JPS63170399A - Radioactive medicine and high polymer compound for preparation thereof - Google Patents

Radioactive medicine and high polymer compound for preparation thereof

Info

Publication number
JPS63170399A
JPS63170399A JP61312434A JP31243486A JPS63170399A JP S63170399 A JPS63170399 A JP S63170399A JP 61312434 A JP61312434 A JP 61312434A JP 31243486 A JP31243486 A JP 31243486A JP S63170399 A JPS63170399 A JP S63170399A
Authority
JP
Japan
Prior art keywords
compound
polymer compound
metal element
high polymer
asialoglycoprotein receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61312434A
Other languages
Japanese (ja)
Other versions
JPH0615478B2 (en
Inventor
Hiroaki Washino
弘明 鷲野
Yoshinori Kurami
美規 倉見
Nobuo Ueda
上田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MEJIFUIJITSUKUSU KK
Nihon Medi Physics Co Ltd
Original Assignee
NIPPON MEJIFUIJITSUKUSU KK
Nihon Medi Physics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MEJIFUIJITSUKUSU KK, Nihon Medi Physics Co Ltd filed Critical NIPPON MEJIFUIJITSUKUSU KK
Priority to JP61312434A priority Critical patent/JPH0615478B2/en
Priority to ES87119349T priority patent/ES2053517T3/en
Priority to KR87015443A priority patent/KR960001742B1/en
Priority to AT87119349T priority patent/ATE103184T1/en
Priority to EP87119349A priority patent/EP0273452B1/en
Priority to DK693987A priority patent/DK172391B1/en
Priority to AU83143/87A priority patent/AU601536B2/en
Priority to CA000555608A priority patent/CA1340556C/en
Priority to US07/139,558 priority patent/US5032678A/en
Priority to DE3789432T priority patent/DE3789432T2/en
Publication of JPS63170399A publication Critical patent/JPS63170399A/en
Priority to US07/423,212 priority patent/US5089604A/en
Priority to US07/589,273 priority patent/US5118798A/en
Publication of JPH0615478B2 publication Critical patent/JPH0615478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

NEW MATERIAL:A high polymer compound obtained by chemically linking a reactive high polymer having a bifunctional ligand with an asialoglycoprotein receptor-oriented compound. EXAMPLE:Galactose-linked serum albumin-amylose-deferroxamine. USE:A carrier of radioactive metal element. Useful in extirpation of an internal organ such as liver or the like containing an asialoglycoprotein receptor, detection of deseases, etc., capable of readily and strongly forming chelate linkage and obtaining a radioactive medicine having relatively high concentration per unit. PREPARATION:For example, a reactive high polymer compound (e.g. amylose, etc.) having plural numbers of reactive groups is chemically linked with a bifunctional ligand (e.g. deferroxamine, etc.). Then the resultant reactive high polymer having the bifunctional ligand is linked with the asialoglycoprotein receptor-oriented compound (e.g. galactose linked serum albumin, etc.).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放射性医薬品とその調製用高分子化合物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a radiopharmaceutical and a polymer compound for its preparation.

(従来技術) アシアロ糖蛋白質受容体は、動物レクチンと呼ばれる分
子識別能を有する蛋白質の一種であり、動物細胞、特に
肝細胞に広く見出だされている。
(Prior Art) The asialoglycoprotein receptor is a type of protein called animal lectin that has molecular recognition ability, and is widely found in animal cells, especially hepatocytes.

人肝細胞から単離されているアシアロ糖蛋白質受容体は
分子量約4万の単一なポリペプチドから構成されており
、糖鎖非還元末端にガラクトース残基を持つ糖蛋白質(
アシアロ糖蛋白質)を識別する受容体である。
The asialoglycoprotein receptor isolated from human hepatocytes is composed of a single polypeptide with a molecular weight of approximately 40,000, and is a glycoprotein with a galactose residue at the non-reducing end of the sugar chain (
It is a receptor that recognizes asialoglycoprotein).

アシアロ糖蛋白質受容体の生理学的な機能については不
明な点が多いが、肝細胞表面に存在する受容体は肝血流
中の糖蛋白質と結合して複合体を形成し、細胞内に取り
込まれた後、細胞内を輸送され、ライソゾームで解離す
ることから、糖蛋白質の代謝過程を担っていると信じら
れている。このため慢性肝炎、肝硬変、原発性肝ガン等
の肝疾患では、アシアロ糖蛋白質の血中濃度が上昇する
と言う現象が見られ、薬物投与によって作成した実験的
肝障害モデルでは肝臓のアシアロ糖蛋白質受容体の量が
低下する事実が認められている。
Although much remains unknown about the physiological functions of asialoglycoprotein receptors, the receptors present on the surface of hepatocytes bind to glycoproteins in the hepatic bloodstream to form complexes that are taken up into cells. After that, it is transported within the cell and dissociated in lysosomes, so it is believed that it plays a role in the metabolic process of glycoproteins. Therefore, in liver diseases such as chronic hepatitis, cirrhosis, and primary liver cancer, a phenomenon in which the blood concentration of asialoglycoprotein increases is observed, and in experimental liver damage models created by drug administration, the asialoglycoprotein receptor in the liver is It is acknowledged that body mass decreases.

このことはアシアロ糖蛋白質様物質、すなわちアンアロ
糖蛋白質受容体指向性化合物を用いて、肝臓中のアシア
ロ糖蛋白質受容体の量及び質を評価することにより肝疾
患を診断することが可能であることを意味する。
This means that it is possible to diagnose liver disease by evaluating the quantity and quality of asialoglycoprotein receptors in the liver using asialoglycoprotein-like substances, that is, compounds that are directed toward analloglycoprotein receptors. means.

(発明が解決しようとする問題点) 上記のような診断方法においては、放射性同位元素を用
いる核医学的手法が適しているが、従来実験的に標識に
用いられた核種は、ヨウ素元素の放射性同位体であるl
−131及びl−125並びに放射性金属元素であるテ
クネチウム(Tc−99m)であった。しかしながら、
l−131やl−125は、物理学的半減期が長く(8
日及び60日)、かつ生体内において酵素的に脱ヨード
化反応をうけ、目的臓器以外の組織に放射性被曝を与え
ると共に、動態検査や定量的評価に誤差を与えるため、
適当な核種とは言えない。
(Problems to be solved by the invention) Nuclear medicine techniques using radioactive isotopes are suitable for the above-mentioned diagnostic methods, but the nuclides conventionally used for experimental labeling are radioactive iodine elements. l is an isotope
-131 and l-125, as well as technetium (Tc-99m), a radioactive metal element. however,
l-131 and l-125 have long physical half-lives (8
(days and 60 days) and undergo enzymatic deiodination reactions in vivo, exposing tissues other than the target organs to radioactive radiation and causing errors in dynamic tests and quantitative evaluations.
It cannot be said to be an appropriate nuclide.

一方、テクネチウム−99mを用いる場合は、分子内に
テクネチウムとキレート結合を形成しうる配位子を持ち
、結合部位を有するアシアロ糖蛋白質受容体指向性化合
物に限り有効である。例えば、ガラクトース結合血清ア
ルブミン(以後NGA(ネオガラクトアルブミン)と略
す。)は分子内のンステイン、リジン、グルタミン酸残
基等を介してテクネチウムと結合することができる。し
かしながう、一般的にはこのような状態の安定定数は低
く、標識体のイン・ビトロ並びにイン・ビポにおける安
定性(標識率)は低いと言われている。不安定化に伴い
生成してくる不純物にはコロイド様の二酸化テクネチウ
ム(”mT c○、)があり、この化合物は肝臓の網内
系に取り込まれるため、これが共存するとアシアロ糖蛋
白質受容体の様相を評価しえなくなる。また、テクネチ
ウムを用いて標識する場合には、安定な化学形である過
テクネチウム酸イオン(”mTco4)を還元して標識
せねばならないが、還元剤としては主に第一スズ塩が用
いられる。第一スズ塩はテクネチウム標識が可能な弱酸
性以上のpH領域ではコロイド化するので、NGAを充
分量加えてこれに第一スズ塩を結合させることにより、
遊離第一スズ塩の存在を抑制することが必要である。こ
のためNGAを直接テクネチウム−99mで標識する場
合には放射性医薬品を上げることが困難である。
On the other hand, when using technetium-99m, it is effective only for asialoglycoprotein receptor-directed compounds that have a binding site and have a ligand capable of forming a chelate bond with technetium in the molecule. For example, galactose-bound serum albumin (hereinafter abbreviated as NGA (neogalactalbumin)) can bind to technetium via instein, lysine, glutamic acid residues, etc. in the molecule. However, the stability constant of such a state is generally low, and the in vitro and in vitro stability (labeling rate) of the labeled substance is said to be low. Colloidal technetium dioxide (mT c○,) is an impurity generated as a result of destabilization, and this compound is taken up into the reticuloendothelial system of the liver, so when it coexists, the asialoglycoprotein receptor changes. Furthermore, when labeling with technetium, pertechnetate ion (mTco4), which is a stable chemical form, must be reduced and labeled; Tin salt is used. Since stannous salt forms a colloid in a pH range above weak acidity where technetium labeling is possible, by adding a sufficient amount of NGA and binding the stannous salt to it,
It is necessary to suppress the presence of free stannous salts. For this reason, when NGA is directly labeled with technetium-99m, it is difficult to produce a radiopharmaceutical.

(問題点を解決するための手段) 本発明者等は種々研究を重ねた結果、アシアロ糖蛋白質
受容体指向性化合物に2官能性配位子を何する反応性高
分子を結合させた高分子化合物が放射性金属元素のキャ
リヤーとして有用であり、かかるキャリヤーに放射性金
属元素を結合させた放射性金属元素結合高分子化合物は
前記欠点が克服された放射性医薬品として有用であるこ
とを見出だした。
(Means for solving the problem) As a result of various studies, the present inventors have developed a polymer in which a reactive polymer having a bifunctional ligand is bonded to an asialoglycoprotein receptor-directed compound. It has been found that the compound is useful as a carrier for a radioactive metal element, and that a radioactive metal element-bound polymer compound in which a radioactive metal element is bound to such a carrier is useful as a radiopharmaceutical that overcomes the above-mentioned drawbacks.

放射性金属元素結合高分子化合物は、放射性金属元素と
強固なキレート結合を形成することができる2官能性配
位子を複数個有しており、イン・ビトロ及びイン・ビボ
のいずれにおいても安定であるため、高化放射性医薬品
を提供することが可能である。
Radioactive metal element-bonded polymer compounds have multiple bifunctional ligands that can form strong chelate bonds with radioactive metal elements, and are stable both in vitro and in vivo. Therefore, it is possible to provide highly enhanced radiopharmaceuticals.

本発明の要旨は、 2官能性配位子を有する反応性高分子(1)とアシアロ
糖蛋白質受容体指向性化合物(2)を化学結合させて成
る高分子化合物(A)、 該高分子化合物(、A)に放射性金属元素(3)をキレ
ート結合させて成る放射性金属元素結合高分子化合物(
B)、 前記高分子化合物(A)を含む放射性医薬品調製用組成
物(C)、及び 前記放射性金属元素結合高分子化合物(B)を含む放射
性医薬品(D) に存する。
The gist of the present invention is: a polymer compound (A) formed by chemically bonding a reactive polymer (1) having a bifunctional ligand and an asialoglycoprotein receptor-directed compound (2); A radioactive metal element-bound polymer compound (, A) formed by chelating a radioactive metal element (3) to
B), a composition for preparing a radiopharmaceutical (C) containing the polymer compound (A), and a radiopharmaceutical (D) containing the radioactive metal element-bonded polymer compound (B).

上記高分子化合物(A)及び放射性金属元素結合高分子
化合物(B)は文献未載の新規物質であり、アシアロ糖
蛋白質受容体を含む臓器の描出、アシアロ糖蛋白質受容
体の量及び質に変化を来す疾患の検出、アシアロ糖蛋白
質受容体の動態検査等の核医学的用途に適した放射性医
薬品を提供することができるものである。
The above-mentioned polymer compound (A) and radioactive metal element-bound polymer compound (B) are new substances that have not been described in any literature, and they can visualize organs containing asialoglycoprotein receptors and change the quantity and quality of asialoglycoprotein receptors. The present invention can provide a radiopharmaceutical suitable for nuclear medicine applications such as detection of diseases causing asialoglycoprotein receptors and dynamic examination of asialoglycoprotein receptors.

(作用) 上記2官能性配位子を有する反応性高分子(1)として
は、放射性金属元素(3)に対I、て強固なキレート結
合を形成する2官能性配位子を有すると共に、比較的緩
和な条件下でアノアロ糖蛋白質受容体指向性化合物(2
)と化学結合を形成することができる反応性基を有する
ものが使用される。このような2官能性配位子を有する
反応性高分子(1)は、複数個の反応性基を有する高分
子化合物(1a)に対しその少なくとも1個の反応性基
が残るように2官能性配位子化合物(1b)を化学結合
させて得ることができろ。
(Function) The reactive polymer (1) having a bifunctional ligand has a bifunctional ligand that forms a strong chelate bond with the radioactive metal element (3), and Anoaloglycoprotein receptor-directed compound (2) under relatively mild conditions
) are used which have a reactive group capable of forming a chemical bond with. The reactive polymer (1) having such a bifunctional ligand is difunctionalized to the polymer compound (1a) having a plurality of reactive groups so that at least one of the reactive groups remains. It can be obtained by chemically bonding the functional ligand compound (1b).

複数個の反応性基を有する高分子化合物(la)として
は、ペント−サン、ヘキソ−サン、ポリグリコサミン、
ポリウロン酸、グリコサミノグリカン、グリコサミノグ
リカン、ヘテロヘキソ−サミンなどのポリサッカライド
誘導体、より具体的にはアミロース、アミロペクチン、
デキストラン、セルロース、イヌリン、ペクチン酸、プ
ルラン誘導体などが使用されろ。その他、ポリアクロレ
イン誘導体、ポリサッカライド誘導体、ポリアミン誘導
体(特にポリリジンポリイミン誘導体)なども同様に使
用することができる。なお、これらは単体であってもよ
く、混合物や脱水縮合物であってもよい。
Examples of the polymer compound (la) having a plurality of reactive groups include pentosan, hexosane, polyglycosamine,
Polysaccharide derivatives such as polyuronic acids, glycosaminoglycans, heterohexosamines, more specifically amylose, amylopectin,
Dextran, cellulose, inulin, pectic acid, pullulan derivatives, etc. may be used. In addition, polyacrolein derivatives, polysaccharide derivatives, polyamine derivatives (especially polylysine polyimine derivatives), etc. can be used similarly. Note that these may be used alone, or may be a mixture or a dehydrated condensate.

2官能性配置子化合物(lb)としては、具体的に次の
ような化合物が例示される。すなわち、式%式% で表されるジエチレントリアミン五酢酸サイクリック酸
無水物、式 で表されるエチレンジアミン四酢酸すクシンイミドエス
テル、式 %式% (式中、R4及びR7はそれぞれ水素、CI”−C3ア
ルキルまたはフェニルを示す。)で表されろ3−アミノ
メチレン−2,4−ペンタンジオン−ビス(チオセミカ
ルバゾン)誘導体、式 %式% (式中、R1及びR7はそれぞれ水素またはC,−C3
アルキル、nは0〜3の整数を示す。)で表される1−
(p−アミノアルキル)フェニルプロパン−1゜2−ジ
オン−ビス(チオセミカルバゾン)誘導体、デフェロキ
サミン、式 %式% (式中、R,−Rsは水素またはC+ −C3アルキル
を示す。)で表される2−プロピオンアルデヒド−ビス
(チオセミカルバゾン)誘導体などが挙げられる。なお
、そのもの自体は複数側の反応性基を有する高分子化合
物(la)と結合することかできる官能基を有していな
くとも、容易にアミノ基、カルボキシル基、アルデヒド
基、チオール基等の官能基を導入し得る基または構造を
有している場合は、放q=を性金属元素を捕捉する性質
を有ずろ限り、2官能性配位子化合物(Ib)として使
用ずろことができる。例えばジメルカプトアセデルエチ
レンジアミン(P ritzberg等:  J 、N
ucl、Med、、 23.917(1982))及び
ビスアミノエタンチオール(F ritz−berg等
: J 、Nucl、Med、、 25.916(19
84))に代表されるNe5tリガンド、サイクラン(
Keiri*g等:J 、Nucl、Med、、 23
.917(1982))に代表されるN4リガンド、N
、N’−ビス(2−ヒドロキンエチル)エチレンノアミ
ン(Wagner J r、等: Proceed−i
ngs of the I nternational
 Symposium onTechnetium i
n Chemistry and Nucl、ear 
Medi−cine、 P adova、  I ta
ly、 161頁(19g2))に代表されるN2O2
リガンドなどが挙げられる。
Specific examples of the bifunctional locator compound (lb) include the following compounds. That is, diethylenetriaminepentaacetic acid cyclic acid anhydride represented by the formula %, ethylenediaminetetraacetic acid succinimide ester represented by the formula %, formula % (wherein R4 and R7 are hydrogen, CI''- 3-aminomethylene-2,4-pentanedione-bis(thiosemicarbazone) derivative, represented by the formula % (wherein R1 and R7 are hydrogen or C, respectively) -C3
Alkyl and n represent an integer of 0 to 3. ) 1−
(p-aminoalkyl)phenylpropane-1゜2-dione-bis(thiosemicarbazone) derivative, deferoxamine, formula % (wherein R, -Rs represent hydrogen or C+ -C3 alkyl) Examples include the 2-propionaldehyde-bis(thiosemicarbazone) derivatives shown below. In addition, even if it itself does not have a functional group capable of bonding with the polymer compound (la) having multiple reactive groups, it can easily bind to functional groups such as amino groups, carboxyl groups, aldehyde groups, and thiol groups. If the compound has a group or structure capable of introducing a group, it can be used as a bifunctional ligand compound (Ib) as long as it has the property of capturing a metal element with a radical of q=. For example, dimercaptoacedelethylenediamine (Pritzberg et al.: J, N
Nucl, Med, 23.917 (1982)) and bisaminoethanethiol (Fritz-berg et al.: J. Nucl, Med, 25.916 (1982)).
Ne5t ligands represented by Cyclan (84)),
Keiri*g et al.: J. Nucl. Med, 23
.. 917 (1982)), N4 ligands represented by
, N'-bis(2-hydroquinethyl)ethylenenoamine (Wagner Jr. et al.: Proceed-i
ngs of the international
Symposium on Technetium i
n Chemistry and Nucl, ear
Medi-cine, Padova, Ita
ly, p. 161 (19g2))
Examples include ligands.

高分子化合物(A)を製造するには、2官能性配位子を
有する反応性高分子(1)とアンアロ糖蛋白質受容体指
向性化合物(2)とを自体常套の手段で反応させて直接
結合させるか、もしくは適当な架橋剤を介して結合させ
、透析法、塩析法、ゲルろ過性、イオン交換クロマトグ
ラフ法、電気泳動法など自体常套の手段により精製すれ
ばよい。アシアロ糖蛋白質受容体指向性化合物(2)1
分子当たりに結合させる2官能性配位子を有する反応性
高分子(1)の分子数は、アシアロ糖蛋白質受容体指向
性化合物(2)が生理活性を失わない限りにおいて制限
はないが、通常、10分子またはそれ以下が望ましい。
In order to produce the polymer compound (A), the reactive polymer (1) having a bifunctional ligand and the analloglycoprotein receptor-directed compound (2) are directly reacted by a conventional method. They may be bound together or bound through a suitable crosslinking agent, and purified by conventional means such as dialysis, salting out, gel filtration, ion exchange chromatography, and electrophoresis. Asialoglycoprotein receptor-directed compound (2) 1
The number of molecules of the reactive polymer (1) having a bifunctional ligand to be bound per molecule is not limited as long as the asialoglycoprotein receptor-directed compound (2) does not lose its physiological activity, but usually , 10 molecules or less are desirable.

ここで言うアシアロ糖蛋白質受容体指向性化合物(2)
とは、生体内のアノアロ糖蛋白質受容体に対して結合親
和性を有する化合物を意味し、具体例としてはアシアロ
糖蛋白質(例えばNGA、アシアロオロソムコイド、ア
シアロフェツイン、アシアロセルロブラスミン、アシア
ロハプトグロビン)、ガラクトース結合ポリリジン、ガ
ラクトース結合ポリクロコサミンなどが挙げられる。
Asialoglycoprotein receptor-directed compound (2) referred to here
means a compound that has binding affinity for an asialoglycoprotein receptor in vivo, and specific examples include asialoglycoproteins (such as NGA, asialoorosomucoid, asialofetuin, asialocelluloblasmin, asialohaptoglobin). ), galactose-bound polylysine, galactose-bound polycrocosamine, and the like.

高分子化合物(A)は放射性医薬品調整用キャリヤーと
して有用なものである。すなわち、高分子化合物(A)
には、放射性金属元素(3)と強固なキレート結合をす
る2官能性配位子を有する反応性高分子(1)が導入さ
れており、該反応性高分子(1)には複数個の2官能性
配位子が存在するから、これにより複数個の放射性金属
元素(3)を捕捉することができ、安定で比放射能が非
常に高い放射性医薬品を得ることができる。また従来、
放射性金属元素で標識しえなかったアシアロ糖蛋白質受
容体指向性化合物も安定に標識できるようになった。
The polymer compound (A) is useful as a carrier for preparing radiopharmaceuticals. That is, the polymer compound (A)
A reactive polymer (1) having a bifunctional ligand that forms a strong chelate bond with a radioactive metal element (3) is introduced into the reactive polymer (1). Since the difunctional ligand is present, it is possible to capture a plurality of radioactive metal elements (3), thereby making it possible to obtain a stable radiopharmaceutical with extremely high specific radioactivity. Also, conventionally,
Compounds directed to asialoglycoprotein receptors, which could not be labeled with radioactive metal elements, can now be stably labeled.

なお、放射性医薬品調整用キャリヤーとしての高分子化
合物(A)は溶液の形で保存されてもよいが、通常は凍
結乾燥法、低温減圧蒸留法などにより粉末状態に変換し
て保存され、用に臨み無菌水、生理食塩水、緩衝液など
に溶解される。粉末状態または溶解後の高分子化合物(
A)には、必要に応じ医薬的に許容し得る溶解補助剤(
例えば有機溶媒)、pt−tg節剤(例えば酸、塩基、
緩衝剤)、安定剤(例えばアスコルビン酸)、保存剤(
例えば安息香酸ナトリウム)、等掘削(例えば塩化ナト
リウム)などや放射性金属元素(3)の原子価状態を調
整するための還元剤や酸化剤が配合されてもよい。
Although the polymer compound (A) used as a carrier for radiopharmaceutical preparation may be stored in the form of a solution, it is usually converted into a powder state by freeze-drying, low-temperature vacuum distillation, etc., and then stored. It is dissolved in sterile water, physiological saline, buffer solution, etc. Polymer compounds in powder form or after dissolution (
A) may include a pharmaceutically acceptable solubilizing agent (
(e.g. organic solvents), pt-tg moderators (e.g. acids, bases,
buffers), stabilizers (e.g. ascorbic acid), preservatives (
For example, a reducing agent or an oxidizing agent for adjusting the valence state of the radioactive metal element (3) may be added.

上記した放射性金属元素(3)としては、放射能を有す
る金属元素であって、核医学的手法に適した物理的特性
、化学的特性を有し、しかも高分子化合物(A)中の2
官能性配位子構造により容易に捕捉され得るものが使用
される。その具体例としては、ガリウム−67、ガリウ
ム−68、タリウム−2011インジウム−1111テ
クネチウム−99m、亜鉛−62、銅−62等が挙げら
れる。
The above-mentioned radioactive metal element (3) is a metal element that has radioactivity, has physical properties and chemical properties suitable for nuclear medicine techniques, and is 2 in the polymer compound (A).
Those that can be easily captured by functionalized ligand structures are used. Specific examples include gallium-67, gallium-68, thallium-2011 indium-1111 technetium-99m, zinc-62, copper-62, and the like.

これらは通常、塩、特に水溶性塩の形で使用され、水性
媒体中において、高分子化合物(A)と接触せしめてそ
の標識化を行う。ただし、放射性金属元素(3)が安定
なキレート錯体を形成し得る原子価状態にある場合には
(例えばガリウム−67、インジウム−111)、反応
系に他の試剤を存在せしめる必要はないが、安定なキレ
ート錯体を形成するために原子価状態を変化させる必要
がある場合には(例えばテクネチウム−99m)、反応
系に還元剤または酸化剤を存在せしめる必要がある。
These are usually used in the form of salts, particularly water-soluble salts, and are labeled by contacting them with the polymer compound (A) in an aqueous medium. However, if the radioactive metal element (3) is in a valence state that allows it to form a stable chelate complex (e.g. gallium-67, indium-111), there is no need for other reagents to be present in the reaction system; When it is necessary to change the valence state to form a stable chelate complex (eg, technetium-99m), a reducing or oxidizing agent must be present in the reaction system.

還元剤の例としては2価の第一スズ塩(例えばハロゲン
化スズ、硫酸スズ、硝酸スズ、酢酸スズ、クエン酸スズ
)が挙げられる。酸化剤の具体例としては、過酸化水素
などがある。
Examples of reducing agents include divalent stannous salts (eg, tin halides, tin sulfate, tin nitrate, tin acetate, tin citrate). Specific examples of oxidizing agents include hydrogen peroxide.

例えば放射性金属元素(3)としてテクネチウム−99
mを使用する場合、高分子化合物(A)を水性媒体中還
元剤としての第一スズの存在下、過テクネチウム酸イオ
ンの形でテクネチウム−99mで処理することによって
テクネチウム−99m[識高分子化合物(B)を調整す
ることができろ。上記聞製に際し、各試剤の混合順序に
ついて格別の制限はないが、通常、水性媒体中で最初に
第一スズ塩と過テクネヂウム酸イオンを混合することは
避けr方が望ましい。
For example, technetium-99 as a radioactive metal element (3)
When using technetium-99m, the polymeric compound (A) is treated with technetium-99m in the form of pertechnetate ion in the presence of stannous as a reducing agent in an aqueous medium. Be able to adjust (B). In the above preparation, there are no particular restrictions on the order in which the reagents are mixed, but it is generally preferable to avoid mixing the stannous salt and pertechnedate ion in the aqueous medium first.

このようにして得られた放射性金属元素結合高分子化合
物(B)が放射性医薬品として有用であるためには、核
医学的適用目的に充分な放射能量と放射性濃度を有する
ことが必要である。例えば放射性金属元素(3)として
テクネチウム−99mを使用した場合、投与時に豹0.
5〜5 、 OmQ当たり、0.1〜50xCiの放射
能濃度を有することが望ましい。また、このような放射
性金属元素結合高分子化合物(B)は調製後直ちに投与
されてもよいが、好ましくは調製後適当時間保存に耐え
うる程度の安定性を有することが望ましい。なおまた、
放射性金属元素結合高分子化合物(B)には、必要に応
じpHa節剤(例えば酸、アルカリ、緩衝剤)、安定剤
(例えばアスコルビン酸)、等網化剤(例えば塩化ナト
リウム)などが配合されてもよい。
In order for the thus obtained radioactive metal element-bonded polymer compound (B) to be useful as a radiopharmaceutical, it must have sufficient radioactivity and radioactivity concentration for nuclear medicine applications. For example, when technetium-99m is used as the radioactive metal element (3), 0.0.
It is desirable to have a radioactivity concentration of 0.1-50xCi per 5-5, OmQ. Further, although such a radioactive metal element-bonded polymer compound (B) may be administered immediately after preparation, it is desirable that it has sufficient stability to withstand storage for an appropriate period of time after preparation. Furthermore,
The radioactive metal element-bonded polymer compound (B) may contain pH moderators (e.g. acids, alkalis, buffers), stabilizers (e.g. ascorbic acid), isotropic agents (e.g. sodium chloride), etc. as necessary. It's okay.

(実施例) 以下に実施例を示し、本発明を更に具体的に説明する。(Example) EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 NGA−Amylose(DFO)結合体を含む組成物
の製造二一 デフェロキサミン(以下DFOと略す。)15所を0.
03Mリン酸緩衝液(pI(7,0)1mQに溶かし、
これにトリエチルアミン3.2μQを加え、室温で約5
分間撹拌する。これに、水に溶解したジアルデヒドアミ
ロース(25rxfl/ m12) 1 mQを加え、
室温で30分間撹拌した。この溶液をA液とする。
Example 1 Production of a composition containing NGA-Amylose (DFO) conjugate Deferoxamine (hereinafter abbreviated as DFO) was placed at 15 sites at 0.
03M phosphate buffer (pI (7,0) dissolved in 1 mQ,
Add 3.2 μQ of triethylamine to this and
Stir for a minute. To this, add 1 mQ of dialdehyde amylose (25rxfl/ml) dissolved in water,
Stirred at room temperature for 30 minutes. This solution will be referred to as Solution A.

別にシアノメチル−チオガラクトース19をナノ型フラ
スコにとり、乾燥メタノール25u(!を加え、50℃
で溶解する。これにナトリウムメトキサイド27朽を加
え、−室温で48時間反応させた後、メタノールを減圧
蒸発させる。次に人血清アルブミン1gを含む0.2M
ホウ酸緩衝液2011Qを加え、4℃で一夜反応させて
NGA/8液を得る。この溶液をB液とする。B液2峠
にA液2rtt(lを加え、室温で約6時間撹拌して反
応させた後、水酸化ホウ酸ナトリウムt、sm9を加え
、約1時間室温で撹拌しながら還元した。反応液は1M
塩化ナトリウム溶液に対して透析し、更に0.03Mリ
ン酸緩衝液(pH7,0)を溶出液としてセファクリル
S−200(カラム直径2 、2 cm、長さ50cり
を用いたカラムクロマトグラフィー法によりNGA−A
mylose(D F O)を精製する。
Separately, cyanomethyl-thiogalactose 19 was placed in a nano-type flask, 25 u of dry methanol (!) was added, and the mixture was heated to 50°C.
Dissolve with. Sodium methoxide 27g was added to this, and after reacting at room temperature for 48 hours, methanol was evaporated under reduced pressure. Next, 0.2M containing 1g of human serum albumin
Add borate buffer 2011Q and react overnight at 4°C to obtain NGA/8 solution. This solution will be referred to as Solution B. Add 2 rtt (l) of solution A to solution B 2, stir at room temperature for about 6 hours to react, add sodium hydroxide borate t, sm9, and reduce while stirring at room temperature for about 1 hour.Reaction liquid is 1M
Dialysis was performed against a sodium chloride solution, followed by column chromatography using Sephacryl S-200 (column diameter 2.2 cm, length 50 cm) using 0.03 M phosphate buffer (pH 7.0) as an eluent. NGA-A
Purify mylose (DFO).

上記操作はすべて無菌的に行うほか、使用する器具類は
すべて180℃、4時間の加熱処理によるパイロジエン
バーンするか、もしくは注射用蒸留水で洗浄した後、オ
ートクレーブで滅菌して用いた。また、緩衝液は注射用
蒸留水を用いて調製し、メンブランフィルタ−を用いて
ろ過滅菌法により滅菌したものを使用した。カラムは次
亜塩素酸ナトリウム溶液で洗浄した後、O,1M塩化ナ
トリウム溶液で平衡化した。
All of the above-mentioned operations were performed aseptically, and all the instruments used were either pyrogen-burned by heat treatment at 180° C. for 4 hours, or washed with distilled water for injection and then sterilized in an autoclave. The buffer solution was prepared using distilled water for injection and sterilized by filtration sterilization using a membrane filter. The column was washed with sodium hypochlorite solution and then equilibrated with O, 1M sodium chloride solution.

ここで得た精製NGA−Amylose(DFO)は、
0.03Mリン酸緩衝液で希釈して1g/1ttQとし
、メンブランフィルタ−でろ過しながら1mQづつ無菌
バイアルに分注し、目的とする組成物を得た。
The purified NGA-Amylose (DFO) obtained here is
The mixture was diluted with 0.03M phosphate buffer to give a concentration of 1 g/1ttQ, and 1 mQ each was dispensed into sterile vials while being filtered through a membrane filter to obtain the desired composition.

上記結合体のDFO及びAmyloseglは電気泳動
法により分析した。すなわち、前記還元反応終了後の反
応液の一部にクエン酸ガリウム(87Ga )注射液1
iCiを加えて標識し、これを試料とした。
DFO and Amylosegl of the above conjugate were analyzed by electrophoresis. That is, gallium citrate (87Ga) injection solution 1 was added to a part of the reaction solution after the completion of the reduction reaction.
iCi was added and labeled, and this was used as a sample.

電気泳動法により分析されたN G A −Amylo
se(DF O)−”Ga、Amylose(D F 
O)−”Ga、D P 0−67Gaの値から本例で得
られた結合体中におけるNGAI分子当たりのDFOの
分子数は11゜5g、Amyloseの分子数は07個
と算出された。
NGA-Amylo analyzed by electrophoresis
se(DFO)-”Ga, Amylose(DF
From the values of O)-''Ga and D P 0-67Ga, the number of DFO molecules per NGAI molecule in the conjugate obtained in this example was calculated to be 11.5 g, and the number of Amylose molecules to be 0.07.

実施例2 NGA−Amylose(DFO)−”Ga注射液の製
造及び性質ニー 実施例1で得た組成物を含むバイアルにクエン酸ガリウ
ム(e ? G a )注射液2mC1を加え、N G
 A−Amylose(D F O) −”G a注射
液を得た。以上の操作は無菌的に行う。ここで得られた
標識体について電気泳動法で標識率を算出したところ、
標識体以外の放射能ピークは認められず、高純度の放射
性医薬品であることが示された。
Example 2 Preparation and properties of NGA-Amylose (DFO)-Ga injection 2mC1 of gallium citrate (e?Ga) injection was added to a vial containing the composition obtained in Example 1, and NG
A-Amylose(DFO)-"Ga injection solution was obtained. The above operations were performed aseptically. The labeling rate of the labeled substance obtained here was calculated by electrophoresis.
No radioactivity peaks other than those of the labeled substance were observed, indicating that it was a highly pure radiopharmaceutical.

(発明の効果) 本発明においては、アシアロ糖蛋白質受容体指向性化合
物に複数個の反応性基を持った高分子化合物を介して2
官能性配位子が導入されている。
(Effects of the Invention) In the present invention, an asialoglycoprotein receptor-directed compound is catalyzed by a polymer compound having a plurality of reactive groups.
Functional ligands have been introduced.

すなわち、アシアロ糖蛋白質受容体指向性化合物にはそ
の1分子につき放射性金属元素と容易かつ強固にキレー
ト結合を形成し得る2官能性配位子が多数個導入されて
いるから、これを放射性金属元素と接触させた場合、単
位量当たり比較的高濃度の放射能を持った放射性医薬品
が得られる。従って、投与量が比較的少量で確実な診断
を行うことが可能である。
In other words, each molecule of an asialoglycoprotein receptor-directed compound contains a large number of bifunctional ligands that can easily and firmly form a chelate bond with a radioactive metal element. When contacted with a radiopharmaceutical, a radiopharmaceutical with a relatively high concentration of radioactivity per unit amount is obtained. Therefore, it is possible to make a reliable diagnosis with a relatively small dose.

Claims (1)

【特許請求の範囲】 1、2官能性配位子を有する反応性高分子(1)とアシ
アロ糖蛋白質受容体指向性化合物(2)を化学結合させ
て成る高分子化合物(A)。 2、2官能性配位子を有する反応性高分子(1)とアシ
アロ糖蛋白質受容体指向性化合物(2)を化学結合させ
て成る高分子化合物(A)に放射性金属元素(3)をキ
レート結合させて成る放射性金属元素結合高分子化合物
(B)。 3、2官能性配位子を有する反応性高分子(1)とアシ
アロ糖蛋白質受容体指向性化合物(2)を化学結合させ
て成る高分子化合物(A)を含む放射性医薬品調製用組
成物(C)。 4、2官能性配位子を有する反応性高分子(1)とアシ
アロ糖蛋白質受容体指向性化合物(2)を化学結合させ
て成る高分子化合物(A)に放射性金属元素(3)をキ
レート結合させて成る放射性金属元素結合高分子化合物
(B)を含む放射性医薬品(D)。
[Scope of Claims] A polymer compound (A) formed by chemically bonding a reactive polymer (1) having a mono- or difunctional ligand and an asialoglycoprotein receptor-directed compound (2). 2. Chelate a radioactive metal element (3) to a polymer compound (A) formed by chemically bonding a reactive polymer (1) having a bifunctional ligand and an asialoglycoprotein receptor-directed compound (2). A radioactive metal element-bonded polymer compound (B). 3. A composition for preparing a radiopharmaceutical containing a polymer compound (A) formed by chemically bonding a reactive polymer (1) having a difunctional ligand and an asialoglycoprotein receptor-directed compound (2) ( C). 4. Chelate a radioactive metal element (3) to a polymer compound (A) formed by chemically bonding a reactive polymer (1) having a difunctional ligand and an asialoglycoprotein receptor-directed compound (2) A radiopharmaceutical (D) containing a radioactive metal element-bound polymer compound (B).
JP61312434A 1986-12-30 1986-12-30 Radiopharmaceuticals and polymeric compounds for their preparation Expired - Lifetime JPH0615478B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP61312434A JPH0615478B2 (en) 1986-12-30 1986-12-30 Radiopharmaceuticals and polymeric compounds for their preparation
CA000555608A CA1340556C (en) 1986-12-30 1987-12-30 High molecular compound comprising unit of asialoglyco-protein acceptor-directing compound and unit of chelate-forming compound chemically bonded thereto, and its utilization
US07/139,558 US5032678A (en) 1986-12-30 1987-12-30 Radio labeled high molecular compound comprising unit of asialoglycoprotein acceptor-directing compound and unit of chelate forming compound chemically bonded thereto
AT87119349T ATE103184T1 (en) 1986-12-30 1987-12-30 HIGH MOLECULAR COMPOUND COMPRISING ONE UNIT OF ASIALOGLYCOPROTEIN ACCEPTOR CONDUCTING COMPOUND AND ONE UNIT OF CHELATING COMPOUND CHEMICALLY BONDED TO SUCH, AND ITS USE.
EP87119349A EP0273452B1 (en) 1986-12-30 1987-12-30 High molecular compound comprising unit of asialoglycoprotein acceptor-directing compound and unit of chelate-forming compound chemically bonded thereto, and its utilisation
DK693987A DK172391B1 (en) 1986-12-30 1987-12-30 High Molecular Compound for Use as a Non-Radioactive Carrier, Radiolabeled High Molecular Compound, Method for Preparation thereof, and Method for Improved Labeling of an Asialoglycoprotein Acceptor Conducting Compound
AU83143/87A AU601536B2 (en) 1986-12-30 1987-12-30 High molecular compound comprising unit of asialoglycoprotein acceptor-directing compound and unit of chelate-forming compound chemically bonded thereto, and its utilization
ES87119349T ES2053517T3 (en) 1986-12-30 1987-12-30 COMPOUND OF HIGH MOLECULAR WEIGHT COMPRISING ONE UNIT OF A COMPOUND DIRECTED TOWARD THE ASIALOGLYCOPROTEINIC ACEOTIR AND ONE UNIT OF A COMPOUND THAT FORMS A CHELATE LINKED CHEMICALLY TO IT AND ITS USE.
KR87015443A KR960001742B1 (en) 1986-12-30 1987-12-30 High molecular compound comprising unit of asialoglycoprotein
DE3789432T DE3789432T2 (en) 1986-12-30 1987-12-30 High molecular compound, consisting of a unit of a compound that leads to the asialoglycoprotein acceptor and a unit of a chelating compound that is chemically bound to it, and their use.
US07/423,212 US5089604A (en) 1986-12-30 1989-10-18 Asialoglycoprotein acceptor-directing compound having chelateforming compound chemically bonded thereto
US07/589,273 US5118798A (en) 1986-12-30 1990-09-28 Radioactive metallic element-labelled high molecular compound useful in nuclear medicine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312434A JPH0615478B2 (en) 1986-12-30 1986-12-30 Radiopharmaceuticals and polymeric compounds for their preparation

Publications (2)

Publication Number Publication Date
JPS63170399A true JPS63170399A (en) 1988-07-14
JPH0615478B2 JPH0615478B2 (en) 1994-03-02

Family

ID=18029159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312434A Expired - Lifetime JPH0615478B2 (en) 1986-12-30 1986-12-30 Radiopharmaceuticals and polymeric compounds for their preparation

Country Status (1)

Country Link
JP (1) JPH0615478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253776A1 (en) * 2021-06-01 2022-12-08 Universität Bern 3d printing of solid-state phantoms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010251A (en) * 1974-12-16 1977-03-01 Green Allan M Scanning agent composition and use in imaging liver and for biliary function
JPS5634634A (en) * 1979-08-29 1981-04-06 Nippon Mejifuijitsukusu Kk Stable radiological diagnostic agent labeled with technetium-99m
US4401647A (en) * 1980-03-03 1983-08-30 The Regents Of The University Of Ca Radiolabeled neoglycopeptides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010251A (en) * 1974-12-16 1977-03-01 Green Allan M Scanning agent composition and use in imaging liver and for biliary function
JPS5634634A (en) * 1979-08-29 1981-04-06 Nippon Mejifuijitsukusu Kk Stable radiological diagnostic agent labeled with technetium-99m
US4401647A (en) * 1980-03-03 1983-08-30 The Regents Of The University Of Ca Radiolabeled neoglycopeptides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253776A1 (en) * 2021-06-01 2022-12-08 Universität Bern 3d printing of solid-state phantoms

Also Published As

Publication number Publication date
JPH0615478B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US4855353A (en) High molecular compounds having amino groups, and their utilization
US5118798A (en) Radioactive metallic element-labelled high molecular compound useful in nuclear medicine
JPH036124B2 (en)
JP2792871B2 (en) Metal ion removal method and solution used therefor
JPS641449B2 (en)
JP2564459B2 (en) Carrier for radiopharmaceutical preparation
JPS63170399A (en) Radioactive medicine and high polymer compound for preparation thereof
JPS6058927A (en) Blood platelet preparation labeled with radioactive isotope
JPH09500172A (en) Glucans labeled with radioisotopes
JPH01176000A (en) Radioactive medicine and polymer compound for preparing said medicine
JP2548711B2 (en) Reactive polymer compound having amino group and bifunctional ligand and use thereof
JPS63170389A (en) Radioactive medicine and high-molecular compound for preparation thereof
JP2677543B2 (en) Bioactive substance-bound polymer compound and carrier for preparing radiopharmaceutical containing the compound
JPS5842846B2 (en) Technetium-99m labeled radiological diagnostic agent for liver and bone marrow scanning and its manufacturing method
JP2677544B2 (en) Radioactive metal element-bonded polymer compound and radiopharmaceutical containing the compound
JPS59106426A (en) Radioactive diagnostic for nucleomedical use containing polymeric compound
JPS59105003A (en) Reactive high-molecular compound having bonded bifunctional ligand compound
JPH0460974B2 (en)
JPH047329B2 (en)
JPH0416465B2 (en)
JPS62221693A (en) Novel technetium-labeled compound
JPH0433767B2 (en)
JPS59105002A (en) Reactive high-molecular compound having bonded bifunctional ligand compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term