JPS631704B2 - - Google Patents

Info

Publication number
JPS631704B2
JPS631704B2 JP55137637A JP13763780A JPS631704B2 JP S631704 B2 JPS631704 B2 JP S631704B2 JP 55137637 A JP55137637 A JP 55137637A JP 13763780 A JP13763780 A JP 13763780A JP S631704 B2 JPS631704 B2 JP S631704B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
light source
source device
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137637A
Other languages
Japanese (ja)
Other versions
JPS5763763A (en
Inventor
Shinji Mayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13763780A priority Critical patent/JPS5763763A/en
Publication of JPS5763763A publication Critical patent/JPS5763763A/en
Publication of JPS631704B2 publication Critical patent/JPS631704B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/64Cathode glow lamps

Description

【発明の詳細な説明】 本発明は光源装置に係り、特に密封容器内に封
入された水素ガス又は重水素ガスに基づく発光を
得る光源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light source device, and more particularly to a light source device that emits light based on hydrogen gas or deuterium gas sealed in a sealed container.

水素発光光源は一般に封止切り熱陰極型の直流
放電による発光方式を採用している。
Hydrogen light sources generally employ a sealed hot cathode type light emitting method using direct current discharge.

第1図は従来例の水素発光装置に示す縦断面図
であり、第2図は第1図のA―A′断面図である。
コイル型熱陰極1は陰極室10の中央にあり板状
の陽極2は陽極室9内に置かれている。陰極室1
0と放電発光室11は共に上下方向に開放された
筒状であり、陽極室9は上下方向も閉じた密閉箱
形で隔壁板3により一体形成された導体12によ
つてステム8に支えられている。また上記陰極1
および陽極2も同様に導体によつてステム8に支
えられ、これらの導体は管体7の下部にステムを
通して取り出されている。
FIG. 1 is a longitudinal sectional view of a conventional hydrogen light emitting device, and FIG. 2 is a sectional view taken along line AA' in FIG.
A coil type hot cathode 1 is placed in the center of a cathode chamber 10, and a plate-shaped anode 2 is placed in an anode chamber 9. Cathode chamber 1
0 and the discharge light emitting chamber 11 are both cylindrical shapes that are open in the vertical direction, and the anode chamber 9 is in the shape of a closed box that is also closed in the vertical direction and is supported by the stem 8 by a conductor 12 that is integrally formed with the partition plate 3. ing. In addition, the above cathode 1
The anode 2 and the anode 2 are similarly supported on the stem 8 by conductors, and these conductors are taken out through the stem into the lower part of the tube body 7.

第2図に示すように管体7は円筒形のガラス管
球で、その一部を突出させ、その先端に紫外線も
良く通す石英窓を発光線13に垂直になるように
取り付け重水素を封入している。また、陰極室1
0と放電発光室11との間の隔壁板には放電路孔
6が、放電発光室11と陽極室9との間には孔4
があり、放電発光室11の光出口には光取り出し
窓孔5がある。
As shown in Fig. 2, the tube body 7 is a cylindrical glass tube, with a part of it protruding, and a quartz window that allows ultraviolet rays to pass through well is attached to the tip of the tube so as to be perpendicular to the emission line 13, and deuterium is sealed therein. are doing. In addition, cathode chamber 1
A discharge path hole 6 is provided in the partition plate between the discharge light emitting chamber 11 and the discharge light emitting chamber 11, and a hole 4 is provided between the discharge light emitting chamber 11 and the anode chamber 9.
There is a light extraction window hole 5 at the light exit of the discharge light emitting chamber 11.

このように構成した従来の水素発光装置に於い
ては、陰極1を加熱し、陰極1と陽極2との間に
直流電力を連続または断続的に印加して、連続光
または断続光を生じさせていた。
In the conventional hydrogen light emitting device configured as described above, the cathode 1 is heated and DC power is applied continuously or intermittently between the cathode 1 and the anode 2 to generate continuous light or intermittent light. was.

上述した従来の水素光源は得られる光強度の点
で必ずしも十分ではなく、大きな光強度を得るた
めに陽極電流を増大すれば、発光が不安定となる
ばかりでなく、寿命が非常に短くなる。特に、封
入ガスがスパツタ金属などと共に管壁や電極面に
沈着して封入ガスが減圧されるクリーンアツプ現
象が顕著であり、短寿命である。
The above-mentioned conventional hydrogen light source is not necessarily sufficient in terms of the light intensity that can be obtained, and if the anode current is increased to obtain a large light intensity, not only will the light emission become unstable, but the lifespan will be extremely shortened. In particular, the clean-up phenomenon in which the sealed gas is deposited on the tube wall or electrode surface together with sputtered metal and the pressure of the sealed gas is reduced is remarkable, resulting in a short life.

本発明の目的は、長期間にわたつて封入ガス圧
が減少し難く長寿命な光源装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light source device that has a long life and is difficult to reduce the pressure of the sealed gas over a long period of time.

本発明は、密封容器内に第1の電極およびフイ
ラメントを設け、その第1の電極との間で高周波
放電が行なわれる第2の電極を設け、放電を維持
させるための貫通孔を有する隔離部材を設け、こ
の隔離部材の内側に第1の電極を配設し、その隔
離部材の外側にフイラメントおよび第2の電極を
配設し、第1の電極とフイラメントの間を直流放
電可能に構成したことを特徴とする。
The present invention provides an isolation member that includes a first electrode and a filament in a sealed container, a second electrode between which high-frequency discharge is performed, and a through hole for maintaining the discharge. A first electrode was provided inside the isolation member, a filament and a second electrode were provided outside the isolation member, and a direct current discharge was possible between the first electrode and the filament. It is characterized by

本発明に基づく望ましい実施例では、密封容器
内に第1の電極、第2の電極およびフイラメント
を設け、これら第1の電極と第2の電極の間で高
周波放電を行なわせるための電力を供給する高周
波電源を設け、放電を維持させるための貫通孔を
有する隔離部材を設け、この隔離部材の内側に第
1の電極を配設し、隔離部材の外側に第2の電極
およびフイラメントを配設し、第1電極とフイラ
メントの間で直流放電させたあと第1電極と第2
電極の間で高周波放電を行なわせる制御手段を設
けてある。本発明の望ましい実施例では、第1電
極は凹部を有し、望ましくは有底筒形または椀形
である。第2電極は光通過孔を有するリング状で
あり、第1電極と第2電極とは直流的に短絡され
ている。フイラメントは酸化物を塗布したタング
ステンコイルからなる。隔離部材もしくは制限部
材は密封容器内壁に連続的に密着するか近接して
設けられる。使用に適した高周波電力は3〜35ワ
ツトであり、高周波電源は高周波電流を脈動さ
せ、かつその脈動の波形を可変できるものであ
る。第1電極に形成された凹部の孔径は、隔離部
材の貫通孔の径よりも大きい。
In a preferred embodiment of the present invention, a first electrode, a second electrode, and a filament are provided in a sealed container, and power is supplied to cause high-frequency discharge between the first electrode and the second electrode. A high-frequency power source is provided, an isolation member having a through hole for maintaining the discharge is provided, a first electrode is provided inside the isolation member, and a second electrode and a filament are provided outside the isolation member. Then, after causing a DC discharge between the first electrode and the filament, the first electrode and the second
Control means are provided for causing high frequency discharge between the electrodes. In a preferred embodiment of the present invention, the first electrode has a recess, preferably in the shape of a cylinder or a bowl with a bottom. The second electrode has a ring shape with a light passage hole, and the first electrode and the second electrode are short-circuited in terms of direct current. The filament consists of a tungsten coil coated with oxide. The separating member or restricting member is provided in continuous contact with or in close proximity to the inner wall of the sealed container. The suitable high frequency power for use is 3 to 35 watts, and the high frequency power supply is one that can pulsate high frequency current and can vary the waveform of the pulsation. The diameter of the recess formed in the first electrode is larger than the diameter of the through hole of the isolation member.

以下本発明の実施例を図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例の概略構造を示す縦
断面図であり、第4図は第3図のB―B′断面図
である。
FIG. 3 is a vertical sectional view showing a schematic structure of an embodiment of the present invention, and FIG. 4 is a sectional view taken along line BB' in FIG.

まず放電維持および発光にあずかるガスである
水素(H2)、または重水素(D2)が管体22内に
1.5Torrから25Torr封入されている。管体22は
光28を外部に取り出すための透明石英からなる
光取り出し窓23を有し、この窓の反対方向には
第1電極20および第2電極21などを支持する
と共に管内を密閉し、かつ電力導入のための導体
29,30は封止するステム25を有する。ステ
ム25は硬質ガラスからなる。
First, hydrogen (H 2 ) or deuterium (D 2 ), which is a gas that takes part in maintaining the discharge and emitting light, enters the tube body 22.
Enclosed from 1.5Torr to 25Torr. The tube body 22 has a light extraction window 23 made of transparent quartz for extracting light 28 to the outside, and supports a first electrode 20, a second electrode 21, etc. in the opposite direction of this window, and seals the inside of the tube. In addition, the conductors 29, 30 for introducing power have a stem 25 for sealing. Stem 25 is made of hard glass.

このような管体22の内部には第1電極20お
よび第2の電極21が管体22の縦中心軸に中心
が重なるように光取り出し窓23、第1電極2
0、第2電極21および制限部材24がそれぞれ
対向配置されている。第1電極の形状は有底の筒
状または椀形で、放電部33は空洞になつてい
て、モリブデンやタングステンあるいはタンタル
などの耐熱性の大きな物質で作つてある。第2電
極21はニツケルからなり、リング状で、その中
央の空洞部分を光28が有効に通過できるよう配
置する。
Inside such a tube body 22, a light extraction window 23 and a first electrode 21 are arranged such that the first electrode 20 and the second electrode 21 are centered on the vertical central axis of the tube body 22.
0, the second electrode 21 and the limiting member 24 are arranged to face each other. The first electrode is shaped like a cylinder or a bowl with a bottom, and the discharge section 33 is hollow and is made of a highly heat-resistant material such as molybdenum, tungsten, or tantalum. The second electrode 21 is made of nickel, has a ring shape, and is arranged so that the light 28 can effectively pass through a hollow portion in the center.

また第1電極20の周囲には放電を制限するた
めの制限部材24を、第1電極20に接すること
なく第1電極も包囲しながら連続ギヤツプを維持
し、しかも管体22の内壁に連続的に密着または
近接するように配設する。制限部材24は輻射密
度増強孔27を有し、この貫通孔を第1電極20
と第2電極21の間の光28の中心軸上に配置す
る。第1電極20は導体30によつてステム25
に保持されており、高周波電源32から高周波電
力の供給を受けられるようスイツチ26を介して
接続されている。第2電極21の導体29はステ
ム25に保持されており、高周波電源32から高
周波電力の供給を受けるように接続されると共
に、フイラメント34の加熱電力が供給されるよ
うにスイツチ装置52に接続されている。また第
2電極は電気絶縁材35に接続保持されている。
フイラメント34は導体29および導体31に接
続され、加熱用電力が、スイツチ装置52を介し
て直流電源51から供給される。直流供給用導体
31は放電開始時の補助手段となる。
Further, a restricting member 24 for restricting discharge is placed around the first electrode 20 to maintain a continuous gap while surrounding the first electrode without touching the first electrode 20. Placed in close contact with or close to. The limiting member 24 has a radiation density enhancement hole 27, and this through hole is connected to the first electrode 20.
and the second electrode 21 on the central axis of the light 28 . The first electrode 20 is connected to the stem 25 by a conductor 30.
It is connected via a switch 26 so that it can receive the supply of high frequency power from the high frequency power supply 32. The conductor 29 of the second electrode 21 is held by the stem 25 and is connected to receive high frequency power from a high frequency power source 32, and is also connected to a switch device 52 so that heating power for the filament 34 is supplied. ing. Further, the second electrode is connected and held to an electrically insulating material 35.
The filament 34 is connected to the conductor 29 and the conductor 31, and heating power is supplied from the DC power supply 51 via the switch device 52. The DC supply conductor 31 serves as an auxiliary means at the start of discharge.

ここで制御装置50の指令によりスイツチ装置
52がオンとなるように動作させて直流電源51
から、フイラメント34に、導体29および導体
31を通じて加熱用の直流電圧10ボルト(V)を
印加し、フイラメント34を約900℃に熱する。
続いて、制御装置50の指令によりスイツチ26
を切替え、フイラメント34と第1電極20との
間に補助放電電源37から直流電圧約400Vを印
加して放電開始する。スイツチ26は接点39を
接点38又は40に接続するかフリー状態にする
かを選択動作できる。41はスイツチ26に動作
させるためのリレー制御端子である。第1電極2
0とフイラメント34間で放電開始したなら制御
装置50の指令により第1電極20と第2電極2
1が放電するようにスイツチ26を切換えて高周
波電源32から高周波電力を印加する。
Here, the switch device 52 is operated to turn on according to a command from the control device 50, and the DC power source 51 is turned on.
Then, a DC voltage of 10 volts (V) for heating is applied to the filament 34 through the conductor 29 and the conductor 31, and the filament 34 is heated to about 900°C.
Subsequently, the switch 26 is activated by a command from the control device 50.
Then, a DC voltage of approximately 400 V is applied between the filament 34 and the first electrode 20 from the auxiliary discharge power supply 37 to start discharge. The switch 26 can be selectively operated to connect the contact 39 to the contact 38 or 40 or to leave it in a free state. 41 is a relay control terminal for causing the switch 26 to operate. First electrode 2
0 and the filament 34, the first electrode 20 and the second electrode 2 are
The switch 26 is switched so that 1 is discharged, and high frequency power is applied from the high frequency power source 32.

高周波電力のみで放電開始しようとすれば非常
に高い高周波電圧が必要となり、取り扱い面から
も好ましくない。上記のように熱陰極34を用い
比較的低電圧で放電を開始しておき、それにとも
なつて第1電極20と第2電極21との間の空間
に電離されたイオンや電子が存在しているうち
に、両電極間で高周波放電をさせるようにしたこ
とで上記欠点を解消できる。
If an attempt is made to start the discharge using only high frequency power, a very high high frequency voltage will be required, which is undesirable from the handling point of view. As described above, discharge is started at a relatively low voltage using the hot cathode 34, and as a result, ionized ions and electrons are present in the space between the first electrode 20 and the second electrode 21. By causing high frequency discharge between both electrodes, the above-mentioned drawbacks can be overcome.

高周波放電により管体22の中に封入されてい
る水素または重水素ガスが励起され発生し、光取
出し窓23を通り外部に導き出され、各種分光分
析装置などの光源として使用される。
Hydrogen or deuterium gas sealed in the tube body 22 is excited and generated by the high-frequency discharge, and is guided outside through the light extraction window 23 and used as a light source for various spectroscopic analyzers.

高周波電源32は周波数5MHzから250MHzが好
ましく、電力は3ワツトから35ワツト(Watt)
印加出来る。周波数が5MHz以下では放電が不安
定となる。すなわち、放電の時間的ドリフトや放
電位置の変化が生ずる。また250MHz以上では高
周波損失が大きくなり、水素または重水素の分子
化効率(高周波電界により水素または重水素分子
分離し、これら原子が再結合する割合)が悪く、
放電状態も不安定となる。
The high frequency power source 32 preferably has a frequency of 5 MHz to 250 MHz, and a power of 3 watts to 35 watts.
Can be applied. If the frequency is below 5MHz, the discharge becomes unstable. That is, a temporal drift of the discharge and a change in the discharge position occur. In addition, at 250 MHz or higher, high frequency loss increases, and the molecularization efficiency of hydrogen or deuterium (the rate at which hydrogen or deuterium molecules are separated by a high frequency electric field and these atoms recombine) is poor.
The discharge state also becomes unstable.

第5図に電極間に与える高周波電力の周波数と
発光強度の関係を示す。縦軸は発光強度を示し、
横軸は周波数を対数目盛で示す。この実施結果は
第1電極20をモリブデンで形成し有底筒状で外
径が8mm全長が10mm、内径が3.5mm、深さが5mm
として得たものである。第2電極21はニツケル
金属のリング型で、外径を8mm、高さを2mm、内
径を5mmとしている。第1電極20と第2電極2
1との間は10mm離してある。また第1電極20は
制限部材24を厚さ0.15mmのモリブデン板で作り
輻射密度増強孔27の孔径は1.0mmである。
FIG. 5 shows the relationship between the frequency of high-frequency power applied between the electrodes and the emission intensity. The vertical axis shows the luminescence intensity,
The horizontal axis shows frequency on a logarithmic scale. The results of this implementation are that the first electrode 20 is made of molybdenum, has a bottomed cylindrical shape, has an outer diameter of 8 mm, a total length of 10 mm, an inner diameter of 3.5 mm, and a depth of 5 mm.
This is what I got as. The second electrode 21 is a ring-shaped electrode made of nickel metal, and has an outer diameter of 8 mm, a height of 2 mm, and an inner diameter of 5 mm. First electrode 20 and second electrode 2
1 and 10mm apart. Further, in the first electrode 20, the limiting member 24 is made of a molybdenum plate with a thickness of 0.15 mm, and the diameter of the radiation density enhancement hole 27 is 1.0 mm.

管体22の中には純度99.99%の重水素を
7Torr封入している。電極間に印加する高周波電
力は9Wである。上記条件で、周波数28MHzの場
合の発光強度は、従来の熱陰極型直流放電方式の
水素放電管より充分に大であり、しかもガスクリ
ーンアツプ現象に基づく寿命が従来例では300時
間程度であるのに対し、高周波放電による場合は
このクリーンアツプ現象が認められず、その他の
原因で寿命が決定されるまでの動作を持続でき、
従来の数倍以上の寿命すなわち1000時間以上の寿
命が得られる。
Inside the tube 22 is deuterium with a purity of 99.99%.
7Torr is included. The high frequency power applied between the electrodes was 9W. Under the above conditions, the emission intensity at a frequency of 28 MHz is sufficiently higher than that of conventional hot cathode type DC discharge type hydrogen discharge tubes, and the lifespan due to the gas clean-up phenomenon is about 300 hours in conventional cases. On the other hand, in the case of high-frequency discharge, this clean-up phenomenon is not observed, and operation can be continued until the end of life is determined by other causes.
The lifespan is several times longer than that of conventional products, that is, the lifespan is over 1000 hours.

第6図に高周波電力と発光強度との関係を示
す。縦軸に光強度を示し、横軸に高周波電力を示
す。実験条件は第5図の関係を得たときと同様で
あるが、周波数は28MHzとした。ここで、35W以
上では放電が広がつたり、高周波損失による電極
温度の上昇があり、光源寿命が短かくなる。また
7W以下では発光強度が低下し、不安定な放電と
なり、3W以下では放電が困難となる。
FIG. 6 shows the relationship between high frequency power and emission intensity. The vertical axis shows light intensity, and the horizontal axis shows high frequency power. The experimental conditions were the same as when obtaining the relationship shown in Figure 5, but the frequency was set to 28MHz. Here, if the power exceeds 35W, the discharge will spread, the electrode temperature will rise due to high frequency loss, and the life of the light source will be shortened. Also
Below 7W, the luminous intensity decreases and the discharge becomes unstable, while below 3W it becomes difficult to discharge.

次に第7図の実験結果により封入ガス圧力と発
光強度の関係について説明する。第7図は第6図
と同様の条件のもとに(但し電力は9Wとした)
測定した。すなわちガス圧力1.5Torr以下では光
強度はある程度大きいが、放電が不安定となつて
信頼性に乏しい。また25Torr以上では実用上充
分な光強度が得られない。ここで周波数および電
力を変化した場合、絶対値に多少変化はあるもの
の、その傾向は変らない。
Next, the relationship between the pressure of the filled gas and the luminescence intensity will be explained based on the experimental results shown in FIG. Figure 7 is under the same conditions as Figure 6 (however, the power was 9W)
It was measured. That is, when the gas pressure is 1.5 Torr or less, the light intensity is high to some extent, but the discharge becomes unstable and reliability is poor. Moreover, if it exceeds 25 Torr, a practically sufficient light intensity cannot be obtained. When the frequency and power are changed here, although there is a slight change in the absolute value, the tendency remains the same.

次に第8図を用いて制限部材24にある輻射密
度増強孔27について説明する。この輻射密度増
強孔27は第1電極20と第2電極21との高周
波放電の放電路を限定し、あわせて狭窄効果を持
たせ、発光強度の増強および安定性の増大を図る
ためのものである。第8図は封入ガス圧は9Torr
で、そのほかの条件は第7図の測定の場合と同様
である。縦軸には光強度を対数目盛で示し、横軸
に輻射密度増強孔の孔径を示す。孔径0.8mm以下
では光強度が大なるも電源との関係から不安定と
なる。この条件では安定動作を期待するには非常
に電圧の高い電源が必要である。また孔径が2.5
mm以上になると狭窄効果が薄れ光不足となりおよ
び不安定となる。
Next, the radiation density enhancement hole 27 in the restriction member 24 will be explained using FIG. This radiation density enhancement hole 27 is intended to limit the discharge path of the high-frequency discharge between the first electrode 20 and the second electrode 21, and also to have a constriction effect, thereby increasing the emission intensity and stability. be. Figure 8 shows the filled gas pressure is 9 Torr.
The other conditions were the same as in the measurement shown in FIG. The vertical axis shows the light intensity on a logarithmic scale, and the horizontal axis shows the hole diameter of the radiation density enhancement hole. If the hole diameter is less than 0.8 mm, the light intensity will be high but unstable due to the relationship with the power source. Under these conditions, a very high voltage power supply is required to ensure stable operation. Also, the pore diameter is 2.5
When it exceeds mm, the constriction effect weakens, resulting in insufficient light and instability.

次に電極形状について説明する。第1電極20
が平板の場合と椀状のものを比較すると、光強度
は椀状のものが3倍以上大きく、その効果が著し
いことが判明した。第1電極20を筒状にした場
合に於いては筒両端が開放型のものと有底のもの
とでは、光強度に於いて有底のものが開放型に比
較して2.5倍以上優つており、安定性についても
明らかに優つていることが実験により判明した。
Next, the electrode shape will be explained. First electrode 20
When comparing the case where the plate was flat and the case where the plate was shaped like a bowl, it was found that the light intensity was more than three times higher in the case where the plate was shaped like a bowl, and the effect was remarkable. When the first electrode 20 is made into a cylinder, the one with open ends and the one with a bottom are more than 2.5 times superior in light intensity to the one with an open end. It was found through experiments that it was clearly superior in terms of stability.

第2電極21は第1電極20との間に高周波電
界を均一にするため第1電極20と対向配置に
し、しかも中心部を光が通過できるようにリング
状とした。また第1電極20,第2電極21,お
よび制限部材24がイオン衝突によるスパツタリ
ングで劣化されるのを防止するため、両電極は直
流的に短絡状態にしている。この結果、スパツタ
金属が光取り出し窓23に付着して光28の透過
を少なくすることによる光強度の低下が防止でき
長寿命化が計れる。
The second electrode 21 was disposed opposite the first electrode 20 in order to make the high frequency electric field uniform between the second electrode 21 and the first electrode 20, and was ring-shaped so that light could pass through the center. Further, in order to prevent the first electrode 20, the second electrode 21, and the limiting member 24 from being deteriorated by sputtering due to ion bombardment, both electrodes are short-circuited in terms of direct current. As a result, a decrease in light intensity due to spatter metal adhering to the light extraction window 23 and reducing the transmission of the light 28 can be prevented, and a longer life can be achieved.

また制限部材24と管体22とは互に密着また
は近接することにより高周波電力の損失を少なく
でき、高効率で動作させることができる。
Furthermore, by bringing the limiting member 24 and the tube body 22 into close contact with each other or in close proximity to each other, loss of high frequency power can be reduced and operation can be performed with high efficiency.

上述の実施例によれば、従来のものより、寿命
がはるかに長い。また光強度を大にしてもスパツ
タによる電極消耗が少ないのでS値を上げること
ができ、S/N比を改善でき、分光分析の精度を
向上できる。また高周波放電だけで発光を持続で
きるためガスクリーンアツプ現象がほとんどなく
なり、光取出し窓部への金属元素の付着もなくな
り、管体を小型化できる。
According to the embodiment described above, the lifespan is much longer than that of the conventional one. Further, even if the light intensity is increased, electrode wear due to spatter is small, so the S value can be increased, the S/N ratio can be improved, and the accuracy of spectroscopic analysis can be improved. Furthermore, since light emission can be sustained only by high-frequency discharge, the gas clean-up phenomenon is almost eliminated, and there is no adhesion of metal elements to the light extraction window, making it possible to downsize the tube body.

上述の説明では第2電極は管体内にあるとして
いるが管体外の表面あるいは近接した周囲にあつ
てもよい。また第2電極が管体内にある場合は管
体外表面に接地したシルド電極を設けてもよい。
また第2電極の形状をリング型としているが、他
の形状でもよく、第1電極と高周波放電を行える
ものなら上記に限定されない。
In the above description, it is assumed that the second electrode is located inside the tube, but it may be located on the surface outside the tube or in the vicinity thereof. Further, when the second electrode is located inside the tube, a grounded shield electrode may be provided on the outer surface of the tube.
Further, although the shape of the second electrode is ring-shaped, other shapes may be used, and the second electrode is not limited to the above shape as long as it can perform high-frequency discharge with the first electrode.

また第1電極の空洞部33の内径が制限部材の
輻射密度増強孔27の直径より小さい場合は発光
強度が著しく低下する。また高周波電源を変調し
高周波電力を第1電極と第2電極との間にパルス
波形状に供給してパルス波形の変調光を取り出す
ようにすれば、受光処理する電気回路が複雑にな
らず、発熱量が小さくなるという利点がある。
Furthermore, if the inner diameter of the cavity 33 of the first electrode is smaller than the diameter of the radiation density enhancement hole 27 of the limiting member, the emission intensity will be significantly reduced. Furthermore, if the high-frequency power is modulated and the high-frequency power is supplied in a pulse wave shape between the first electrode and the second electrode to extract modulated light with a pulse waveform, the electric circuit for light reception processing will not be complicated. This has the advantage that the amount of heat generated is small.

従来のように直流放電でのパルス光を得る場
合、光路途中にシヤツターを断続的に入れるか、
又は供給電力を断続させて得るのが一般的であ
る。特に後者の電力断続方式の場合、直流放電で
はその開始電圧が断続の都度、高い電圧が必要と
なり、断続的に高電圧が印加される結果電極およ
びガスの消耗が著しくなり、劣化を早めていた。
高周波のみの放電ではかかる欠点が排除でき、比
較的簡単な電源で済むにもかかわらず、強力なパ
ルス光が得られるのでS/N比は大となり、分析
用光源として用いた場合、その分析精度が向上す
る。
When obtaining pulsed light using DC discharge as in the past, it is necessary to insert a shutter intermittently in the middle of the optical path, or
Alternatively, it is common to obtain power by intermittent power supply. In particular, in the case of the latter intermittent power method, DC discharge requires a high voltage each time the starting voltage is intermittent, and as a result of the intermittent application of high voltage, electrodes and gas wear out significantly, accelerating deterioration. .
Discharging using only high frequencies can eliminate these drawbacks, and even though it requires a relatively simple power source, it can provide powerful pulsed light, resulting in a high S/N ratio, and when used as a light source for analysis, it can improve the accuracy of analysis. will improve.

以上説明したように本発明によれば、封入ガス
圧の減少を防止できるので、長寿命となる。
As explained above, according to the present invention, it is possible to prevent the pressure of the sealed gas from decreasing, resulting in a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素発光装置の構造を示す縦断
面図、第2図は第1図のA―A′断面図、第3図
は本発明の一実施例の水素発光装置の一部断面構
成図、第4図は第3図のB―B′断面図、第5図
は発光強度と周波数の関係を示す図であり、第6
図は発光強度と高周波電力の関係を示す図、第7
図は発光強度とガス圧の関係を示す図、第8図は
発光強度に関係する輻射密度増強孔の直径との関
係を示す図である。 20…第1電極、21…第2電極、22…管
体、24…制限部材、26,52…スイツチ、3
2…高周波電源、34…フイラメント、37,5
1…直流電源、50…制御装置。
FIG. 1 is a longitudinal sectional view showing the structure of a conventional hydrogen light emitting device, FIG. 2 is a sectional view taken along line A-A' in FIG. 1, and FIG. 3 is a partial cross section of a hydrogen light emitting device according to an embodiment of the present invention. 4 is a sectional view taken along line B-B' in FIG. 3, FIG. 5 is a diagram showing the relationship between emission intensity and frequency, and FIG.
Figure 7 shows the relationship between emission intensity and high frequency power.
The figure shows the relationship between the emission intensity and the gas pressure, and FIG. 8 shows the relationship between the emission intensity and the diameter of the radiation density enhancement hole. 20... First electrode, 21... Second electrode, 22... Pipe body, 24... Limiting member, 26, 52... Switch, 3
2...High frequency power supply, 34...Filament, 37,5
1... DC power supply, 50... Control device.

Claims (1)

【特許請求の範囲】 1 密封容器内に水素ガス又は重水素ガスを封入
し、放電にともなつて封入ガスに基づく発光を得
る光源装置において、上記密封容器内に第1の電
極およびフイラメントを設け、上記第1の電極と
の間で高周波放電が行なわれる第2の電極を設
け、放電を維持させるための貫通孔を有する隔離
部材を設け、この隔離部材の内側に上記第1の電
極を配設し、上記隔離部材の外側に上記フイラメ
ントおよび上記第2の電極を配設し、上記第1の
電極と上記フイラメントの間を直流放電可能に構
成したことを特徴とする光源装置。 2 特許請求の範囲第1項記載の光源装置におい
て、上記第1電極は凹部を有することを特徴とす
る光源装置。 3 特許請求の範囲第1項又は第2項記載の光源
装置において、上記第2電極は上記密封容器内に
あつて上記第1電極に対向配置されることを特徴
とする光源装置。 4 特許請求の範囲第1項又は第2項記載の光源
装置において、上記隔離部材の貫通孔は孔径が
0.8乃至2.5mmであることを特徴とする光源装置。 5 特許請求の範囲第1項又は第2項又は第3項
記載の光源装置において、上記封入ガス圧は1.5
乃至25Torrであることを特徴とする光源装置。 6 特許請求の範囲第1項又は第2項又は第3項
記載の光源装置において、上記高周波放電をもた
らす高周波電力の周波数は5乃至250MHzである
ことを特徴とする光源装置。 7 特許請求の範囲第1項又は第2項又は第3項
記載の光源装置において、上記フイラメントは光
軸からはずれた位置に配置されていることを特徴
とする光源装置。 8 密封容器内に水素ガス又は重水素ガスを封入
し、放電にともなつて封入ガスに基づく発光を得
る光源装置において、上記密封容器内に第1の電
極、第2の電極およびフイラメントを設け、上記
第1の電極と上記第2の電極の間で高周波放電を
行なわせるための電力を供給する高周波電源を設
け、放電を維持させるための貫通孔を有する隔離
部材を設け、この隔離部材の内側に上記第1の電
極を配設し、上記隔離部材の外側に上記第2の電
極および上記フイラメントを配設し、上記第1電
極と上記フイラメントの間で直流放電させたあと
上記第1電極と上記第2電極の間で高周波放電を
行なわせる制御手段を設けたことを特徴とする光
源装置。
[Claims] 1. A light source device in which hydrogen gas or deuterium gas is sealed in a sealed container and which generates light emission based on the sealed gas as discharge occurs, wherein a first electrode and a filament are provided in the sealed container. , a second electrode is provided between which high-frequency discharge occurs between the first electrode, an isolation member having a through hole for maintaining the discharge is provided, and the first electrode is disposed inside the isolation member. A light source device, wherein the filament and the second electrode are disposed outside the isolation member, and a direct current discharge is possible between the first electrode and the filament. 2. The light source device according to claim 1, wherein the first electrode has a recess. 3. The light source device according to claim 1 or 2, wherein the second electrode is disposed within the sealed container and facing the first electrode. 4. In the light source device according to claim 1 or 2, the through hole of the isolation member has a hole diameter.
A light source device characterized by having a diameter of 0.8 to 2.5 mm. 5. In the light source device according to claim 1, 2, or 3, the sealed gas pressure is 1.5
A light source device characterized in that the output voltage is between 25 Torr and 25 Torr. 6. The light source device according to claim 1, 2, or 3, wherein the frequency of the high-frequency power that causes the high-frequency discharge is 5 to 250 MHz. 7. The light source device according to claim 1, 2, or 3, wherein the filament is disposed at a position offset from the optical axis. 8. A light source device in which hydrogen gas or deuterium gas is sealed in a sealed container and obtains light emission based on the sealed gas as discharge occurs, wherein a first electrode, a second electrode, and a filament are provided in the sealed container, A high frequency power source is provided for supplying power to cause high frequency discharge to occur between the first electrode and the second electrode, an isolation member having a through hole for maintaining the discharge is provided, and an isolation member is provided inside the isolation member. The first electrode is disposed on the outside of the isolation member, the second electrode and the filament are disposed on the outside of the isolation member, and after a DC discharge is caused between the first electrode and the filament, the first electrode and the filament are disposed on the outside of the isolation member. A light source device comprising a control means for causing high frequency discharge between the second electrodes.
JP13763780A 1980-10-03 1980-10-03 Light source device Granted JPS5763763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13763780A JPS5763763A (en) 1980-10-03 1980-10-03 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13763780A JPS5763763A (en) 1980-10-03 1980-10-03 Light source device

Publications (2)

Publication Number Publication Date
JPS5763763A JPS5763763A (en) 1982-04-17
JPS631704B2 true JPS631704B2 (en) 1988-01-13

Family

ID=15203289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13763780A Granted JPS5763763A (en) 1980-10-03 1980-10-03 Light source device

Country Status (1)

Country Link
JP (1) JPS5763763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986509B2 (en) * 2006-06-13 2012-07-25 株式会社オーク製作所 Ultraviolet continuous spectrum lamp and lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128173A (en) * 1977-04-14 1978-11-08 Hitachi Ltd Hydrogen discharge tube
JPS5539553U (en) * 1978-09-04 1980-03-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128173A (en) * 1977-04-14 1978-11-08 Hitachi Ltd Hydrogen discharge tube
JPS5539553U (en) * 1978-09-04 1980-03-13

Also Published As

Publication number Publication date
JPS5763763A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US5247535A (en) Apparatus for preionization of gas in a pulsed gas laser
US5247534A (en) Pulsed gas-discharge laser
US6172462B1 (en) Ceramic metal halide lamp with integral UV-enhancer
GB641581A (en) Improvements in or relating to electric discharge tubes
US3486058A (en) Sputter resistive cold cathode for low pressure gas discharge device
US1990175A (en) Gaseous electric discharge device
US3514604A (en) Pulsed microwave light source
US1863702A (en) Gaseous conduction method and apparatus
US4627086A (en) Plasma X-ray source
JPS631704B2 (en)
JPH06338302A (en) Dielectric barrier discharge lamp
US4833366A (en) High performance hollow cathode lamp
US3790852A (en) Microwave-excited light emitting device
US3013175A (en) High output discharge lamp
KR850001591B1 (en) Lighting system
US4954751A (en) Radio frequency hollow cathode
Stephens Applications of the zeeman effect to analytical atomic spectroscopy—IV: Capacitively-coupled radiofrequency spectral sources
US3893768A (en) Zeeman modulated spectral source
US3444415A (en) Fluorescent discharge lamp
US3424997A (en) Gas laser with gas storage electrode
US4158790A (en) High intensity atomic spectral lamp with interchangeable cathode
JP3561594B2 (en) Discharge tube and electrode for discharge tube
JPH04315761A (en) Deuterium electric discharge lamp
JP2005519437A (en) Discharge light source with electron beam excitation
US2126787A (en) Electric lamp