via solid electrolytes 56 placed in between. Gas manifolds 57 and 58 are provided at the upper and lower ends of the stacked body 51, and the upper manifold 57 has an air inlet and outlet 59 and a fuel outlet 60.
However, a fuel port 61 and an air inlet/outlet 62 are connected to the lower manifold 58, respectively.

このような構成の5OFCは、次のような操作により発
電がなされる。即ち、燃料は燃料入口61から下部マニ
ホールド58を通して積層体51を構成する各単位セル
52の燃料流路F内を上昇する。一方、空気は空気出入
口59から上部マニホールド57を通して積層体51を
構成する各単位セル52の空気流路A内を下降する。こ
の場合、空気を下部マニホールド58の空気出入口62
を通して1liJ体51を構成する各単位セル52の空
気流路A内を上昇させるようにしてもよい。前記積層体
51内は、600〜1200℃に保持されており、ここ
で前記燃料と空気が単位セル52の電解質56を介して
電極反応が起こって発電がなされ、単位セル52の積層
方向(垂直方向)に電流が流れる。こうして発生した電
流は、積層体51内下部の集電を兼ねるガス用マニホー
ルド57から取出される。そして、発電中は前記実施例
と同様に単位セル52当り約0.6 Vの電圧となるの
で、20個の単位セル22を積層すれば20VW源とし
て使用できる。従って、かかる第6図〜第8図図示5O
FGにおいても既述した実施例と同様な種々効果を発揮
できる。
The 5OFC having such a configuration generates power through the following operations. That is, the fuel rises from the fuel inlet 61 through the lower manifold 58 into the fuel flow path F of each unit cell 52 constituting the stacked body 51. On the other hand, air descends from the air inlet/outlet 59 through the upper manifold 57 in the air flow path A of each unit cell 52 constituting the stacked body 51. In this case, air is transferred to the air inlet/outlet 62 of the lower manifold 58.
The inside of the air flow path A of each unit cell 52 constituting the 1liJ body 51 may be raised through the air. The inside of the stacked body 51 is maintained at a temperature of 600 to 1200° C. Here, an electrode reaction occurs between the fuel and air via the electrolyte 56 of the unit cell 52 to generate electricity. current flows in the direction). The current generated in this way is taken out from a gas manifold 57 located in the lower part of the stacked body 51 and also serving as a current collector. During power generation, the voltage is about 0.6 V per unit cell 52 as in the previous embodiment, so if 20 unit cells 22 are stacked, it can be used as a 20 VW source. Therefore, as shown in FIGS. 6 to 8, 5O
The FG can also exhibit various effects similar to those of the previously described embodiments.

[発明の効果] 以上詳述した如く、本発明によれば構造的に安定で、か
つモノシリツク型と同等の体積効率を有し、更に組立て
が容易でm産性に優れた固体電解質燃料電池を提供でき
るものである。
[Effects of the Invention] As detailed above, the present invention provides a solid electrolyte fuel cell that is structurally stable, has the same volumetric efficiency as a monolithic type, is easy to assemble, and has excellent m-productivity. This is something that can be provided.

の5OFGの積層体を示す斜視図、第3図は第2図の積
層体を構成する単位セルを示す平面図、第4図は本発明
の他の実施例を示す5OFCの平面図、第5図は第4図
の5OFCの要部を示す斜視図、第6図は本発明の更に
他の実施例を示す5OFGの構成図、第7図は第6図の
5C)FCの積層体を示す斜視図、第8図は第6図のX
−X線に沿う断面図、第9図は従来の固体電解質燃料電
池を示す斜視図、第10図は従来の他の固体電解質燃料
電池を示す平面図である。
FIG. 3 is a plan view showing a unit cell constituting the laminate shown in FIG. 2, FIG. 4 is a plan view of a 5OFC showing another embodiment of the present invention, and FIG. The figure is a perspective view showing essential parts of the 5OFC shown in Fig. 4, Fig. 6 is a configuration diagram of a 5OFG showing still another embodiment of the present invention, and Fig. 7 shows a stacked body of the 5C) FC shown in Fig. 6. Perspective view, Figure 8 is X in Figure 6
9 is a perspective view showing a conventional solid oxide fuel cell, and FIG. 10 is a plan view showing another conventional solid oxide fuel cell.

21.41.51・・・積層体、22.42.52・・
・単位セル、23.43.53・・・インタコネクタ、
24.44.54・・・燃料極、25.45.55・・
・空気極、26.46.56・・・固体電解質、27.
28.47〜50.57.58・・・ガス用マニホール
ド、29.32.59.62・・・空気出入口、30.
60・・・燃料出口、31.61・・・燃料入口。
21.41.51...Laminated body, 22.42.52...
・Unit cell, 23.43.53...interconnector,
24.44.54...Fuel electrode, 25.45.55...
・Air electrode, 26.46.56...Solid electrolyte, 27.
28.47-50.57.58...Gas manifold, 29.32.59.62...Air inlet/outlet, 30.
60...Fuel outlet, 31.61...Fuel inlet.

出願人代理人 弁理士  鈴江武彦 M1図 第 2N M5図 第6yA 第7図Applicant's agent: Patent attorney: Takehiko Suzue M1 figure 2nd N M5 figure 6th yA Figure 7

Claims (1)

【特許請求の範囲】[Claims] 多角格子状の燃料極及び空気極を燃料流路と空気流路と
が平行かつ交互に形成されるように固体電解質を介して
連結してなる格子構造の単層セルと、これら単層セルを
インタコネクタを介して積層した積層体と、この積層体
の端部に夫々設けられたガス用マニホールドとを具備し
たことを特徴とする固体電解質燃料電池。
A single-layer cell with a lattice structure in which a polygonal lattice-shaped fuel electrode and air electrode are connected via a solid electrolyte so that fuel channels and air channels are formed parallel and alternately, and these single-layer cells. 1. A solid electrolyte fuel cell comprising: a stacked body stacked together via an interconnector; and gas manifolds provided at each end of the stacked body.
JP62002982A 1987-01-09 1987-01-09 Solid electrolyte fuel cell Pending JPS63170867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002982A JPS63170867A (en) 1987-01-09 1987-01-09 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002982A JPS63170867A (en) 1987-01-09 1987-01-09 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPS63170867A true JPS63170867A (en) 1988-07-14

Family

ID=11544579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002982A Pending JPS63170867A (en) 1987-01-09 1987-01-09 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS63170867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319664A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Fuel cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319664A (en) * 2000-05-08 2001-11-16 Honda Motor Co Ltd Fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3530198B2 (en) Solid electrolyte fuel cell
JPH0447951B2 (en)
JPS60100377A (en) Fuel battery
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP5883028B2 (en) Method for manufacturing cell stack device
JPH05159790A (en) Solid electrolyte fuel cell
JP2790666B2 (en) Fuel cell generator
KR101769830B1 (en) Solid oxide fuel-cell stacking structure
JP5734125B2 (en) Cell stack and fuel cell module
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
JPH0367468A (en) Solid electrolyte fuel cell
JP5289009B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP5105930B2 (en) Solid oxide fuel cell module
JPS63166159A (en) Solid electrolyte fuel cell
JPH02276166A (en) Solid electrolyte fuel cell
CN108475794B (en) Fuel cell device
JPS62200666A (en) Fuel cell
JP5448917B2 (en) Cell stack device, fuel cell module and fuel cell device
JPS63170867A (en) Solid electrolyte fuel cell
JP6166418B2 (en) Cell stack and fuel cell module
JP2013257973A (en) Solid oxide fuel cell stack
JP5164630B2 (en) Cell stack and fuel cell module
JPS63274062A (en) Solid electrolyte type fuel cell